
An Approach for Hybrid Clouds Using VISION Cloud Federation

Uwe Hohenstein, Michael C. Jaeger,
and Sebastian Dippl

Corporate Technology, Siemens AG
Munich, Germany

Email: {Uwe.Hohenstein, Michael.C.Jaeger,
Sebastian.Dippl}@siemens.com

Enver Bahar
Corporate Technology, Siemens AG

Munich, Germany
Email: bahar.enver@gmail.com

Gil Vernik
and Elliot K. Kolodner

IBM Research - Haifa
Haifa, Israel

Email: {gilv, kolodner}@il.ibm.com

Abstract—Hybrid clouds combine the benefits of a public cloud
and on-premise deployments of cloud solutions. One scenario for
the use of hybrid clouds is privacy: since public clouds are con-
sidered unsafe, sensitive data is often kept on premise. However,
other non-sensitive resources can be deployed in a public cloud in
order to benefit from elasticity, fast provisioning, or lower cost.
In this work, we present an approach for hybrid cloud object
storage based on the federation of storage resources. It uses the
metadata of the objects and containers as a fundamental concept
to set up and manage a hybrid cloud. Our approach extends an
existing scheme for implementing federation for object storage
developed by the VISION Cloud project.

Keywords-Cloud storage;hybrid;federation.

I. INTRODUCTION

Cloud storage refers to the broader term of cloud com-
puting that represents a novel provisioning paradigm for re-
sources. The National Institute of Standards and Technology
(NIST) defines ”Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1].

Cloud storage as one specific cloud service applies the
major characteristics of cloud computing to storage, which are
a) virtually unlimited storage space, b) no upfront commitment
for investments into hardware and software licenses, and c)
pay per use [2]. Depending on the viewpoint, a couple of
other characteristics may also become relevant, e.g., support
for multi-tenancy in order to serve multiple customers at the
same time.

Moreover, the term cloud storage covers a wider area than
provisioning approaches and models; cloud storage refers to
software implementing storage services. Most notably, Not
only SQL (NoSQL) database servers are a specific cloud stor-
age solution that gained popularity recently in this context [3].
The understanding about NoSQL databases is that correspond-
ing database servers or services follow a different approach
than the traditional table-model provided by relational database
servers, implied by an adaptation to distributed systems and
cloud computing environments, e.g., by relaxing the Atomicity,
Consistency, Isolation, Durability (ACID) characteristics of
the traditional (relational) database servers by means of Basic

Availability, Soft state, Eventual consistency [4] (BASE).
A lot of cloud storage solutions such as NoSQL databases

can be used even in a non-cloud computing manner. In such a
setup, a storage server can be deployed similar to a traditional
database server managed on premise. Of course, the advantages
of cloud storage are then partially lost: virtually unlimited
storage space is limited by the storage hardware provided
by the own platform; investments for such hardware must be
taken. The software must be set up and the setup must be
planned in advance in contrast to flexible provisioning and
pay-as-you-go models. Therefore, such a deployment makes
sense, if a software system has to be installed locally while
taking advantage of specific characteristics, e.g., of NoSQL
technology. In fact, there are a number of motivations for
keeping critical data on premise, on private servers rather than
utilizing public cloud storage offerings:
• Data storage cannot be delegated because of regulatory

certifications. For example, data store that contains
legally relevant material could be subject to possible
confiscation and thus provisioning of such data cannot
be delegated.

• There are often privacy constraints. For example, a
data store that holds employees’ invention disclosures
before being submitted to patent offices might not be
suitable to be placed at a public cloud provider.

• A cloud provider offers a certain Service Level Agree-
ments (SLA) or reliability, which is insufficient. In this
case, a private on-premise proprietary storage solution
may be the choice for keeping critical data.

As pointed out above, the disadvantage of using private on-
premise storage solutions opposed to public cloud storage is
obvious. In particular, it is likely less flexible and potentially
more expensive in terms of cost, since an on-premise solution
typically cannot always benefit from the same economy of
scale that can be achieved by a public provider.

In this work, we show how to benefit from both worlds by
integrating on premise storage services for critical data with
public cloud storage service for non-critical data. Through this
approach, flexibility and potential cost advantages as well as
high SLA requirements can be achieved as required for the
individual data entities.

We present our metadata-based approach for a hybrid cloud
based on the cloud storage federation scheme developed by the
European funded VISION Cloud project [5][6]. VISION Cloud
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aims at developing next generation technologies for cloud ob-
ject stores including content centric access to storage. It offers
first-class support for metadata for the storage entities, i.e.,
objects and containers, and enables management functionality
based on such metadata, for example, describing and managing
federation through container and object metadata.

