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Abstract—In this paper, we try to apply inspirations from human
cognition to design a more intelligent sensing and modeling
system, which can adaptively detect anomalies. The target of
intelligent sensing and modeling is not to get as much data as
possible, or to build the most accurate model, but to establish
an adaptive representation of sensing target and achieve balance
between sensing performance requirement and system resource
consumption. To achieve this goal, we adopt a working memory
mechanism to facilitate the model to evolve with the target. We use
a deep network with autoencoders as model representation, which
is capable to model complex data with its nonlinear and hierarchi-
cal architecture. Since we typically only have partial observations
from sensed target, we design a variance of autoencoder which
can reconstruct corrupted input. We utilize attentional surprise
mechanism to control model update. Training of the deep network
is driven by surprises (which are also anomalies) detected (with
data in working memory), which means model failure or target’s
new behavior. Due to partial observations, we are not able to
minimize free-energy in a single round, but iteratively minimize it
by keeping finding new optimization bounds. While both random
and non-random sensor selection can create new optimization
bounds, certain non-random methods like surprise minimization
algorithm used in this paper demonstrate better performance.
For evaluation, we conducted experiments on simulated data to
test whether our methodology makes the model more adaptive,
and got positive result. In the next step, we will try to apply the
work on some real applications including ECG and EEG anomaly
detection.
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I. INTRODUCTION

The world is always dynamic, unpredictable, ambiguous,
and noisy. Such uncertainty is the only reason why we need
to be equipped with intelligence. From a cognitive point of
view, the intelligence of any intelligent agent (like animals),
is a kind of ability to achieve equilibrium with its uncertain
environment. It can sense or act (to fit with or intervene its en-
vironment), to minimize its free energy [1]. Such intelligence is
under some constraints. Facing dynamic and high-dimensional
world, even for the most complex systems as human brains,
neural computation resource is limited [4]. Also our action
capabilities on the environment (like motion capability) is
limited.

To handle the uncertain world with constrained resources,
intelligent agent developed several crucial cognitive mecha-
nisms: We use attention [6] and surprise [5] to select infor-
mation deserved to be processed and allocate neural resource

for feature binding; we have long-term / short-term working
memory to organize the knowledge hierarchically; Our brain
is constituted with a large amount of deep networks, each of
which act as a universal model and support ”one learning
algorithm”. Such deep networks are considered to be very
useful to organize and process our knowledge. Whether these
mechanisms, or at least some of them, could be adopted in
sensing system to make it more intelligent? This idea motivated
the work in this paper: we tried to get inspirations from
biological intelligence, and design an adaptive computational
framework for sensing and modeling a dynamic target, under
system resource constrain. The emphasis here is to detect
target’s anomalies, or surprises, which indicates there appear
some events or new behaviors of the target. The examples of
anomalies include traffic accidents (events) on a road (sensing
target), and seizures (events) in human brain (sensing target).

In section 2, some related works are discussed. Detailed
methodology of our framework is given in Section 3. Section
4 provides both simulated evaluation and demonstration of an
application. In Section 4, we conclude the paper with a future
research plan.

II. RELATED WORKS

Historically, designing computing system by learning hu-
man cognition is not new. Cognitive science discoveries had
inspired a lot of researches on unsupervised learning (e.g., the
Analysis by Synthesis approach [7]). Another example is the
formation of Infomax principle and independent component
analysis [10], [11] from the inspiration of efficient coding
[8], [9]. However, it’s until recent years that the advance of
cognitive science and neuroscience makes it possible to build
a clearer picture of how our brain works. Based these findings,
we believe the meeting with Brain Informatics (BI) [12], [13]
and AI will be the next drive for both developments.

