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Abstract—We investigate the relationship between C++ tem-
plate metaprogramming and computational complexity, show-
ing how templates characterize the class of polynomial-time
computable functions, by means of template recursion and
specialization. Hence, standard C++ compilers can be used as
a tool to certify polytime-bounded programs.
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I. INTRODUCTION

According to [7], template metaprograms consist of
classes of templates operating on numbers and types as
a data. Algorithms are expressed using template recursion
as a looping construct and template specialization as a
conditional construct. Template recursion involves the use
of class templates in the construction of its own member
type or member constant. Templates were introduced to C++
to support generic programming and code reuse through
parameterization. This is done by defining generic functions
and objects whose behaviour is customized by means of
parameters that must be known at compile time, entirely.
For example, a generic vector class can be declared in C++
as follows:

template <class T, int N> class vector
{ T data[N]; };

The class has two parameters: T, the type of the vector’s
elements, and N, the length of the vector. The command
line vector<int,5> instantiates the template by replacing
all occurrences of T and N in the definition of vector with
int and 5, respectively.

Templates are also able to perform static computation. The
first example of this behaviour was reported in [22] and [23],
where a program that forces the compiler to calculate (at
compile time) a list of prime numbers is written; this ability
is largely described by [7], [25], [26] and [9]: C++ may be
regarded as a 2-level language, in which types are first-class
values, and template instantiation mimics off-line partial
evaluation. For instance, the following templates compute
the function pow(y, x) = xy;

template <int Y, int X> class pow
{public: enum {result=X∗pow<Y-1,X>::result };};

template <int X> class pow<0,X>
{public: enum {result=1};};

The command line int z=pow<3,5>::result, produces at
compile time the value 125, since the operator A::B refers to
the symbol B in the scope of A; when reading the command
pow<3,5>::result, the compiler triggers recursively the
template for the values <2,5>, <1,5>, until it eventually
hits <0,5>. This final case is handled by the partially
specialized template pow<0,X>, that returns 1. Instructions
like enum{result = function<args>::result;} represent the
step of the recursive evaluation of function, and produce the
intermediate values. This computation happens at compile
time, since enumeration values are not l-values, and when
one pass them to the recursive call of a template, no static
memory is used (see [24], chapter 17). Thus, the compiler
is used to compute metafunctions, that is as an interpreter
for metaprogramming.

In [28], the following definition is given: a restricted meta-
language captures a property when every program written in
the restricted metalanguage has the property and, conversely,
for every unrestricted program with the property, there exists
a functionally equivalent program written in the restricted
metalanguage. An example of capturing a property by means
of a restricted language is given in [3]: any partial recursive
function can be computed at compile-time returning an error
message that contains the result of the function. This is
achieved specifying primitive recursion, composition, and
µ-recursion by means of C++ template metaprogramming.
A sketch of this result is in Section II-B.

On the other hand, the problem of defining syntactical
characterizations of complexity classes of functions has been
faced during the 90’s; this approach has been dubbed Implicit
Computational Complexity (ICC), and it aims at studying
the complexity of programs without referring to a particular
machine model and explicit bounds on time or memory.
Several approaches have been explored for that purpose, like
linear logic, rewriting systems, types and lambda-calculus,
restrictions on primitive recursion. Two objectives of ICC
are to find natural implicit characterizations of functions of
various complexity classes, and to design systems suitable
for static verification of programs complexity. In particular,
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[2], [8], [11], [13], [14] studied how restricted functional
languages can capture complexity classes.