In order to achieve a hybrid scenario, combining public and
private storage, we also use container and object metadata to
describe the federation setup. Such an approach to describing
federation provides a unified and location-independent access
interface, i.e., transparency for data sources, while leaving the
federation participants autonomous.

The remainder of this work is structured as follows: Section
II explains the VISION Cloud software that is relevant and is
used for this work: the concept, particularly of using metadata,
the storage interfaces, and the storage architecture. The hybrid
cloud approach of VISION Cloud is then presented in Sec-
tion III. We explain our approach, particularly the architectural
setup in Section IV, and continue in Section V with further
useful federation scenarios. Section VI is concerned with
related work. A brief evaluation of this approach is explained
in Section VII. This work ends with Section VIII providing
conclusions and future work.

II. THE VISION CLOUD PROJECT

The EU project VISION Cloud [5] is developing a cloud
storage system that allows for the efficient storage of different
types of content. The approach supports storage for objects
(videos, etc.) together with metadata describing their content.
An increasing number and a variety of applications exist that
envisage a growing need for such an object store. New media
authoring applications are currently arising with video files
such as Ultra High-Definition and 4K resolutions. Archives
for virtual file systems of virtual machines occur in the area of
virtualization and cloud computing. And finally, mobile users
use their smart phones for producing and capturing multimedia
content in an exponentially growing manner [7].

These all are examples where we expect an increasing
number of large and unstructured storage objects. The VISION
Cloud project intends to provide an object storage system that
is capable of handling large objects and files. Another goal of
VISION is the ability to easily ingest content of different types,
to analyze the content and enrich its metadata, and to smoothly
access the content through a variety of end user devices. This
functionality extends the plain data storage features offered by
today’s cloud storage providers.

A. The VISION Concept of Metadata
A common way to handle content is to put it into files

and to organize it in a hierarchical structure. This enables
navigating the hierarchy in order to finally find a particular
item. However, it becomes more and more difficult to set up
an appropriate hierarchy that provides flexible search options
with acceptable access performance and intuitive categories for
ever increasing amounts of data.

Thus, the target of the VISION Cloud project is to provide
an appropriate basis for organizing objects including content-
centric access facilities. In contrast to public cloud offerings
such as Amazon S3, Microsoft Blob Service, or specific hard-
ware appliances, VISION Cloud puts emphasis on supporting
metadata flexibly and making metadata an integral part of
the storage system [5][6]. Moreover, VISION Cloud supports

private cloud installations and does not require any specialized
hardware.

The approach of content-centric storage (CCS) does not
restrict the user to organizing his content in hierarchies. Rather,
the user describes the content through metadata allowing him
to access the content based on its associated metadata. More-
over, an additional layer of the storage system derives metadata
from usage statistics or access mechanisms. The basis for this
approach to content-centric storage are efficient mechanisms
to automatically create or ingest and retrieve metadata about
the content. Then, this is the entry point to objects.

To illustrate the intention and scope, consider YouTube
as an example: a video (i.e., an object) on YouTube can
possess a set of metadata associated with it, metadata of
different characteristics. Some metadata remains static (e.g.,
the uploader of a video), other is dynamic (for instance, the
number of views). Some metadata is related to content (e.g.,
categories applied to the video) and other is of technical nature
(e.g., the resolution of the video). YouTube enables one to
access the video by searching metadata. Hence, a user can ask
for a video that is ‘most viewed’ or that belongs to the category
‘drama’ [8].

VISION Cloud offers similar functionality in a more gen-
eral form. In particular, it extends the scope to any type of
data, no matter whether videos, text, pictures, or documents
in any form and from any source. While handling and using
metadata in a conventional data object storage system is typi-
cally restricted to storing and retrieving metadata together with
the object, VISION Cloud provides the ability to update and
append new metadata to objects as well as the ability to find
objects based on their metadata values and their relationships
to other objects.

B. Interface
The basic data model of VISION Cloud is similar to

the Cloud Data Management Interface (CDMI) [9] standard
interface for access and distinguishes between containers and
objects. CDMI defines a standardized way to store objects
in a cloud. The standard covers create, retrieve, update, and
delete (CRUD) operations by defining simple requests with the
HyperText Transfer Protocol (HTTP) according to the REpre-
sentational State Transfer (REST) principle. In this model, the
underlying storage space is abstracted and primarily exposed
using the notion of a container.