Cognitive perspective also inspired new insight of anomaly.
We use an unsupervised method to train our model, and this
model can reconstruct the input (with low loss function output)
when the input is seen before (within the range of model’s
representation capability). Only once the observation is new to
the model and cannot be reconstructed, we detect an anomaly.
It is slightly different from ordinary anomaly detection, which
excludes the outliers into the model, but related to novelty
detection [16], which try to detect emergent and novel patterns
in the data, and incorporated into the normal model after being
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detected. This anomaly is also seen as an attentional surprise
(more formally, ’surprisal’), induced by a mismatch between
the sensory signals encountered and those predicted. Such
surprise play the similar role of surprise for human, which acts
as a kind of proxy for sensory information [14] (to select input
for process). Similar principle has been applied in methods like
predictive coding [15]

III. METHODS

A. Notations and problem definition
Target: We represent the target that we want to understand

as x = (x1, x2, ..., xi, ...xn) ∈ Rn with dimension n, which
is the size of spatial-temporal resolution of the target (e.g.
n = 24, if the target is the hourly temperature in one day). x
can have infinite dimensions and n = ∞. x is a time series :
at time t, we have xt = (x1, x2, ..., xi, ...xn)t, and we denote
the collection of x as X = {x1, x2, ..., xm}.

Observation: In most cases, we can not observe x′ directly,
but only observe partial x (in lower dimension k) with noise
ε. We define this noisy and partial observations from sensors
as X ′ = {x′1, x′2, ..., x′m}, where ‖x′‖0 = k and k ≤ n.
We assume x′ = s(x)k + ε, where function s(x)k selects k
elements in x, keeps their values, and sets the other elements
to 0.

Model: Model y is established based on observations. It
can be viewed as a representation of x, governed by some
parameters θ, just like the internal model of human can be
viewed as some higher representation of its input. y can be a
distribution, a learned dictionary, or a stacked autoencoder as
used in this paper.

Problem definition: For a sensing system, the goal is
to learn p(x), which is difficult when p(x) is changing. So
we try to approximate p(x) with the mapping from y to x
(with observations x′): q(x|y;x′), or simply q(x|y). For this
approximation, there are mainly two challenges: 1) mapping
from y to x should not only approximate p(x), but be able to
adapt to the change of p(x); 2) with only partial observations,
we want them to be informative, so how to design function
s(x)k is then crucial, and thus becomes well-known sensor
selection problem. With this adaptive mapping from y to x,
we then evaluate the new observations with the established
model to check whether model fails. If so, we say there is
anomaly.

B. Cognitive approach
According to free energy principle [1], any intelligent

agent will sense or act to minimize its free energy F (x, y),
which is the KL divergence between its internal approximation
with model and real environment (i.e. sensing target, in this
context):

F (x, y) = DKL(q(x|y;x′)‖p(x)) (1)

As a result, we minimize the KL divergence between these
two:

DKL(q(x|y)‖p(x)) =

∫
q(x|y) ln

q(x|y)

p(x)
dx (2)

= DKL(q(x|y)‖p(x|y))− ln p(y) (3)

Here we get two components: 1) the first component
is the KL divergence between q(x|y) and p(x|y). q(x|y)
represents the approximated distribution of x given y as the
internal model; and p(x|y) represents the likelihood of x if
it’s governed by y. We can unbiasly estimate this component
by replacing x with x′, then p(x′|y) becomes the empirical
likelihood. In this paper, we define this component (or its
approximation) as surprise. Once we have great surprise, it
means the model is too rough (not well-trained), or the target
exhibits some new behavior that has not been captured by the
current model. In both situations, the model cannot capture the
target, and needs to be updated. Cognition model will update y
and thus reduce the KL divergence between q(x|y) and p(x|y).
However, because we only use partial observation, we actually
minimize a part of original KL divergence:

DKL(q(x|y)‖p(x|y)) ≤ DKL(q(x′|y)‖p(x′|y)) (4)

After we minimizing this KL divergence with x′, a very
important next step is to find a new bound of KL divergence
optimization, by selecting new x′ through random or non-
random sensor selection, and then update the model in the next
iteration; 2) the second component is the negative log of p(y).
It measures how unlikely a representation y will happened,
and will be large if the sensing target is too dynamic or noisy.
The optimization of this component is out of the scope of this
paper.