In this paper we investigate the relationship between
template metaprogramming and ICC, by defining a recursive
metalanguage by means of C++ templates; we show that it
captures the set of polynomial-time computable functions,
that is, functions computable by a Turing machine in which
the number of moves — the time complexity — is bounded
by a polynomial. We also show that our approach can be
extended to recursion schemes that are more general than
those used in ICC. This result makes two contributions.
First, it represents an approach to the automatic certification
of upper bounds for time consumption of metaprograms.
The compilation process certifies the complexity of the
program, returning a specific error when the complexity is
not polynomial. Second, there are few, if not any, character-
izations of complexity classes made by metaprogramming;
in particular, the result is achieved with a real, industrial
template language, one that was constructed for doing real
programming. Moreover, we do not define any extension of
the language; we simply use the existing C++ type system
to perform the computation.

The paper is organized as follows: in Section II we discuss
some works related with our approach, and we recall some
known results that we will use later; in Section III we
show how to represent some polytime computable functions
by means of template metaprogramming and how to rule
out those functions that are not polytime (this is done
by imposing some restrictions on the role of the template
arguments); in Section IV we define the Poly-Temp language;
in Section V we show that Poly-Temp is equivalent to
the class of polynomial-time computable functions; finally,
conclusions and further work are in Section VI.

II. RELATED WORKS

A. C++ metaprogramming and functional programming

The prevailing style of programming in C++ is imperative.
However, the mechanics of C++ metaprogramming shows a
clear resemblance to dynamically-typed functional language,
where all metaprograms are evaluated at compile time. This
is clearly stated in [19]: they extended the purely functional
language Haskell with compile-time metaprogramming (i.e.,
with a template system à la C++), with the main purpose to
support the algorithmic construction of programs at compile-
time.

In [12], it is recalled how function closure can be mod-
elled in C++ by enclosing a function inside an object such
that the local environment is captured by data members
of the object; this idiom can be generalized to a type-
safe framework of C++ class templates for higher-order
functions that supports composition and partial applica-
tion, showing that object-oriented and functional idioms
can coexist productively. In [15] and [16], a rich library
supporting functional programming in C++ is described,

in which templates and C++ type inference are used to
represent polymorphic functions. Another similar approach
is in [20], where a functional language inside C++ is pro-
vided by means of templates and operator overloading. Both
approaches provides functional-like libraries in run-time,
while computations made by means of our metalanguage are
performed at compile-time, totally. Coevally, [10] developed
the template-implemented Lambda Library, which adds a
form of lambda functions to C++. All these approaches lead
to the introduction of lambda expression in C++ standard.

B. The computational power of C++ compilers
The first attempt to use C++ metaprogramming to capture

a significant class of functions has been made by [3]; they
presented a way to specify primitive recursion, composition,
and µ-recursion by means of C++ templates. The result is
not astonishing, provided that C++ templates are Turing
complete (see [27]), but the reader should note that the
technique used in the paper is based on the partial evaluation
process performed by C++ compilers.

Number types are used to represent numbers; the number
type representing zero is class zero { }. Given a number
type T, the number type representing its unary successor is
template<class T> class suc { typedef T pre;}.

A function is represented by a C++ class template, in
which templates arguments are the arguments of the func-
tion. For example,

template<class T> class plus2
{typedef suc<suc<T>> result;};

is a function type that computes the function f(x) = x+ 2.
The instructions

plus2<suc<zero>>::result tmp;
return (int) tmp;

returns an error message including
suc<suc<suc<zero>>>, that is the value of f(1).
In particular, given a two-variable function f defined by
primitive recursion from g and h,{

f(0, x) = g(x)
f(y + 1, x) = h(y, x, f(y, x))

function type F of f is expressed by the following templates,
where G and H are the class templates computing g and h.

template <class Y, class X> class F
{typedef typename

H<typename Y::pre, X,
typename F<typename Y::pre, X>::result >

::result result;};

template <class X> class F<zero,X>
{typedef typename G<X>::result result; };

Similar templates can be written to represent composition
and µ-recursion, and to extend the definition to the general
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case on n variables; thus, the whole class of partial recursive
functions can be expressed by template metaprogramming.
For instance, templates times and pow can be defined as
follows, where add returns the sum of its two arguments
and is defined in the same way.

template<class Y, class X> class times
{typedef typename

add<X, typename times<typename Y::pre, X>
::result>::result result;};

template <class X> class times<zero,X>
{typedef zero result};

template<class Y, class X> class pow
{typedef typename

times<X, typename pow<typename Y::pre,X>
::result>::result result;};

template <class X> class pow<zero,X>
{typedef zero result}.

