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Abstract—Security in large distributed computing 
infrastructures, peer-to-peer, or clouds, remains an important 
issue and probably a strong obstacle for a lot of potential users 
of these types of computing infrastructures. In this paper, we 
propose an architecture for large scale distributed 
infrastructures guaranteeing confidentiality and integrity of 
both the computation and the host computer. Our approach is 
based on the use of virtualization and we introduce the notion 
of confidence link to safely execute programs. We implemented 
and tested this approach using the POP-C++ tool, which is a 
comprehensive object-oriented system to develop applications 
in large decentralized distributed computing infrastructures. 

Keywords-virtualization; security in large distributed system; 
grid middleware. 

I.  INTRODUCTION  

Today, more and more applications require having 
punctually access to significant computing power. The 
purchasing of High Performance Computing (HPC) 
hardware is really profitable only in case of frequent usage. 
There are several alternatives to purchasing HPC hardware. 
The two most popular are Clouds [11] and Grids [12]. Even 
if these two approaches are not totally identical, they share at 
least one difficulty, which is the fact that the user has to trust 
the resources provider. In the case of Grid infrastructures, 
this problem is complemented by the fact that the resource 
provider also has to trust the user to be sure that running 
user’s tasks will not harm his own resources. This paper will 
focus on how, by using virtualization, we can guarantee 
confidentiality and integrity of computing and resource for 
the user and the resources provider in decentralized 
distributed computing environments, such as Grid systems.  

The main questions we intend to answer are: 
• How to ensure the integrity of the user's data and the 

user's calculations? 

• How to ensure the integrity of the host machine? 

• How to ensure the confidentiality of the 
communications? 

• How to safely use machines belonging to different 
private networks in the presence of firewalls? 

• How to ensure that different users sharing the same 
computing resource cannot interfere between each 
other? 

Last, but not least, we want to provide these features 
while minimizing the loss of performances.  

We propose an abstract vision of a secure decentralized 
distributed computing environment. This vision is based on 
the notion of confidence links. It has been implemented in 
the ViSaG project (ViSaG stands for: Virtual Safe Grid), 
which is presented in this paper. 

The rest of this paper is organized as follows: Section II 
details the main security issues we want to address with the 
ViSaG project. Section III presents the ViSaG model and 
Section IV presents the POP-C++ model, which has been 
used to implement the ViSaG model. Section V details the 
implementation of the ViSaG model using the POP-C++ 
middleware and Section VI presents the results we have 
obtained. Finally, Section VII concludes this paper. 

II.  CURRENT SECURITY ISSUES IN GRID COMPUTING 

As mentioned in the introduction, there are several 
security issues in current Grid middleware systems that must 
be addressed. These issues are detailed below. 

A. How to ensure the integrity of the user's data and the 
user's calculations 

When a user submits a computation on a remote machine 
he must be sure that the owner of the remote resource cannot 
interfere with his computation, or, at least, if there is 
interference the user must be aware of it. 

B. How to ensure the integrity of the host machine 

Consider a user of the Grid willing to provide his 
computing resources to the infrastructure. As this user does 
not have a strong control on who will execute a job on his 
resources, he wants that the middleware guarantees him that 
the executed jobs cannot access unauthorized resources, 
cannot harm his resources, and cannot use more resources 
than he agreed to allocate to them. 

C. How to ensure the confidentiality of the 
communications 

We want to secure communications between nodes. First, 
we want to prevent communications from being seen by any 
other person/system and also we do not want that anyone 
could intercept and modify the transmitted data. 
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D. How to safely use machines belonging to different 
private networks (presence of firewalls) 

One of the most difficult security problems when 
deploying decentralized Grid middleware is due to the 
presence of private networks protected by firewalls. Indeed, 
most of the time available resources in an institution, which 
could be part of a Grid, are resources located on private 
networks protected by firewalls. The question is: how to 
make these resources available without creating dangerous 
security holes in the firewalls. 