Containers are similar to buckets in other storage solu-
tions. A container is not only a useful abstraction for storage
space, but also serves as a grouping of the data stored in
it. The storage creates, retrieves, updates, and deletes each
object as a separate resource. Containers might be orga-
nized in a hierarchical manner. The following REST exam-
ples give an impression about the CDMI-based interface of
VISION: PUT /CCS/MyTenant/MyContainer creates a
new container for a specific tenant MyTenant. Then, PUT
/CCS/MyTenant/MyContainer/MyObject can be used
store an object into this container.

The metadata is passed as content or payload of a HTTP
PUT request. The first question arises how to distinguish the
container from an object. By the CDMI standard, this is solved
by using HTTP header fields indicating a data type for this
request. A full request for creating a new container thus looks
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as in Figure 1:

Example: PUT /CCS/MyTenant/MyContainer
X-CDMI-Specification-Version: 1.0
Content-Type: application/cdmi-container
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
Accept: application/cdmi-container
{ metadata : { key1 : value1, key2 : value2 } }

Figure 1: HTTP PUT Request

III. HYBRID CLOUD APPROACH

The goal of cloud federation is to provide a unified and
location-independent access interface, i.e., a transparency of
data sources in various clouds of different providers, while
leaving the federation participants autonomous. Thus, creating
a federation of existing clouds supports the client with a unified
and combined view of storage and data services across several
providers and systems. There are several approaches to provide
federation:

1) The first one is to put a new federation layer on
top of the clouds to be federated. This means that
every access to the federation must be passed to
this federation layer. The federation layer might offer
additional services such as distributed queries. In
any case, each of the federation members remains
accessible by its own interface.

2) Instead of introducing a new layer, each federated
cloud can be an access point to the federation, i.e.,
can accept requests. If the cloud itself is unable to
answer the request, it delegates the request or parts
of it to respective clouds.

3) Controlling clouds and storage location can be part of
a language in the sense of a multi-database approach
[10]. That is, operations can be performed on storage
locations that are explicitly specified, e.g., by means
of wildcards expressions.

In the VISION Cloud project, approach (2) is pursued [11].
A federation is accessible from any cloud in the federation. The
development of the VISION Cloud project mainly provides
two mechanisms that can be used as a base for federations:

1) Object storage with use of metadata: In VISION
Cloud, all objects are allowed to contain user-
definable metadata items that can be used in several
ways to query for objects inside the cloud storage
system. It is possible to employ a schema for these
metadata items to enforce the existence of certain
metadata fields and hence enforcing a certain struc-
ture.

2) Adapters for storage clouds: VISION Cloud includes
an additional layer for integrating cloud storage sys-
tems, e.g a blob storage service of some larger public
cloud offering.

3) A fine granular Access Control List (ACL) infras-
tructure: VISION Cloud was designed with security
in mind and provides fine granular access control
that are attachable to tenants, containers and objects.
If containers are taking part in a federation, the
administrator of a federation can provide new ACLs
for objects that are being moved in a federation.

Based on the existing work carried out by the VISION
Cloud project, this work uses the concept of federation to

define a hybrid cloud setup for leaving critical data on premise,
while using the metadata processing facilities of the CCS
functions of VISION Cloud. The approach consists of two
main parts: the administration and setup of a hybrid cloud and
its operation.

A. A Hybrid Cloud Setup Based on VISION Cloud Federations
First, there is an administrator for the setup. The adminis-

trator is responsible for creating and maintaining a federation
of two cloud systems. We propose a way to introduce the
clouds to each other by a data structure that contains metadata
(rather than the data itself) about remote data. In VISION
Cloud, a federation is defined between two data containers.
In order to create a federation, the administrator has to
send a data structure describing the federation to one of the
containers taking part in the federation. A typical federation
administration data structure in VISION Cloud, for example
for an Amazon S3 member, uses the payload [11] in Figure 2:

"federationinfo": {
// information about target cloud
"eu.visioncloud.federation.status": "0",
"eu.visioncloud.federation.job_start_time": "1381393258.3",
"eu.visioncloud.federation.target_cloud_type": "S3",
"eu.visioncloud.federation.target_container_name":

"example_S3_bucket",
"eu.visioncloud.federation.target_region": "EU_WEST",
"eu.visioncloud.federation.type": "sharding",
"eu.visioncloud.federation.is_active": "true",
"eu.visioncloud.federation.local_cloud_port": "80",
// credentials to access target cloud
"eu.visioncloud.federation.target_s3_access_key":
"AKIAIHSZSHAHVWZEAZTGWJOBQ",