C. Capturing complexity classes by function-theoretic char-
acterization

Syntactical characterizations of relevant classes of func-
tions have been introduced by the Implicit Computational
Complexity approach, that studies how restricted functional
languages can capture complexity classes; in general, sev-
eral restricted recursion schemes have been introduced, all
sharing the same feature: no explicit bounds (as in [4]) are
imposed in the definition of functions by recursion.

In order to show the relation between template metapro-
gramming and polynomial-time computable functions we
need to recall that this class is defined in [2] as the smallest
class B containing some initial functions, and closed under
safe recursion on notation and safe composition. This result
is obtained by imposing a syntactic restriction on variables
used in the recursion and composition; they are distinguished
in normal or safe, and the latter cannot be used as the
principal variable of a function defined by recursion. In
other words, one does not allow (safe) recursive terms to be
substituted into a (normal) position which was used for an
earlier definition by recursion. Normal inputs are written to
the left, and they are separated from the safe inputs by means
af a semicolon. A function in B can be written as f(~x; ~y);
in this case, variables xi are normal, whereas variables yj
are safe.
B is the smallest class of functions containing the initial

functions 1-5 and closed under 6 and 7.
1) Constant: 0 (it is 0-ary function).
2) Projection: πn,m

j (x1 . . . , xn;xn+1 . . . , xn+m) = xj ,
for 1 ≤ j ≤ m+ n.

3) Binary successor: si(; a) = ai, i ∈ {0, 1}.
4) Binary predecessor: p(; 0) = 0, p(; ai) = a.

5) Conditional:

C(; a, b, c) =

{
b if a mod 2 = 0
c otherwise.

6) Safe recursion on notation: the function f is defined
by safe recursion on notation from functions g and hi
if {

f(0, ~x;~a) = g(~x;~a)
f(yi, ~x;~a) = hi(y, ~x;~a, f(y, ~x;~a)).

for i ∈ {0, 1}, g and hi in B; y is called the principal
variable of the recursion.

7) Safe composition: the function f is defined by safe
composition from functions h, ~r and ~t if

f(~x;~a) = h(~r(~x; );~t(~x;~a))

for h, ~r and ~t in B.
When defining a function f(yi, ~x;~a) by safe recursion

on notation from g and hi, the value f(y, ~x;~a) is in a
safe position of hi (right-side of the semicolon); and a
function having safe variables cannot be substituted into
a normal position of any other function, according to the
definition of safe composition. Moreover, normal variables
can be moved into a safe position, but not viceversa. By
constraining recursion and composition in such a way, class
B results to be equivalent to the class of polynomial time
computable functions.

III. TEMPLATE REPRESENTATIONS OF SOME POLYTIME
FUNCTIONS

We show how to represent some polytime computable
functions by means of template metaprogramming, imposing
some restrictions on the role of the template arguments,
following the mechanism introduced in [2]. Functions ⊕ and
⊗ can be expressed by safe recursion as follows:{

⊕(0;x) = x
⊕(y + 1;x) = succ(;⊕(y;x)).{
⊗(0; a) = 0
⊗(b+ 1; a) = ⊕(a;⊗(b; a)).