E. How to ensure that different users using the same 
computing resource cannot interfere between each other 

We also have to ensure that a user of a remote resource 
cannot harm processes of other users on the same remote 
resource. 

Usage of virtual machines in conjunction with Grids to 
address security issues has been already proposed in several 
papers, one of the first being [3]. Santhanam et al. [5] 
propose four scenarios to deploy virtual machines on Grid. 
None of these four scenarios exactly corresponds to our 
approach, even if the fourth is the closest. Smith et al. [6] 
propose a Grid environment enabling users to safely install 
and use custom software on demand using an image creation 
station to create user-specific virtual machines. Keahey et al. 
[4] focus on creating, configuring and managing execution 
environments. The authors show how dynamic virtual 
environments can be modeled as Grid services, thus allowing 
a client to create, configure and manage remote execution 
environments. In all these papers, the problem of deploying 
virtual machines in a Grid is addressed in a general way, 
although Santhanam et al. [5] have used Condor to test their 
scenarios. Our approach is different because the model we 
propose is closely related to an execution scheme based on 
the paradigm of distributed object-oriented programming. 
The proposed solution is specifically designed to solve the 
problems associated with this model such as the creation and 
destruction of the remote object (process) and passing remote 
objects as parameters of remote methods. 

III.  THE V ISAG MODEL 

Unlike most existing Grid middleware, the approach 
proposed in the ViSaG project is based on the fundamental 
assumption that a Grid infrastructure is a fully decentralized 
system, which, in a sense, is close the peer-to-peer (P2P) 
network concept. At the hardware level, a computing Grid is 
composed of an unknown, but large, number of computer 
owning computing resources. None of the computers in the 
Grid has a global view of the overall infrastructure. Each 
computer only knows a very limited number of neighbors to 
which it is directly connected by two-way confidence links. 
A confidence link is a bidirectional channel that allows two 
computers located at both ends of the link to communicate 
safely at any time. How the confidence links are established 
is not part of the ViSaG model, but is a hypothesis which 
defines our vision of a computing Grid. However, we can 
give as an example of a confidence link, an SSH channel 
between two computers whose system managers, or users, 

have manually exchanged their public keys. The set of all 
computers together with all the confidence links form a 
connected graph, we call it a trusted network, whose nodes 
are computers and edges are the confidence links. In the 
remainder of this document, when no confusion is possible, 
we often use the terms nodes and links, respectively, to 
designate computers and confidence links. Although, 
usually, computers are volatile resources, we will not address 
this aspect in this paper, where we made the assumption that, 
during the execution of a given program, computers 
participating to this execution do not fail. Finally, we assume 
that the confidence links are reliable. 

Figure 1 illustrates a computing Grid, as defined above, 
where confidence links have been realized using SSH 
(Secure Shell [10]) tunnels. 

In the ViSaG execution model, computing resources are 
requested on the fly during execution of the application. 
Obtainment of requested resources is achieved through the 
usage of a resource discovery algorithm which runs on every 
node and only uses confidence links. Usually, this algorithm 
is a variant of the flooding algorithms Details of this 
algorithm are not part of the model, but is an implementation 
issue. When a node, we call it the originator, needs a new 
computing resource, it issues a request, which will be 
handled by the resource discovery algorithm. 

When the requested computing resource, provided by a 
node we will call the target, has been found, the originator of 
the request must contact the target to launch the computation 
and possibly communicate with it during the computation. 
For the originator, one possibility would be to communicate 
with the target by following confidence links. This option is, 
obviously, very inefficient because it exaggeratedly loads all 
intermediary nodes which have to route all messages. This is 
especially true when, during computation, nodes must 
exchange large data as is often the case in HPC applications. 
A better solution would be for the originator, to contact the 
target directly. Unfortunately, it is likely that the originator 
does not have a direct link (a confidence link) with the target 
and, in addition, the target does not necessarily desire to 
create a direct confidence link with the originator. 
Nevertheless, as the request reached him following 
confidence links, the target could accept to launch a virtual 

 
 

Figure 1.  A trusted network using SSH tunnels. 
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machine to provide the necessary computing resources for 
the originator. The virtual machine will act as a sand box for 
the execution of the remote process. If the virtual machine is 
not permeable, this will guarantee that the executing node 
(the target) cannot be damaged by the execution of the 
remote process and that the computation made by the process 
cannot be biased by the node which hosts the computation 
(the target). To summarize, we can make the following 
statement: 

The security of this execution model is only limited by the 
security offered by the virtual machine and the security 
offered by the confidence links. 

