
Video adaptation based on the SVC file format

Eduardo Martı́nez Graciá

Jordi Ortiz Murillo

Rafael López Pérez

Antonio F. Skarmeta

Intelligent Systems Group, University of Murcia, Spain

Email: edumart@um.es, jordi.ortiz@um.es, rafalp@um.es, skarmeta@um.es

Abstract—This paper provides a description of the Scalable
Video Coding (SVC) file format standard and its support
for the video adaptation in a streaming scenario. The paper
shows the advantages of using SVC and its standard file
format when implementing server driven and receiver driven
adaptation. The organization of information inside the SVC
file permits the efficient application of adaptation procedures
based on filtering at the server or at media aware network
elements, carrying out receiver driven layered multicast and
multi-interface transmission. The paper provides an overall
description of a tool that supports the creation of files compliant
with the SVC file format.

Keywords-Scalable video coding, SVC file format, streaming,
video adaptation, multicast and multi-interface transmission.

I. INTRODUCTION

This paper introduces the reader to the ISO media file

format [1] and its SVC extension [2] as well as its usage to

stream SVC videos over the network in an adaptable way.

We expose how to carry out the adaptation executed by the

sender or the receiver and describe a tool to ease this process.

The aim of this paper is not introducing the reader to the

SVC video codec or the protocols involved in a streaming

service. We point the reader to [3] and [4] for a more detailed

introduction of those technologies.

SVC is the scalable extension of H.264/AVC. It provides

three scalability dimensions: temporal, allowing diverse

frame rates; spatial, relative to the picture size; and quality,

allowing different values of the signal-noise ratio. In SVC,

each feasible combination of these three characteristics is

called a layer. A layer is recognized by a group of three

identifiers (ID): Dependency ID (DID), Quality ID (QID),

and Temporal ID (TID). All the layers up to some specific

values of these identifiers determine an operation point of

the SVC stream, that is, a subset of the bitstream that can

be decoded to generate a representation of the video with a

certain quality. This group of three identifiers will be referred

to as DQT from now on in this paper.

As an extension to AVC, SVC defines the Video Coding

Layer (VCL) and the Network Abstraction Layer (NAL).

VCL is intended to optimally represent video data while

NAL provides efficient data formatting to facilitate video

delivery or storage. NAL defines the minimum AVC data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

f nri type r i prid n did qid tid u d o rr

Figure 1. AVC NAL Unit header followed by its SVC extension

association, called NAL Unit (NALU). A NALU starts

with one octet long header followed by raw byte sequence

payload. SVC NALUs extend their header with three more

octets, as can be seen in Figure 1. These new fields identify

the layer associated to the NALU (DID,QID,TID). The

NALU header co-serves also as RTP payload header [5].

The SVC file format specification defines how SVC

streams are stored in any file container based on the ISO

Base Media file format [1] (e.g., MP4 files [6]). It is a

specialization of the AVC file format [7] that incorporates

some new structures to enable SVC specific features, includ-

ing adaptation operations and erosion storage. Adaptation

operations consist in discarding SVC data, according to an

adaptation decision based on the context in which the file

is used, whereas erosion storage is the reduction of SVC

storage space with a controlled video quality degradation.

A recommended reading about the SVC file format can be

found in [8].

In order to provide a representation of the video spec-

ified by a certain operation point, an adaptation service

is used. The service removes any SVC NALU over the

desired operation point simply looking at their SVC NALU

extension header. Taking into account the location where the

adaptation decision is made, there are two possible strategies

to perform the adaptation of the SVC video: sender driven

adaptation and receiver driven adaptation.

Sender driven adaptation is interesting when using unicast

streaming (video on demand). The adaptation is done at

the streaming server itself or at a media aware network

element (MANE) [9] in charge of thinning the bitstream.

The operation point is selected by an integrated function of

the server or MANE, or in a separate module responsible of

the decision logic.

Receiver driven adaptation is more appropriate when us-

ing multicast or multi-interface reception. In these cases, the

client is the entity in charge of selecting the best operation

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

point. When multicast is used, the adaptation is performed

by means of the well known receiver driver layered multicast

[10]. On the other hand, if multi-interface reception is

available, the receiver starts as many streaming sessions as

needed, with different interface endpoints in each session.

The whole set of active streaming sessions deliver the layers

of the selected operation point.

The remainder of this paper presents the file manage-

ment procedures that support the sender and receiver driven

adaptation. Section II presents an overview of the MP4

file format and the specialization of this file format to

store SVC bitstreams; section III describes the storage of

SVC bitstreams into tracks in MP4 files and the creation

of extractor and hint tracks. Section IV describes the use

of SVC files for sender driven adaptation, and section V

presents the use in receiver driven adaptation. Section VI

introduces a tool and show some results. Finally, in section

VII we conclude this paper and provide future work plans.

II. FILE FORMAT

A. Overview of MP4 file format

The MP4 file format is an extension of the ISO Base

Media file format designed to store MPEG-4 multimedia

presentations. This standard defines a generic and codec

agnostic multimedia container based on an object oriented

design. Files are made up of objects, called boxes or atoms,

and every piece of data in the file is stored in a box.

Inheritance and composition relationships are commonly

used in the definition of boxes.

The standard defines three coordinated arrangements of

information: a logical structure, a time structure, and a

physical structure. The logical structure reflects the com-

ponents of a movie, that is, a set of time-parallel tracks.