The recursive call ⊗(b; a) is assigned to the safe variable
x of ⊕, and one cannot re-assign this value to a normal
variable of ⊕ (by definition 7, previous section, one cannot
assign a function with safe variables to a normal position).
For this reason, the following definition of ⊗ and both
definitions of ↑ are not allowed in B.{

⊗(0; a) = 0
⊗(b+ 1; a) = ⊕(⊗(b; a); a).{
↑ (; 0, x) = 1
↑ (; y + 1, x) = ⊗(x; ↑ (; y, x)).{
↑ (; 0, x) = 1
↑ (; y + 1, x) = ⊗(↑ (; y, x);x).
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When defining the C++ templates that represent the previ-
ous three functions (or, in general, functions in B), we have
to mimic the normal/safe behaviour by putting beside each
variable a two-value flag; flags’ values are defined according
to the following rules:

1) each flag is equal to normal, initially;
2) flags beside variables assigned with recursive calls are

changed to safe;
3) a compiler error must be generated whenever a vari-

able labelled with a safe flag is used as principal
variable of a recursion; this is done by adding a
negative specialization (see below for its definition).

The template representation of ⊕ is the following (for
sake of conciseness, we use enumeration values instead of
typedef typename definitions, and integers instead of their
class template representation):
]define normal 0;
]define safe 1;

template<int Y, int flagy, int X, int flagx> class sum
{enum {result= 1+sum<Y-1, flagy, X, flagx>::result };};

template<int flagy, int X, int flagx>
class sum<0, flagy, X, flagx> {enum {result= X };};

template<int Y, int X, int flagx>
class sum<Y, safe, X, flagx>
{enum {result= sum<Y, safe, X, flagx>::result };};

The instruction sum<2,normal,3,normal>::result re-
turns the expected value, by recursively instantiating the
first template sum for the values <2,3> and <1,3>, until
<0,3> is reached (we omit here the flags); this value
matches the second specialized template, which returns 3.
The third template is introduced to avoid the substitution of
other recursive calls or functions into variable Y, according
to previous rule 3. This specialization is in the general form

template <args> class error <spec-args>
{enum {result= error<spec-args>::result };};

and in this case the compiler stops, producing the error
’result’ is not a member of type ’error<spec-args>’. The
template representation of ⊗ is the following:

template<int Y, int flagy, int X, int flagx> class prod
{enum {result=
sum<X,flagx, prod<Y-1, flagy, X, flagx>::result, safe

>::result};};

template<int flagy, int X, int flagx>
class prod<0, flagy, X, flagx> {enum {result= 0};};

template<int Y, int X, int flagx>
class prod<Y, safe, X, flagx>
{enum {result= prod<Y, safe, X, flagx>::result};};

By rule 2, the flag associated with the recursive
call of prod which occurs into sum is switched to
safe, and by rule 3, the last template specializa-
tion is introduced to prevent the programmer from
assigning another recursive call or function to Y.
The instruction prod<2,normal,3,normal>::result instan-
tiates the first template sum for values 3, normal,
prod<1,normal,3,normal>::result, and safe, respectively;
thus, the product is recursively evaluated. As shown above,
one can also define prod by exchanging the arguments of
sum, that is by assigning the recursive call of prod to the
safe variable of sum, as follows:

template<int Y, int flagy, int X, int flagx> class prod
{enum {result=
sum< prod<Y-1, flagy, X, flagx>::result, safe, X, flagx

>::result};};

The instruction prod<2,normal,3,normal>::result
instantiates the template sum for values prod<1,normal,
3,normal>::result, safe, 3, and normal, respectively; this
instantiation matches the values of the third template of
sum’s definition, and a compile-time error is produced (as
expected, since we are trying to assign the recursive call
of prod to the principal variable of sum). The template
representation of the exponential function is

template<int Y, int flagy, int X, int flagx> class esp
{enum {result=
prod<esp<Y-1, flagy, X, flagx>::result, safe, X, flagx

>::result};};

template<int flagy, int X, int flagx>
class esp<0, flagy, X, flagx>
{enum {result=1 };};

template<int Y, int X, int flagx>
class esp<Y, safe, X, flagx>
{enum {result= esp<Y, safe, X, flagx>::result};};