This is the very basic idea of the ViSaG model. The 
implementation of such a model raises numerous problems 
that we are going to address in the next sections. 

IV.  THE POP-C++ EXECUTION MODEL 

A Grid computing infrastructure not only consists in 
hardware but also requires the presence of a middleware 
which provides services and tools to develop and to run 
applications on the Grid. Therefore, before presenting how 
the ViSaG model has been implemented we need to know 
which Grid middleware our implementation is based on. The 
ViSaG model, as presented in the previous section, has been 
implemented in the POP-C++ Grid middleware [1]. In order 
to achieve this task we had to adapt to the execution model 
of POP-C++, which is briefly presented below. For more 
information of the POP-C++ tool please visit the POP-C++ 
web site: http://gridgroup.hefr.ch/popc. 

The POP-C++ tool implements the POP programming 
model first introduced by Dr. Tuan Anh Nguyen in his PhD 
thesis [2]. The POP programming model is based on the very 
simple idea that objects are suitable structures to distribute 
data and executable codes over heterogeneous distributed 
hardware and to make them interact between each other. 

The object oriented paradigm has unified the concept of 
module and type to create the new concept of class. The next 
step introduced by the POP model is to unify the concept of 
class with the concept of task (or process). This is realized by 
adding to traditional “sequential” classes a new type of 
classes: the parallel class. By instantiating parallel classes 
we are able to create a new category of objects we call 
parallel objects. Parallel objects are objects that can be 
remotely executed. They coexist and cooperate with 
traditional sequential objects during the application 
execution. 

POP-C++ is a comprehensive object-oriented framework 
implementing the POP model as a minimal extension of the 
C++ programming language. It consists of a programming 
suite (language, compiler) and a run-time providing the 
necessary services to run POP-C++ applications.  

In the POP-C++ execution model, when a new parallel 
object is created, the node which required the creation of the 
parallel object contacts the POP middleware running locally 
to ask for a new computing resource for this parallel object. 
To find this new computing resource, the POP middleware 
launches the resource discovery service available in the POP-
C++ middleware. This service will contact all the neighbors 

of the node thanks to its confidence links, to ask for 
computing resources. Then the request is propagated through 
the network by following confidence links. When the request 
reaches a node which is able to provide the requested 
computing resource, it answers the originator of the request 
by following back the confidence links. The originator of the 
request chooses, between all the positive answers it received, 
the resource it wants to use to create the parallel object and 
remotely launch the execution of the parallel object inside a 
virtual machine. In order to be able to use the procedure 
presented above with the POP-C++ runtime, we had to 
design a dedicated architecture for the nodes of the Grid. 
This architecture is presented in the next section. 

V. IMPLEMENTATION 

A. Node architecture 

In the presented implementation, a node is a computer 
running a virtualization platform, or hypervisor. On this 
platform, two or more virtual machines are deployed. The 
first virtual machine, called the administrator virtual 
machine (or in short: Admin-VM) is used to run the 
POP-C++ runtime. The other virtual machines are the 
worker virtual machines (or in short: Worker-VM). They are 
used by the Admin-VM to run parallel objects. The Admin-
VM is connected to its direct neighbors in the Grid by the 
confidence links. The latter are implemented using SSH 
tunnels. Figure 2 illustrates this architecture. 