"eu.visioncloud.federation.target_s3_secret_key":
"2glBUIdO3qQUTLoCeBxTrYoxYzqgV5A2us/Hcd+p",

"eu.visioncloud.federation.status_time": "1381393337.72" }

Figure 2: Sample Payload

This specification mainly describes the data required for
accessing a member’s cloud storage. This structure allows one
to store some specific information about the clouds such as
public/private cloud URIs, container names in both private
and public containers, etc. Such a specification creates a link
between the clouds and enables certain tasks as data sharding
and querying among them. For hybrid scenarios, the federation
type can now be chosen as sharding. Upon completion
of the container linkage process, both private and public
containers become aware of each other.

To manage federation, a REST Service is available in
VISION Cloud providing the basic CRUD operations (create
/ read / update / delete) to administer federation instances
over standard HTTP commands and to handle these struc-
tures. PUT creates a new federation instance by passing
an id (in the Uniform Resource Identifier (URI) and the
federation info in the body. GET gives access to a specific
federation instance and returns the federation progress or
statistical data. A federation specification can be deleted by
DELETE. Finally, all federation instances can be listed with
GET /{tenant}/federations/. The result will be an
array of federation URIs. For details please refer to the project
deliverable [12].

This concept of federation is also applied to the creation
of the hybrid setup placing a similar request, although the
implementation is different as explained later.
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B. Operation of the Hybrid Cloud Setup
The second role involved in an hybrid cloud scenario is the

client who wants to access the data in the new cloud system.
The client now is provided with a unified view of the data
that resides in both the private and public cloud and becomes
ready to shard data among the clouds. Any CRUD operation
will work on both of the clouds, and all sharding operations
are completely abstracted from the client. The operations of
the hybrid cloud setup is completely transparent for the client
of a container, and the client might even not be aware where
the data he accesses resides.

IV. ARCHITECTURE

Our main focus is put on hybrid clouds, i.e., using public
and private clouds at the same time for an application. The goal
is to provide a uniform access to several autonomous clouds
each hosting a cloud store. Moreover, we want to benefit from
the recent VISION Cloud architecture as much as possible.

In general, a hybrid cloud has to tackle heterogeneity of the
units to be combined. In the context of storage federation, there
are several types of heterogeneity. At first and most obvious,
each cloud provider such as Amazon, HP, IBM, or Microsoft
has management concepts and Application Programming In-
terfaces (APIs) of its own, which are currently proprietary,
despite some emerging standards, e.g., CDMI [9]. And then
at the next lower level, the federation has to take into account
the heterogeneity of data models of the cloud providers.

The hybrid cloud should provide an abstraction over the
individual storage clouds. This means on the one hand that a
unified interface is offered for all the clouds and thus support-
ing query features without knowing what data is available in
what cloud. On the other hand, the hybrid cloud should provide
means to control the placement of storage items. Since we
here focus on distributing data over private and public clouds
according to their confidentiality, each item (object) must have
a confidentiality level associated with it in order to allow for
storing it in a corresponding cloud.

In fact, the implementation of the content-centric storage
service (CCS) of VISION Cloud helps to handle heterogeneity
by allowing us to wrap homogeneous units, each with a CCS
interface. An instance of a VISION Cloud CCS sits on top of
a single storage system. However, multiple underlying storage
system types are supported by CCS due to an adapter architec-
ture that accommodates multiple storage interfaces. Currently
CCS adapters are available for the proprietary VISION Cloud
storage service, Amazon S3, CouchDB, MongoDB, and the
Windows Azure Blob storage. That is, the CCS architecture
supports multiple cloud providers, as long as a storage adapter
is provided.

The CCS directly connects to a storage server’s IP and
port number, either referring to a single storage server or to
a load balancer within a cluster implementation. If we put
CCS on top of each storage server, the CCS would have to
manage all the distribution, scalability, load balancing, and
elasticity. This would tremendously increase the complexity
of CCS. Moreover, CCS would re-implement features that are
already available in numerous cloud storage implementations.
All of the currently supported storage system types have a
built-in cluster implementation. Among the CCS candidates,
CouchDB has an elastic cluster implementation named Big-
Couch. MongoDB has various strategies for deploying clusters

of MongoDB instances. And Windows Azure Blob storage,
as well, is a distributed environment. To our knowledge and
published material by the vendors, we can assume that these
cloud systems are able to deal with millions of customers
and tens of thousands of servers located in many data centers
around the world.