The instruction esp<2,normal,3,normal>::result in-
stantiates the template prod for the values esp<1, normal,
3, normal>::result, safe, 3, and normal, respectively;
this matches the third template of prod’s definition, and a
compiler error ’result’ is not a member of type ’prod<1,
safe, 3, normal>’ is produced. If one exchanges the roles
of prod’s variables, the following template is written:

template<int Y, int flagy, int X, int flagx> class esp
{enum {result=
prod<X, flagx, esp<Y-1, flagy, X, flagx>::result, safe

>::result};};

In this case the error occurs in the third template of
sum’s definition. In what follows, we will show that every
partial recursive function in B can be represented by C++
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templates that follow rules 1-3. If the specific error message
is generated when compiling a function type F, this means
that F represents a function f in a way that is not class B.

IV. TEMPLATE REPRESENTATION OF POLYTIME

In this section we define the Polytime language. Let nor-
mal and safe be notations for constants 0 and 1, respectively
(this means, in C++ code, ]define normal 0 and ]define
safe 1). Binary number types represent binary numbers, and
are constructed recursively. We use the typedef typename
mechanism (following [3]) instead of enumerated values;
this allows us to write natural definitions of binary succes-
sors and predecessor and, in what follows, of composition
and recursion on notation.

Number types representing the constant function 0 and bi-
nary successors of any number type T are in Figure 1; those
representing the binary predecessor of any number type T are
in Figure 2. According to these definitions, and intuitively
using the composition template defined in Figure 4, the
number 1101 can be represented by suc1 <suc0 <suc1 <
suc1 <zero,safe>,safe>,safe>,safe>. The predeces-
sor of any type number T is represented by pre<T,
safe>::result. Each specialization has to implement the
safe/normal behaviour on templates arguments (that is, on
functions’ variables). For example, it is mandatory in our
system that the binary successors and the predecessor oper-
ate on safe arguments: thus, we add negative specializations
to templates suc0, suc1 and pre, forcing them to produce a
significant compiler error when the flag associated with the
argument T is normal.

template<> class zero { typedef zero result;}

template<class T> class suc0 <T, safe>
{typedef suc0 <T, safe> result;};

template<class T> class suc1 <T, safe>
{typedef suc1 <T, safe> result;};

template<class T> class suc0 <T, normal>
{typedef typename suc0 <T, normal>::result result;}

template<class T> class suc1 <T, normal>
{typedef typename suc1 <X, normal>::result result;}

Figure 1: Templates for zero and binary successors

Templates for projection and conditional are defined in
Figure 3. The first three specializations in myif definition are
introduced to handle the cases in which the first argument
C ends with 1 or 0, and the three arguments are safe,
simultaneously. The fourth specialization returns an error
when one or more arguments are normal.

The class template F that represents the safe composition
of templates H, R and T is defined in Figure 4. Flags
associated with R and T into H have values normal and

template<> class pre<zero,safe> {typedef zero result;};

template<class T> class pre<suc0 <T, safe>, safe>
{typedef T result;}

template<class T> class pre<suc1 <T, safe>, safe>
{typedef T result;}

template<class T> class pre<suc0 <T, safe>, normal>
{typedef typename pre<suc0 <T, safe>, normal>

::result result;}

template<class T> class pre<suc1 <T, safe>, normal>
{typedef typename pre<suc1 <T, safe>, normal>

::result result;}

Figure 2: Templates for binary predecessor

template< class X1, int F1, . . ., class Xn, int Fn > class Πj

{typedef Xj result }

template<class C, class X, class Y> class myif
<suc1 <typename pre<C,safe>::result,safe>, safe,

X, safe, Y, safe>
{typedef Y result;};

template<class C, class X, class Y> class myif
<suc0 <typename pre<C,safe>::result, safe>, safe,

X, safe, Y, safe>
{typedef X result;};

template<class C, class X, class Y>
class myif <zero, safe, X, safe, Y, safe> {typedef X result;};

template<class C, int FC , class X, int FX , class Y, int FY >
class myif
{typedef typename if<C, FC , X, FX , Y, FY >