One of the first questions we have to answer is how many 
Worker-VMs do we launch on a specific node. In other 
words, do we launch all parallel objects in the same Worker-
VM, or do we launch one Worker-VM for each parallel 
object allocated to this node? In order to guarantee isolation 
between applications (see sub-section II.E) we decided to 
allocate Worker-VM on an application basis: for a given 
node, parallel objects belonging to the same application (the 
same POP-C++ program running instance) are executed in 
the same Worker-VM. This choice implies that we are able 
to identify applications. For this purpose, we have to 
generate a unique application identifier, called AppUID, for 
each POP-C++ program launched in the Grid. As we are in a 
fully decentralized environment, to guarantee unicity of the 
identifier we have based it on the IP address of the node 
where the program is launched, the Unix process ID as well 
as on the clock. This AppUID is added to all requests to 
allow identifying parallel objects belonging to the same 
POP-C++ program.  

 
 
 

Figure 2.  Architecture of a node in the ViSaG model implementation 
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When the Admin-VM launches a Worker-VM to provide 
a computing resource for the execution of a parallel object, it 
must ensure that the node that originates the request is able 
to safely contact this Worker-VM, i.e., is able to establish an 
SSH tunnel. This is realized through a key exchange process 
which is detailed below.  

B. Key exchange process 

There are two main situations where the POP-C++ 
middleware needs to exchange keys between virtual 
machines. The first one is, as mentioned above, when a new 
Worker-VM is launched, and the second is when the 
reference of a parallel object is sent to another parallel 
object. Indeed, as POP-C++ is based on the C++ 
programming language, it is possible to pass the reference of 
a parallel object as parameter of a method of another parallel 
object. As a consequence, these two parallel objects, possibly 
running on different nodes, must be able to communicate.  

Let us first consider the situation where a new Worker-
VM is launched by the Admin-VM. This operation is the 
consequence of a resource discovery request sent by a node 
that asked for the creation of a new parallel object. This 
request contains, among other information, the public key 
(rPuK) and the IP address (rIP) of the node that sent the 
request. The Admin-VM launches the Worker-VM and 
passes it the rPuK and the rIP address. The newly launched 
Worker-VM generates a new pair of private/public keys and 
sends its lPuK and lIP to the originator of the request along 
the confidence links. At this stage, both the originator of the 
request and the newly launched Worker-VM, have both 

PuKs and therefore are able to establish an SSH tunnel 
between them. This keys exchange process is illustrated on 
Figure 3.  

The second situation we have to consider is when a 
parallel object running on the virtual machine VMa sends the 
reference of a parallel object running on a virtual machine 
VMb to a third parallel object running on a virtual machine 
VMc. This situation is illustrated on Figure 4. In such a 
situation, the POP-C++ middleware must ensure that VMb 
and VMc can establish an SSH tunnel.  

When this situation occurs, we necessarily have an object 
running on VMa calling a method of an object running on 
VMc. Thus, the first thing to do is to add the PuK and the IP 
address of VMb in the message sent by VMa to VMc. This 
does not increase the number of messages but just slightly 
increases the size of the message sent to execute a remote 
method call. Next, along the confidence links, VMc sends its 
PuK to VMb. Now VMb and VMa can establish an SSH 
tunnel. 

We claim that the proposed infrastructure solves four of 
the issues mentioned in Section II, namely, issues A, B, C 
and E.  

The integrity of the user’s data and the user’s calculation 
(issue A) as well as the integrity of the host machine (issue 
B) are guaranteed by the isolation the virtual machine 
provides between the host machines and the remotely 
executed process. The confidentiality of the communications 
(issue C) is guaranteed by the SSH tunnels. Finally, as each 
application is executed in a different virtual machine, we 
guarantee that different users using the same computing 
resources cannot interfere between each other (issue E).  

The last issue to solve (issue D) is to be able to safely use 
machines belonging to different private networks in presence 
of firewalls. Indeed the nodes belonging to a same Grid are 
not necessarily in the same administrative domain and can be 

 

Figure 5.  Example of a Grid including a private network 
protected by a firewall 

 

Figure 4.  Passing a parallel object reference. 