Hence, our decision was to put CCS on top of these cluster
solutions due to several benefits. CCS is just a bridge between
the load balancer and the client. All scalability, elasticity, and
partitioning is done by the storage system itself. Therefore,
there is no need for CCS to deal with scalability, elasticity,
replication, or duplication within the cloud. Since there is
only a single CCS instance for each type of cloud storage,
consistency issues are also handled internally.

A. Technical Implementation
The implementation of the federation service of VISION

Cloud is not used for the hybrid cloud setup. Instead, the
service has been technically implemented in the layer that
provides the content-centric storage functions (the ”CCS”). In
fact, in order to enable the hybrid cloud in the CCS, several
extensions have been made to the CCS: A new ShardService
has been added to CCS the task of which is to intercept
requests to the CCS and decide where to forward the request.
The ShardService implements a reduced CDMI interface and
plays the key role to shard in hybrid environments. As already
mentioned, we give the right to the client to determine data
confidentiality. This selection is done through the data creation
process and a metadata item should indicate data confidential-
ity.

Having researched several sharding mechanisms, we chose
to implement Key Based Partitioning. Key based partitioning
provides a perfect match to our needs by using a metadata key
to define the sharding strategy for separating public and private
clouds. We enable clients to create some keywords to define
the confidentiality such as confidential, for example. If there
is such a keyword among the metadata, then this data will be
directed to the private cloud. Otherwise, it will be directed to
the public cloud. The impact of keywords on sharding the data
can be specified in the federation.

B. Scenarios
The following examples should illustrate the approach.

A simple PUT request mechanism works as follows in the
ShardService:

1) The metadata of the object is checked for an item
indicating confidentiality such as confidential : true.

2) Then the metadata of the container is fetched (not the
object) to obtain the connection information for both
clouds.

3) If the data is confidential, the private cloud’s connec-
tion information is used. The ShardService connects
to this cloud and forwards the request to it.

4) If data is not confidential, then the public cloud’s
connection information is used to send the request
to this cloud.

A GET request through the ShardService behaves differ-
ently, since it does not necessarily contain a specification
regarding which cloud contains the object. Therefore, every
GET request is sent to all clouds participating in the federation:

1) As soon as the GET request arrives in the cloud,
the container metadata is requested to gather the
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connection information about the private and public
clouds.

2) The ShardService connects to both clouds and run
the same GET request for each of them in parallel.

3) The results of requests are combined and the result
is sent back to the client.

Figure 3: Federation creation

The entire key-based sharding principle can be explained
with an example. Beforehand, we assume we have two dif-
ferent containers in two different clouds. Let us name these
two containers as vision1 and vision2. Additionally, our two
clouds are addressed by these URLs respectively: vision-tb-
1.myserver.net and vision-tb-2.myserver.net.

First, we need to make the two clouds aware of each other,
to be more precise, we need to federate them. A sketch of the
process can be seen in Figure 3. By using the newly introduced
ShardService and its HTTP API, we do a PUT request with
the payload of Figure 4.

http://cloud_url:cloudport/MyTenant/sharded/vision1
{ "target_cloud_url" : "vision-tb-2.myserver.net",

"target_cloud_port" : "8080",
"target_container_name" : "vision2",
"local_container_name" : "vision1",
"local_cloud_url" : "vision-tb-1.myserver.net",
"local_cloud_port" : "8080",
"type" : "sharding",
"private_cloud" : "vision1",
"public_cloud" : "vision2" }

Figure 4: Federation payload

The above JSON string is a sample of our data component.
We need to mention that a full dataset contains information
regarding the private and public cloud types, urls, users,
authorization information, etc. Upon completion of the request,
the two clouds vision-tb-1 and vision-tb-2 enable sharding
at the container level. From now on, vision-tb-1 will be our
private cloud and vision-tb-2 will be our public cloud. Such a
specification is needed for any container to act as a shard (cf.,
the local target container name).

The PUT request must also be sent to the second cloud,
however, with an ”inverted” payload. This is done implicitly.

Since the two clouds are federated, we can now perform
data CRUD operations in a sharded way. In order to store
confidential data, we need to perform the request in Figure 5.

PUT vision-tb-1.cloudapp.net:8080/CCS/siemens
/vision1/newObject

{ "confidential" : "true" }

Figure 5: PUT request for storing confidential data

Figure 6 shows that the ShardService decides to store
newObject in the private cloud which is vision-tb-1. Note that
there is no need to indicate the access to the federation as part
of the PUT request.

If the data is not confidential we can replace
"confidential" : "true" with "confidential"
: "false" in Figure 5 (see also Figure 7):

Figure 6: Storing confidential data.