:: result result;};

Figure 3: Templates for projections and conditional

safe, respectively; this implies that the value of T cannot
be used by H as a principal variable of a recursion. The
last specialization produces a compiler error if the variable
X in R is safe, and R is used into H, simultaneously (X
can be assigned with a safe value into R, harmlessly; but
this cannot be done when R is substituted into a normal
variable of H). This definition matches the definition of safe
composition given in section II-C, and can be extended to
the general case, when X and A are tuples of values, and R
and T are tuples of templates.

We introduce now an extended definition of recursion,
w.r.t. the definition given in [2]. A function f is defined by
n-ple safe recursion on notation from functions h, g1 . . . gn,
m1 . . .mn if{
f(~y, ~x;~a) = gi(~x;~a) if one of yi is 0
f(~y, ~x;~a) = h( ~m(y), ~x; f( ~m(y), ~x;~a)) otherwise
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template<template<class X, int FX > class R,
class X, int FX , class A, int FA > class F
{typedef typename
H< typename R<X, FX >::result, normal,

typename T<X, FX , A, FA >::result, safe
>::result result; };

template<template <class X> class R, class X, int FX ,
class A, int FA >

class F <R<class X, safe>, X, FX , A, FA >
{typedef typename F<R<class X, safe>, X, FX , A, FA >

::result result; };

Figure 4: Templates for safe composition

where ~m(y) stands for the sequence m1(y1), . . . ,mn(yn),
and each mi is a sequence of binary predecessors.

Similarly, the class template F that represents the n-ple
safe recursion on notations from templates H, G1, . . .,
Gn and M1, . . ., Mn is defined in Figure 5, where each
Mi (i = 1 . . . n) is a sequence of predecessors applied
to a binary number type which is not zero, and where
we write template<X1, F1, . . ., Xn, Fn > instead of
template<class X1, int F1, . . ., class Xn, int Fn >, for
sake of simplicity. This definition can be extended to the
general case, when X and A are tuples of variables.

template <Y1, F1, . . ., Yn, Fn, X, FX , A, FA > class F
{typedef typename
H<typename M1 <Y1 >::result, F1,

. . .
typename Mn <Yn >::result, Fn,
X, FX , A, FA,
typename F<typename M1 <Y1 >::result, F1,

. . .
typename Mn <Yn >::result, Fn,
X, FX , A, FA >::result,

safe>::result result;};

template <Y1, F1, . . ., Yi−1, Fi−1, Fi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

class F<Y1, F1, . . ., Yi−1, Fi−1, zero, Fi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

{typedef typename Gi <X, FX , A, FA >::result result;};

template <Y1, F1, . . ., Yi−1, Fi−1, Yi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

class F<Y1, F1, . . ., Yi−1, Fi−1, Yi, safe,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

{typedef typename F<Y1,F1,. . .,Yi−1,Fi−1,Yi,safe,
Yi+1,Fi+1,. . . Yn,Fn,X,FX ,A,FA >::result result;};

Figure 5: Templates for n-ple safe recursion

We set to safe the value of the flag associated with the
recursive call of F into H (rule 2, Section III); we specialize
F to compute the base cases of the recursion (where one of
the templates Gi has to be computed); and we introduce the

last n templates because the programmer is not allowed to
assign a recursive call to one of the principal variables Y1,
. . ., Yn (rule 3).

We define the language Poly-Temp as the smallest class of
templates containing zero, suc0, suc1, pre, myif, Πj and
closed under safe composition and n-ple safe recursion on
notations. The polynomial-time functions will be represented
exactly by those templates in Poly-Temp with all normal
flags.