 
Figure 3.  Creation of a parallel object. 
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separated by firewalls managed by different authorities. Our 
goal is to enable these nodes to belong to the same Grid and 
to be able to safely run parallel objects without opening 
security holes in firewalls. 

Figure 5 shows a situation where three nodes (A, B and 
C) are in a private network separated from the rest of the 
Grid by a firewall. If at least one node of the Grid belonging 
to the private network (node B on Figure 5) creates at least 
one confidence link with one node located on the other side 
of the firewall (node D on Figure 5); then, it is possible to 
make this private network part of a Grid located outside of 
the private network. To achieve this goal we have to follow 
the following procedure. Suppose that a node X, located 
somewhere in the Grid but outside the private network, 
launches a request for resources. By following confidence 
links, this query can reach nodes located in the private 
network (thanks to the confidence link B-D). If a node inside 
the private network, let’s say node A, agrees to carry out this 
execution, it must establish a communication with the node 
X. To achieve this, the Admin-VM of node A will launch a 
virtual machine (a Worker-VM) and will configure it with 
the public key of X contained in the request launched by 
node X. The Worker-VM creates a pair of public/private 
keys and transmits its public key to its Admin-VM. The 
latter transmits, by following the confidence links, this public 
key to the Worker-VM of the node X. Then, node X can 
establish an SSH tunnel with the Worker-VM started on 
node A. Now, node X and node A which are not in the same 
private network can safely directly communicate. 

To be able to realize this communication, the firewall 
must be configured in the following way: 

• It must allow the permanent SSH tunnel between 
nodes B and D. 

• It must allow temporary establishment of an SSH 
tunnel between any node outside the local network 
and any Worker-VM launched by any Admin-VM 
inside the local network. 

We claim that this configuration of a firewall is perfectly 
acceptable and does not create security holes if the 
administrator of the private network follows the following 
recommendations. First, the node D, which in a sense acts as 
a bridge toward outside the private network, must be under 
the control of the administrator of the private network. The 
Admin-VM running on this node must only run the minimal 
services required by the POP-C++ middleware. In our case, 
the SSH services with node B and the few fixed neighbors it 
will manually establish a confidence link with. Second, when 
installing the POP-C++ middleware in the private network, 
the administrator must take the following precaution. As the 
POP-C++ middleware creates and launches virtual machines, 
a good policy is to reserve a set of well-defined IP addresses 
only for this purpose and then to open, in the firewall, the 
SSH service only for this set of IP addresses. This will 
guarantee that the nodes external to the private network can 
only access, through SSH, Worker-VMs handled by the 
POP-C++ middleware. Of course, we make the assumption 
that the POP-C++ middleware itself is not malicious. 

The middleware must ensure that when the execution of a 
POP-C++ program terminates, all Worker-VMs allocated to 
this program are deleted (or reset), to ensure that all links 
established during the program execution are destroyed. 

VI.   TESTS 

To demonstrate the feasibility of the ViSaG model, we 
have developed a prototype integrated with the POP-C++ 
middleware. This prototype uses the VMware ESXi 
hypervisor [8] to manage virtual machines. 

The virtual machine management layer can start, stop, 
revert, and clone virtual machines. It also allows to exchange 
SSH PKI and to get the IP address of a virtual machine. All 
these operations are performed thanks to the libvirt  library 
[9] and the proprietary VMWare VIX API. As much as 
possible, we used libvirt to be compatible with different 
hypervisor virtualization platforms. Unfortunately, not all 
desired features were available, so we had to partially rely on 
the proprietary VIX API for a few key features such as 
cloning virtual machines and information gathering. 

The SSH tunneling management is independent of any 
API because it uses the installed version of SSH to initiate 
and manage SSH tunnel. In our infrastructure, the installed 
version was OpenSSH running on Ubuntu 10.04 operating 
system. 

To test our model and our prototype, we have deployed a 
Grid on two different sites. The first site was the “Ecole 
d’ingénieurs et d’architectes” in the city of Fribourg in 
Switzerland and the second was “Haute école du paysage, 
d'ingénierie et d'architecture” in the city of Geneva in 
Switzerland. These two sites were connected only by Internet 
and therefore, the security was a key point. More important, 
the two sites have totally different administrative network 
management, as required to make the test significant. 