We can also interpret this cognitive approach with Infomax
principle. Best mapping from y to x maximizes the mutual
information between x and y, which can be represented as
the difference between entropy of x (H(x)) and conditional
entropy of x given y (H(x|y)). Following the same approach
in [2], we assume x comes from an unknown distribution p(x)
on which θ has no influence, so H(x) is constant. Therefore,
the target is then to maximize −H(x|y), which by definition
is:

argmax
y

Ep(x,y)[log p(x|y)] (5)

With approximation q(x|y), we have:

Ep(x,y)[log q(x|y)] ≤ Ep(x,y)[log p(x|y)] (6)

which is a lower bound of −H(x|y). Assume we transform
x to y with a deterministic or stochastic mapping y =
fθ(x)(encoding), and reconstruct x from y by x = gθ′(y)
(decoding); and use empirical average over the observations
as an unbiased estimation. We end up maximizing the mutual
information in the following form:

argmax
θ,θ′

Ep(x)[log q(x|y = fθ(x); θ′)] (7)

This corresponds to the reconstruction error criterion for
autoencoders.

Before describing the details in our methodology, let’s give
an overall workflow of the methodology. We use some sensor
selection algorithm s(x)k upon target x to get observation
x′, and use a working memory to store the data required for
model training and update. Model training component trains
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and updates y (its parameter θ) with data in memory. The
established model is tested with new observation, to detect
anomaly. Anomaly triggers actions including memory update
and model update, and thus causes computational cost. Such
model update optimize the free-energy within current bound,
and sensor selection algorithm keeps trying to find new bound
of free-energy for further optimization.

C. Model representation
We utilize a variation of stacked autoencoders [3] as

the model representation. An autoencoder neural network is
(unsupervisedly) trained with back propagation, setting the
output values to be equal to the inputs. The result network
takes an input x and transforms it to a hidden representation
y ∈ Rd through a deterministic function (with sigmoid
activation function s):

y = fθ(x) = s(Wx+ b) (8)

It is parameterized by θ = {W, b}. W is a d × n weight
matrix. b is the bias vector. The resulting y is then mapped
back to a reconstructed vector z ∈ Rn in input space

z = gθ′(y) = gθ′(fθ(x
i)) = s(W ′y + b′) (9)

with θ′ = {W ′, b′}. The weight matrix W ′ of the reverse
mapping is constrained by W ′ = WT . We get the optimized
parameters θ∗ and θ′∗ by minimizing the reconstruction error
(with loss function L) between xi and zi:

θ∗, θ′∗ = argmin
θ,θ′

Ep(x)[L(x, z)] (10)

Since:
L(x, z) ∝ − log p(x|z) (11)

and thus
L(x, z) ∝ − log q(x|z) (12)

We have:

θ∗, θ′∗ = argmax
θ,θ′

log q(x|z = gθ′(fθ(x))) (13)

= argmax
θ,θ′

log q(x|y = fθ(x), θ′) (14)

which is the same form of optimization described before.
With m training set, we will try to optimize:

= argmax
θ,θ′

1

m

m∑
i=1

L(xi, gθ′(fθ(x
i))) (15)

By placing constraints on the network, we can discover
structure about the data and learn useful representation. Instead
of limiting the size of hidden layer (‖y‖0), we allow the
size to be large, but impose sparsity constraints. An extra
penalty term is added to optimization objective. let (ρ̂)j be
the average activation of hidden unit j, averaged over the m
training examples:

ρ̂j =
1

m

m∑
i=1

[aj(x
i)] (16)

where aj denotes the activation of this hidden unit when
the network is given a specific input x. And let ρ to be a
sparsity parameter, typically a small value close to zero (e.g.
0.05). So the penalty term is KL divergence between two (sl
is size of l-th hidden layer):

sl∑
j=1

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(17)

Such autoencoder is used as a building block to train deep
networks, with the learned representation of the k-th layer used
as input for the (k+1)-th to learn a second level representation.
Therefore, we train the (k + 1)-th layer after the k-th has
been trained. These layers are ”stacked” in a greedy layer-wise
approach as deep RBMs. This greedy layer-wise procedure
has been shown to yield significantly better performance than
random initialization.

D. Memory

Inspired by human short-term working memory, we en-
able a simple memory for the data modeling: M =
{x∗1, x∗2, ..., x∗k}. k is the size of memory M (k is fixed
currently, but can vary for specific system requirement). x∗k
is the observation. Same historical observation x might have
multiple copies in memory. They are sorted so that for any
x∗i = xp and x∗j = xq , if i > j, then p ≥ q. So in the front
of the memory, we have the oldest observations, while in the
end of the memory, we have most recent observations.