V. Poly-Temp CAPTURES POLYTIME

In this section, we state that every function computable
within polynomial time by a Turing machine can be ex-
pressed in Poly-Temp; in order to do this, we recall that
Polytime is captured by class B [2], and we prove that
B is represented by templates in Poly-Temp (Theorem
5.1). Conversely, we show that any template in Poly-Temp
is polynomial-space bounded (Theorem 5.2) and hence
polynomial-time bounded (Theorem 5.3).

Theorem 5.1: For each function f in B, there exists a
C++ template program F such that F computes f (at compile
time).

Proof: (by induction on the construction of f ). We
denote binary number types with the capital letters X, Y,
A, C, and the related flags with FX , FY , FA, FC ; we write
(1) template<X, FX , Y, FY > instead of template<class
X, int FX , class Y, int FY >; and (2) p<X> instead of
typename pre<X,safe>::result, for sake of simplicity.

Base. Templates defined in section IV (constant, binary
successors, predecessor, conditional and projections) triv-
ially compute the basic functions of B.

Step. Case 1. Let f be defined by safe recursion on nota-
tions from functions g(x; a), h0(y, x; a, s) and h1(y, x; a, s),
that are computed, by the inductive hypotheses, by templates
G, H0 and H1, respectively. f is represented in Poly-Temp
by the following template F:

template <Y, FY , X, FX , A, FA > class F
{typedef typename myif<Y, safe

typename H0 <p<Y>, FY , X, FX , A, FA,
typename
F<p<Y>, FY , X, FX , A, FA >::result,
safe>::result, safe

typename H1 <p<Y>, FY , X, FX , A, FA,
typename
F<p<Y>, FY , X, FX , A, FA >::result,
safe>::result, safe

>::result result };

template <FY , X, FX , A, FA >
class F<zero, FY , X, FX , A, FA >
{typedef typename G<X, FX , A, FA >::result result};
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template <Y, X, FX , A, FA >
class F<Y, safe, X, FX , A, FA >
{typedef typename F<Y, safe, X, FX , A, FA >

::result result};

F is obtained by n-ple safe recursion (Figure 5) and safe
composition (Figure 4) from templates if, H0 and H1.

Case 2. Let f be defined by safe composition from
functions h(p; q), r(x; ) and t(x; a), that are computed,
by the inductive hypotheses, by templates H, R and T,
respectively. The template F computing f is defined in
Figure 4.

To prove that any template in our language is polynomial-
time bounded, we find a polynomial-space bound for the
length of any template belonging to Poly-Temp. For sake of
brevity, we omit the flags and we write safe inputs to the
right of a semicolon, and normal ones to the left, following
the notation used by Bellantoni and Cook. We also use
“(. . .)" instead of “< . . . >". This implies that if a template
F is defined by n-ple safe recursion from templates H, G1,
. . ., Gn and M1, . . ., Mn, we write

F(Y,X; A) = Gi(X; A) if one of Yi is zero
= H(M(Y),X; A,F(M(Y),X; A)) otherwise

where M(Y) stands for M1(Y1), . . . ,Mn(Yn), and each Mi

is a sequence of binary predecessors.
Theorem 5.2: For each template F in Poly-Temp, there

exists a polynomial qF such that

|F(X; A)| ≤ qF(|X|) + max
i
|Ai|

where X and A are the variables labelled with normal and
safe, respectively, and qF(|X|) stands for qF(|X1|, . . . , |Xn|).

Proof: (by induction on the construction of F ).
Base. If F is a constant, binary successors, predecessor,

conditional or projection template, then we have |F(X; A)| ≤
1 +

∑
i |Xi|+ maxi |Ai|.

Step. Case 1. If F is defined by n-ple safe recursion we
have, by induction hypotheses, the polynomials qG1

, . . . , qGn

and qH bounding G1, . . . ,Gn and H, respectively; that is,

|F(. . . , zero, . . . ,X; A)| ≤ qGj (|X|) + maxi |Ai|, and
|F(Y,X; A)| ≤
qH(|M(Y)|, |X|) + max(maxi |Ai|, |F(M(Y),X; A)|).