We have been able to run several distributed applications 
written with POP-C++ between the two sites in a transparent 
way for the users. The performance loss was acceptable; the 
main slowdown is due to the startup of the virtual machines. 

VII.  CONCLUSION AND PERSPECTIVES 

This paper addressed the security issues in the context of 
a fully decentralized Grid infrastructure. Grid consumers, 
system managers, local users of a shared resource, network 
administrators, etc., are different actors involved in 
distributed computing, and as such they need security 
guarantees to accept taking part in a Grid infrastructure. Our 
solution takes advantage of virtualization as an isolation 
means, and on public key cryptography.  

The existing POP-C++ Grid middleware is taken as the 
illustration of the decentralized Grid paradigm.  

POP-C++ offers "parallel objects" as a programming 
model that essentially hides the complexity of the Grid 
aspects (local vs remote access, heterogeneous machines, 
resource discovery, etc.). On top of this architecture, and 
with no further constraint on the developer, our new 
implementation adds the wrapping of the parallel objects 
within virtual machines, as well as secure communications 
via SSH tunneling. Combining those two features brings a 
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convincing answer to the security issues in decentralized 
Grids. Two levels of activities in the Grid are distinguished: 

• Setup: to join a grid returns to configure and start a 
dedicated virtual machine (VM-Admin), which 
manages the POP-C++ services. The setup phase 
establishes connections to other nodes of the Grid; 
those confidence links ensure the connectivity of the 
Grid. The Admin-VM never executes user code 
itself, but has control over a pool of virtual machines 
for the user jobs. The setup is considered as a local 
event (it does not need to stop the Grid), and it 
typically involves a manual intervention of a user 
responsible of the Grid installation.  

• Grid computing: when a POP-C++ user program is 
launched, the Admin-VMs communicate to 
distribute the jobs on the available resources; when it 
accepts a job, an Admin-VM wraps that job in a 
virtual machine (Worker-VM) that will be devoted 
to that running instance of the Grid program. The 
necessary encrypted connections with other Worker-
VMs are automatically established, as our system 
takes care of conveying the needed public keys from 
node to node. 

Thus launching a program on the Grid causes the start of 
several virtual machines that will be dedicated to this 
computation, with the appropriate communication topology. 
When the distributed program terminates, no trace of its 
execution remain (the involved virtual machines are reset 
before being recycled).  

Our prototype has been implemented with ESXi virtual 
machines, but the code relies on libvirt, so that porting to 
another virtualization technology is greatly simplified.  

The value of virtualization as a companion of Grid 
technology has been shown for many years. In a centralized 
Grid architecture, using virtual machines instead of physical 
systems can for instance greatly simplify Grid 
reconfiguration or load balancing. In the decentralized 
approach that we advocate, virtual machines are used as an 
isolation wrapper for pieces of distributed computing, a 
means to guarantee an appropriate security level.  

In the course of our work, we identified several issues 
that need to be further investigated: 

• It would be interesting to bring the current version 
based on ESXi on another virtualization software 
(hypervisor). The ideal candidate should provide the 
same level of isolation, but lightweight VMs 
management operations (start, stop, resume, revert, 
clone, etc.).  

• A potential issue is about ensuring that the different 
VMs can benefit from system updates.  

• Concerning the VMs installation, it would be worth 
to define precisely what capabilities have to be 
included in the OS equipment. In fact this leds to a 
concept of a "harmless Worker-VM", i.e., a virtual 
machines that somehow are restricted to compute 
and communicate with other harmless Worker-VMs 

only, and that are unable to cause any damage in the 
hosting environment (in particular no other network 
traffic).  

• In our system, one hypothesis about security is that 
the POP-C++ installation is safe; we should study 
how this can be guaranteed and verified by the 
different Grid nodes. 
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