Figure 7: Storing non-confidential data.

Because of the metadata value, the ShardService will
connect to the public cloud and the data will be stored in
the public cloud, i.e., vision-tb-2. It is also possible to submit
a such PUT requests to vision-tb-2.

There is no additional interface to which object creation
operations and queries need to be submitted. Figure 6 and
7 show that a request can be sent to any shard in any cloud,
and that cloud passes the request to the proper cloud to handle
the request. This principle can be extended to handle several
public or private clouds as well.

V. FURTHER HYBRID CLOUD SCENARIOS

So far, we have considered a hybrid cloud scenario where
the location of objects is determined according to metadata.
Being able to work with several cloud storage systems in a
sharded manner offers several advantages. The first one is data
confidentiality. Clients can store critical data on a secure cloud
object store, and other data can be stored on general public
cloud object stores, which might be cheaper and offer better
extensibility.

However, the approach is more flexible and can be used
in other scenarios as well. One scenario that VISION Cloud
has implemented is a so-called on-boarding federation [11].
The purpose of this scenario is to migrate data from one
cloud storage system to another. One important feature of the
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implemented on-boarding federation is to allow accessing all
the data in the target cloud while the migration is in progress,
i.e., while data is being transferred in the background. After
the administrator has configured the federation, the objects will
be transferred in the background to the client’ container in
the new cloud. If the client lists the contents of a federated
container, all objects from all containers in the federation will
be shown. If the client accesses objects which have not been
on-boarded yet, the objects will be fetched on demand. The on-
boarding handler intercepts GET-requests from the client and
redirects them to the remote system on demand and schedules
the background jobs for copying the clients’ data from the
remote cloud.

This helps to let a client become independent of a single
cloud storage provider, i.e., a vendor lock-in is avoided. Having
only a single vendor as a cloud storage service might limit the
availability and scalability to that provider. In fact, the vendor
lock-in of the stored data is the second among top ten obstacles
for growth in cloud computing [2].

In the VISION Cloud project several further types of
federation (cf. federation.type in Figure 4) have been
discussed, but are not yet implemented: policy-based, syn-
chronization, backup, multi-site-access, and company-merges.
Based on the sharding mechanism presented in this paper, we
can offer general strategies that distribute data according to a
partitioning scheme. The idea behind sharding is splitting the
data between multiple storage systems and ensuring that access
to the data always occurs at the right place. In our case, we
can partition and query data among the cloud storage systems.

The main advantage of database sharding is scalability, the
ability to grow in a linear fashion as more servers are included
to the system. Additionally, several smaller data stores are
easier to handle and manage than huge ones. Furthermore,
each shard contains less data and thus can be faster to query.
Another positive effect is that each shard has a server of its
own, resulting in less competition on resources such as CPU,
memory, and disk I/O. And finally, there will be an increase of
availability: If one shard fails, other shards are still available
and accessible.

On the other side of the coin, several factors need to be
considered to ensure an effective sharding. Although most of
the applications are fault-tolerant, the storage tier is always the
most critical part for reliability. Due to the distributed approach
of multiple shards, the importance is even greater. To ensure a
fault tolerant sharding precautions such as automated backups
and several live copies of the shards need to be made. Next,
a good partitioning scheme is required to match the needs of
the system [13][14]; the following general approaches exist
and can be controlled in our approach in principle:

1) Vertical Partitioning: All data related to a specific
feature will be stored in the same place, i.e., images
are in an image storage and videos in a video storage.
On the one hand, this approach is easy to implement
and causes only little overhead for the application.
But on the other hand, the partitions might become
uneven. Some shards might require more than one
server.

2) Range Based Partitioning: In situations where data of
a single feature needs to be distributed, it is important
to find a meaningful way to spread the data. One
approach is to define ranges for data values and to

distribute data accordingly. Although this is also easy
to implement, it will cause some unbalanced load
distribution between the shards.

3) Key Based Partitioning: This requires a special entity
with a unique key; this entity clusters data and can
be used to identify the shard.

4) Hash Based Partitioning: Hash sharding involves
processing values through a hash function to choose
which server to store. Thus, each server will have a
hash value, and each computed hash value will end
up on one of those servers.

5) Directory Based Partitioning: This scheme keeps a
lookup table somewhere in the cluster which keeps
track of which data are stored in which storage. This
approach means that the user can add servers to the
system without the need of changing the application.

Further scenarios can support fault tolerance and high
availability features in way that metadata control the number
of replications. Those use cases will be part of future work.