Define qF such that

qF(|Y|, |X|) = |Y| · qH(|Y|, |X|) +
∑

jqGj
(|X|).

We have that |F(. . . , zero, . . . ,X; A)| ≤ qF(|zero|, |X|) +
maxi(Ai). We also have

|F(Y,X; A)| = |H(M(Y),X; A,F(M(Y),X; A))|
≤ qH(|M(Y)|, |X|)+

max(maxi |Ai|, |F(M(Y),X; A)|)
≤ qH(|M(Y)|, |X|)+

max(maxi |Ai|, qF(|M(Y)|, |X|) + maxi |Ai|)
≤ qH(|M(Y)|, |X|)+

qF(|M(Y)|, |X|) + maxi |Ai|
≤ qH(|M(Y)|, |X|)+
|M(Y)| · qH(|M(Y)|, |X|) +

∑
jqGj

(|X|)+
+ maxi |Ai|

≤ (|M(Y)|+ 1) · qH(|M(Y)|, |X|)+∑
jqGj

(|X|) + maxi |Ai|
≤ |Y| · qH(|M(Y)|, |X|)+∑

jqGj
(|X|) + maxi |Ai|

≤ |Y| · qH(|Y|, |X|) +
∑

jqGj
(|X|) + maxi |Ai|

≤ qF(|Y|, |X|) + maxi |Ai|

Case 2. If f is defined by safe composition we have, by
induction hypotheses, qH, qR and qT bounding H, R and T,
respectively; we have

|F(X; Y)| = |H(R(X; ); T(X; Y))|
≤ qH(|R(X; )|) + |T(X; Y)|
≤ qH(qR(|X|)) + |T(X; Y)|
≤ qH(qR(|X|)) + qT(|X|) + maxj |Yj |

Let qF(|X|, |Y|) be qH(qR(|X|))+qT(|X|). We have the result.

Note that templates in Poly-Temp are polynomially time-
bounded too, when evaluated. Indeed, base templates (zero,
Πj , suc0, suc1, if) are bounded by the length of their argu-
ments; for composition templates, observe that the composi-
tion of two polynomial-time templates is still a polynomial
time template; for recursion templates, it is well known that
recursion on notation can be executed in polynomial time if
the result of the recursion is polynomially length-bounded
and the step and base functions are polytime, as in our case.
Thus, we have

Theorem 5.3: Each template F in Poly-Temp is evaluated
in polynomial time.

VI. CONCLUSIONS AND FURTHER WORK

In summary, we have defined a restricted metalanguage by
means of C++ templates, and we have shown that it captures
at compile time the set of polynomial-time computable func-
tions. As we mentioned in the Introduction, a contribution
of this result is that it could provide the theoretical base
for the construction of tools for the formal certification of
upper bounds for metaprogramming time consumption. As
an anonymous referee says, "normal" meta-programs do not
follow the restriction imposed by our metalanguage; thus, a

37

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-159-5



sensible prosecution of this work could be the analysis of
transformation methods from "normal" metaprograms to "re-
stricted" ones. Nevertheless, even if our template language
is admissible C++, there is no doubt that programming in
it should be hard, due to the extra annotations encoded as
templates parameters; one may think to hide them into traits
[18] containing representation of numbers and of related
flags; in this way we’d be able to obtain a neater language.
However, obscure error messages from C++ compilers could
inhibit this as a workable approach. The programmer is
not able to understand why and where in the program he
used a recursive variable in the wrong way; static interfaces
techniques [17] could help us to provide a clearer meaning
to error messages.

Even if this is a clumsy characterization of a complexity
class, it is worth noting that the three rules introduced
above can produce polynomial time bounded templates when
applied to all kinds of recursions, not only to primitive recur-
sion; it seems that our approach improves the understanding
of polynomial-time computation’s nature, allowing us to use
more expressive recursive schemes.
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