The model described before will be trained or updated only
with the data within this memory. We design a memory update
strategy, so that the model values those new observations
more than those old observations, and even forget those old
observations. When new observation arrives, we apply a forget
(or decay) function M = Φ(x∗) to pick out old data and
replace them with new observation, we can use some naive
approach for the forget function (e.g. randomly picking old
observations), or a probabilistic function, so the older the
data, the greater chance that it would be removed: for data
at index i in M , we define its probability of being forgotten
as: ψ(i) = e−δi. For all i, when ψ(i) ≥ η, we replace them
with new observation x∗:

Φ(x∗) : M(i) = x∗ (18)

The decay rate δ as well as the threshold η control the speed
for memory update. If δ is large or η is small, it means the
old memory would be removed quick, and the model changes
fast. Such memory is crucial if the target is dynamic. And for
different model training methods, memory can play different
roles. For point estimation method like we used for stacked
autoencoder, the memory provides the data for model training
and retraining. For Bayesian estimation like Gaussian process
regression , the memory provides the data for calculate the
likelihood, and thus influence the model update.
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E. Surprise and anomaly detection
Attentional surprise [5] can only be defined in a relative,

subjective, manner and is related to the expectations of the
observer, even when derived from identical observation, same
data may carry different amounts of surprise at different
times. So it could be seen as the subjective measurement of
information (we might call it ”subjective entropy”). In this
paper, surprise is defined as the KL divergence between q(x|y)
and p(x|y). Such surprise is the trigger for model update (or
retraining) as well as memory update. If surprise is larger than
surprise threshold surprise(y, x) > ξ, it means the current
model fails, and we need to update the model; also we need
update the memory to include this new significant observation.
In model representations, such as the stacked autoencoder used
in this paper, above calculation of surprise cannot be conducted
straightforwardly. Here, the surprise can be simply set as the
loss value between reconstructed output and real input:

surprise(x) = L(x, gθ′(fθ(x))) (19)

When this loss function (root mean-squared-error) output is
greater than the surprise threshold ξ, it means the autoencoders
cannot represent the input well at the moment. So it’s necessary
to update the model to fit the current input, with the data from
updated memory.

This attentional surprise also enables a new method of
anomaly detection. It simulates the human attention mecha-
nism to some extent, acts as an information-processing bot-
tleneck that allows only a small part of incoming sensory
information to reach working memory and trigger model
update, instead of attempting to fully process the massive
sensory input. Human can maintain a certain level of alertness
(e.g. when we are driving in an unknown district, we would
like to pay more attention and allocation more computational
resource): when it’s high, more resources is prepared for
attention, and even subtle signs could be detected. Similar idea
is adopted here. We can find several parameters (and hyper-
parameters) that provide us the chance to control surprise
and model update, including: 1) Surprise threshold: model
update frequency; 2) Memory size : the adaptive level of
model; 3) Sensor selection parameters (pre-defines the region
of sensing and change the frequency of surprise, as shown
later). These top-down settings control the overall alertness of
the sensing system, as well as the resource consumption. Top-
down settings can be changed according to different system
objectives and tasks.

F. Surprise minimization sensor selection and denoising SAE
When we only observe partial input x′, the KL divergence

(or surprise) is smaller than (or equal to) KL divergence with
actual x. In other words, because of using partial observation,
there is some space between D′KL and DKL. When we update
the model and minimize surprise, we actually partially opti-
mize it. Therefore, to minimize the actual KL divergence, it’s
necessary for sensor selection schema to keep selecting new
x′ to find new bound of minimization. Two different strategies
can be used: one is random sensor selection, and the other is
non-random sensor selection. Although random selection can
reduce the space (according to our experiment shown later), it
might require a large amount of iterations, especially when
the sensor number is limited. So we tried to design some

non-random sensor selection algorithm s(x)k that can reduce
the space between D′KL and DKL faster. Specifically, we
designed a surprise minimization sensor selection (some other
methods including Markov chain are also applicable). Assume
at previous observation, we have data x1, and update model
y1 to y2. We search for a subset of sensory space s ⊂ {m}k,
where:

surprises′(y
2, x1) > % (20)

So it’s the region that the updated model cannot well fit.
We define the next sensing space s′:

s′ = (s ∪B) · ω (21)

B is the pre-defined attentional area, which is a ”spotligh”
region (subset of sensory space), indicating where we are
interested in ( [4]). With this pre-defined region, we can locally
refine the approximation, focusing computational resources to
suit the task and context at hand. And ω is to generate the
randomness of sensory selection. s′∗ would then used as {m}k
for s(x)k.