VI. RELATED WORK
Though federation in cloud environments is still a research

topic, some of the basic concepts and architectures of fed-
eration have already been researched intensively within the
area of federated database management systems [10]. Sheth
and Larson define a federated database system as a ”col-
lection of cooperating but autonomous component database
systems” including a ”software that provides controlled and
coordinated manipulation of the component database system”.
This definition places the federated database layer outside and
on top of the component database systems that make up the
federation. [10] also introduces a possible characterization of
systems along the dimensions of distribution, heterogeneity
and autonomy, and differentiates between tightly coupled sys-
tems (where administrators create and maintain a federation)
and loosely coupled systems (where users create and maintain
a federation). Moreover, the authors describe a five-layer
reference architecture for federated database systems.

One project that offers a unified API between several data
stores is presented by Bunch et al. [15]. In this work, the
authors present a single API from Google App Engine to
access different open source distributed database technologies.
Such a unified API represents a fundamental building block
for working with cloud storage as well as local NoSQL
database servers. In contrast to our solution based on CCS,
the implementation described by the authors provides access
only to a single storage system at a time.

For the concurrent use of different storage providers or
systems, Abu Libdeh et al. [16] propose a cloud storage system
which is named as Redundant Array of Cloud Storage (RACS).
It is placed as a proxy tier on top of several cloud storage
providers. The authors describe adapters for three different
storage interfaces, and point out that it can easily be expanded
to additional storage interfaces. The approach uses erasure
coding and distributes the contents of a single PUT request
across the participating storage providers. Therefore, such a
(write) operation must wait till the slowest of the providers
completes the request. This is in contrast to the sharding of
our work, where a PUT request is routed to a single storage
system.

Another work which seems to be close to ours is presented
by Brantner et al. in [17]. They build a database system on top

105Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization



of Amazon’s S3 cloud storage. We also support Amazon S3
as one of our storage layer options. In their future work, they
intend to include support for multiple cloud storage providers.

Additionally, there are a lot of multi-cloud APIs or libraries
enabling unified access to multiple different cloud storage
systems; these include Apache Libcloud [18], Smestorage [19]
and Deltacloud [20]. They provide unified access to different
storage systems, and protect the user from API changes.
Although they enable administration features like stopping and
running the storage instances, their storage driver function-
alities are restricted to basic CRUD methods, most of them
omitting a query interface.

A notable concept is found in the area of Content Delivery
Networks (CDN). A content delivery network forms a network
of servers around the world which maintain copies of data.
When a user accesses the storage, the CDN infrastructure
delivers the website from the closest servers. According to
Broberg et al. [21], current storage providers have emerged as
a genuine alternative to CDNs. In their work, they describe
a cheaper solution by using cloud storage with their Meta
Content Delivery Network (Meta CDN). Although Meta CDN
makes use of several cloud storage providers, it is not a storage
system by definition, and mostly focuses on read performance
and lacks write performance.

In addition to the work mentioned above, there are also
hybrid cloud solutions. Most of the current hybrid cloud
offerings provide data transfer from private to public – instead
of providing a unified view. The first example is Nasuni [22],
which is a primary storage option. It is a form of network
attached storage, which moves the user’s on-premise data to a
cloud storage provider following encryption. Nasuni’s hybrid
cloud approach combines on-premise storage nodes that gather
the data and encrypt the data. Then, they send the encrypted
data to a public cloud, which can be hosted at Amazon Web
Services or at Microsoft Azure. The user can either store all
the data in a single public cloud store, or can distribute them
over multiple stores. Nasuni implements a migration approach,
rather than a sharding approach such as ours, since data is
eventually moved to the public cloud.

Nimbula [23] is another company that provides a service
allowing the migration of existing private cloud applications
to the public cloud using an API that permits the management
of all resources. CloudSwitch [24] has also developed a hybrid
cloud that allows an application to migrate its data to a public
cloud.

Nirvanix [25] is one of the companies offering a hybrid
cloud option. They offer a private cloud on premises to their
customers, and enable data transfer to the public Nirvanix
Cloud Storage Network. Although it is a hybrid cloud, it forces
one to use only Nirvanix products. This represents a vendor
lock in when it comes to the selection of the public cloud.
In contrast, our adapter approach is not limited to a specific
public cloud service.