For a stacked autoencoders, we lower the dimension of
sensing by using x′ as a corrupted version of x. x′ is then
mapped, as with the ordinary autoencoders, to a hidden repre-
sentation:

y = fθ(x
′) = s(Wx′ + b) (22)

from which we reconstruct z = gθ′(y) = s(W ′y+ b′). z is
now a deterministic function of x′ rather than x. The objective
function minimized by stochastic gradient descent becomes:

argmin
θ,θ′

Ep(z,x′)[L(x′, gθ′(fθ(x
′)))] (23)

IV. RESULTS

In this section, we evaluate the methodology described in
the previous section with simulated experiments. The dataset
contains the simulated flow count of people for a building.
We generated this data based on certain generative models
(Gaussian distributions and Poisson distribution). We generate
the data by random-sampling these distributions with some
additional noise, and get the simulated count of people hourly
for a building. We then build sensing system based on the
methodology described before, which tries to understand this
generative model from observation. Same challenge is posed
for sensing system: the target (its generative model) can
change, and the observation is not complete.

1) Change of target distribution with/without memory: In
the first experiment, the parameters of generative distribution
changes during the observation (e.g. the mean and variance
of a Gaussian change to new values). As you can see from
Figure 1, when we enable the memory window, the model can
quickly capture the changed distribution and minimize the KL
divergence (between estimated distribution and real distribu-
tion). Using the same model without memory,the minimization
takes much longer time.
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Figure 1. The target’s distribution changes during the observations.

2) Change of distribution type and model representation:
In the second experiment, we make more dramatic change for
the generative model. So instead of changing the parameters
of distribution, we change the type of distribution, from
Gaussian to Poisson. As shown in Figure 2, we compared
the performance of different model representations. While the
Gaussian model cannot achieve KL divergence minimization.
The others including dictionary learning and denoising au-
toencoder network work well. But we can notice that with
dictionary learning method and fewer layers deep network,
the KL divergence is not easy to optimize as the 5-layer deep
network.
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Figure 2. The distribution process changed from Gaussian to Poisson.

3) Partial observation and sensor selection: In the third
experiment, we compare the random sensor selection with
surprise minimization sensor selection. For a mixture Gaus-
sian generative model with target resolution 100*100 (10000
possible sensor placements), we picked 25%, 50%, and 75%
of available places for sensing, with both random and non-
random sensor selection. For surprise minimization sensor
selection, the initial placement is randomly picked, and then
selection s′ is iteratively determined by the algorithm describe
before. The experiment result is shown in Figure 3, where
you can find that although the random sensor selection can
minimize the KL divergence between estimation and real
distribution, the surprise minimization approach can achieve
faster convergence.
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Figure 3. Surprise minimization sensor selection can better performance.

V. CONCLUSION

To conclude, in this paper, we 1) set a different system
goal for building sensing system, which is to minimize the free
energy between the model and its target; 2) adopt an attention
based mechanism to detect anomaly and control the model
update; 3) use a training data window as working memory
mechanism; 4) utilize a deep network for model representation;
5) use partial input, based on surprise minimization sensor
selection, to reduce sensing dimension.

A large amount of work is planned. we try to elaborate
the components in the framework to make it more suitable for
sensing intelligence: a layered or network-structured working
memory will be designed to organize the data or knowledge
hierarchically; model representation will be fused with external
knowledges like ontology and support reasoning. Also, in the
next step, we will try to apply the methodology to ECG and
EEG anomaly detection. We believe for this kind of detection
system, two features are highly required: firstly, it should be
able to detect abnormal situation, which normally means there
is something wrong or even dangerous and needs actions to
be taken; secondly, it should base on personalized model,
instead of an average model for large population. Therefore,
the proposed methodology is believed to be suitable.
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