Hybrid cloud storage solutions in the marketplace today
provide a range of offerings to meet different demands of
customers. Although there are many such offerings, they pose
the risk of a vendor lock-in, because most of the companies use
their own infrastructure. The most suitable work that matches
the approach of our work is MetaStorage [26]. It represents
a federated cloud storage system that is able to integrate
different cloud storage providers. MetaStorage implements a
distributed hash table service that replicates data on top of

diverse storage services. It provides a unified view between
the participating storage services or nodes while implementing
sharding between them.

VII. SIMULATION RESULTS
In this section, we provide some basic performance tests

for our architecture. We have examined different cases in
order to evaluate the query performance using the CCS on
top of two clouds, private and public. Our aim is first to
check performance on a hybrid cloud setup with an increasing
number of requests, and second, to see how the performance
changes with a multi-threaded implementation.

For the tests we used the same data sets and similar setup
as in our former work [8][27]. The test data is acquired from
Deutsche Welle, which is one of the partners of the VISION
Cloud project. Deutsche Welle has an analysis application
which crawls data from YouTube across a number of news
channels. 90 channels a day were tracked for a given time-
frame, in total 490.000 videos have been collected together
with their metadata. For the evaluation of our work, we used
a subset of this data, which has in total 46.413 videos. Each
video has the same amount of metadata and exactly the same
fields.

We used two machines with the configuration as specified
in Table I. We located these two machines in the same geo-
graphical area, having the same network. This is sufficient to
analyze the performance overhead of the architecture, however,
does not give results about the overall performance, which
depends on the latency anyway . Each machine had a CouchDB
database, Tomcat application server, and our Java Web Archive
components installed. The main rationale was to test how well
the implementation scales with larger volumes. The tests show
three different cases: one querying for videos published in
one day, one for videos published over two weeks, and one
for videos published over four weeks. By using each of the
resulting video ids, we sent 91, 1990 and 2908 consecutive
requests to the underlying storage. Apart from that we re-ran
the tests with a Java Thread Pool implementation to see the
effects of parallelism in our system.

At first we uploaded our sample dataset by using the
sharding implementation. This resulted in storage of 23206
video metadata on one machine, and 23207 video metadata on
another machine. Afterwards we queried both of the storage
systems. The total stack ran 20 times, and the average values
are taken. To increase the precision, the longest and shortest
run times are excluded from the overall measurement before
taking the average. The results can be seen in Table II. The
setup and the test runs were the same as used in our previous
publications.

TABLE I: MACHINES USED IN A HYBRID SETUP

Designation,
Processor

Cores Clock
Speed

L2
Cache

RAM OS Storage

2-core (4 threads) 1/1 1.90Ghz 4MB 4GB 64bit
Win7

128GB
SSD

2-core 1/1 2.20Ghz 2MB 3GB 32bit
Win7

250GB HD

The first column represents the test configuration, single
threaded or thread pooled. The next column gives the resulting
number of requests to the underlying storage system. The
average of the measured times are given in milliseconds, and
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TABLE II: RESULTS OF THE HYBRID SETUP

Request Average Total Standard 95% Single
Count (msec) Deviation Conf. request

Single 91 2852,7 216,9 134,4 31,69
Thread 1990 62404,9 4086,0 2532,5 31,38

2908 96826,8 3670,6 2275,0 33,31
Thread 91 1014,6 67,1 41,6 11,27
Pool 1990 25764,2 2617,3 1622,2 12,95

2908 39252,6 2839,6 1759,9 13,50

single request times are calculated as an average time divided
by the request counts. As it can be seen, the single request
times do not change much as the number of requests increases
and are on average 30 milliseconds, which is acceptable. Also
of notice is the multi-threaded implementation. In all of the
cases, it boosted performance significantly.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we presented a new approach for hybrid

cloud storage that is based upon the idea of federation as
carried out by the VISION Cloud project. Our approach
provides a uniform interface for handling confidential and non-
confidential data, the first kept in an on-premise data store,
the later stored in a public cloud. The key idea is to use
metadata for controlling where data is stored. As a technical
basis, we use the VISION Cloud software stack [7] where such
a metadata concept is an integral part. We show in detail how
well-suited VISION Cloud and its storage system is to support
hybrid scenarios and how to extend it in order to support hybrid
scenarios.

In principle, it is possible to offer additional sharding
scenarios in the VISION Cloud project, beyond the privacy
scenario we have presented for this work. The overall approach
also allows for adding various further sharding strategies, such
as region-based, load balancing, or storage space balancing,
redundancy level control, etc. In fact, our future work will be
dedicated to extending the hybrid approach and to elaborating
more on query load balancing (based on metadata). Another
aspect that requires attention is migration if security settings
are changing.
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