The time structure represents the sequence of samples of

each track, according to the timeline of the overall movie.

And the physical structure of the file defines the location

of the information, including the boxes that contains the

logical and time structure description, and the media data

samples themselves. An interesting aspect of this file format

is the separation of the media data from the metadata. For

example, the length and timestamp of a video frame are

not stored adjacent to the frame itself, but in boxes in the

metadata part. Additionally, to facilitate editing, timing data

is relative and media data is stored as it is, without any

kind of transformation. When data must be streamed, special

instructions are stored in hint tracks to support servers in the

process of data packetization.

The main top level boxes of the MP4 file format are the

movie atom moov, which is the metadata container, and the

media data atom mdat, which is the data container. Inside

the movie atom there is a movie header atom mvhd and a set

of trak atoms. The movie header stores media independent

information relative to the whole media. Regarding the trak

atoms, each of them contains the metadata related to a time

series of media. The most important boxes included inside

trak are:

• A track header atom tkhd that contains the track iden-

tifier and duration.

• A track reference atom tref that contains the identifiers

of other tracks with which this one has some type of

dependency (‘hint’ and ‘scal’ are examples).

• A media atom mdia, explained below.

The media atom includes several boxes that permit storing

efficiently the information of a media stream. First of all,

the handler box hdlr specifies the nature (audio, video, hint,

etc.) of the media in the track. Additionally, the sample table

box stbl contains all the information to obtain the physical

location and timing of each sample. This information is

structured in a set of boxes that are formatted as compact

tables.

The compact representation of the physical location is

based on the observation that groups of frames from the

same track are often stored contiguously in the mdat box,

even when multiplexing various tracks. The concept of chunk

of samples represents this grouping of contiguous samples

from the same track. Several levels of indirection are used to

locate a sample: the sample to chunk box stsc permits to find

the chunk that contains a sample; then, the chunk offset box

stco specifies the offset of each chunk from the beginning

of the file; finally, the sample size box stsz stores the size of

each sample, and therefore, using the chunk offset and the

sizes of the preceding samples in the chunk, it is possible to

find the offset of the sample from the beginning of the file.

Regarding the timing information of a track, the sample

table box contains two tables that provide a relation between

decoding time and sample number stts, and composition time

with sample number ctts. The decoding time of a sample is

stored as its duration (or delta from the preceding sample)

to obtain a compact representation, whereas the composition

time is stored as a time offset from the decoding time of the

sample.

We have previously mentioned that the MP4 file format is

codec agnostic. To facilitate the storage of different media

types, there are track specializations for each media nature

parameterized by the description of sample entries. The sam-

ple description box stsd included in sample table box gives

detailed information about the coding type used, and any

initialization information needed to configure the decoder.

The standard enables the use of several sample descriptions

per track, although usually there is only one. Each chunk

has an index that specifies the sample description of all

the samples included in the chunk. The AVC and SVC

file formats are not, strictly speaking, truly file formats on

their own, but specifications of new sample descriptions

and additional boxes to describe specific metadata for the

AVC and SVC codecs. We will go over these additions in

following sections.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

When media is delivered using a streaming protocol,

the characteristics of the transmission system may force to

reformat the media data, stored in its natural form, in order to

perform the communication. This is especially evident when

the transmission is done on a packet based network like In-

ternet. One of the particularities of Internet is the Maximum

Transfer Unit (MTU) that establishes the maximum packet

size that can be transmitted without fragmentation from a

particular source to a particular destination. If this value

was not taken into account during the media production,

some aggregation or fragmentation would be needed to fit

the media chunks into packets. The RTP protocol [11], the

universal protocol for real-time media transmission, was

designed in an extensible manner forcing the definition of

different payload format or profile documents for each media

to be transported, e.g., H.264/AVC Payload format [9]. This

document defines the way media data has to be fragmented

and signalled when transported over RTP.

A streaming server may calculate the packetization at

streaming-time. However, the MP4 file format defines spe-

cial tracks that help during the packetization process. So

called hint tracks contain instructions to assist media-

independent streaming servers in the generation of packets.

Such instructions contain references to sample data frag-

ments from one or more media tracks, listed as hint-type

references in the tref box of the hint track. Special authoring

tools called hinters have the payload format specific knowl-

edge required to generate hint tracks after the editing process

of the media tracks is completed. Hint tracks are structured

like media tracks, and as a result, a file may contain both the

original media and one or more hint tracks referencing the

media track. Each hint track can support just one streaming

protocol specified in the sample description of the hint track.

Streaming servers using RTSP [12] usually employ SDP

[13] as the description format of the presentation. The MP4

file format defines a set of boxes to store SDP information

during the hinting process, to assist the server in forming

a full SDP description. SDP boxes are stored at both the

movie and the track level. The movie SDP box contains the

session level description, whereas track SDP boxes keep the

lines corresponding to media level descriptions.

B. Overview of the SVC file format

The SVC file format is designed to be back compliant

with the AVC file format, and consequently we start with a

quick review of the latter.

The AVC file format defines extensions for the ISO Base

Media file format to cope with three interesting features

of the AVC codec: switching pictures, sub-sequences and

parameter sets. Switching pictures and sub-sequences are

AVC mechanisms for video adaptation that have been super-

seded by SVC, so they will not be addressed in this paper.

Regarding parameter sets, the AVC codec defines sequence

and picture parameter sets to convey infrequently changing

decoder configuration. These parameters are usually trans-

mitted out of band to the receiver, and more specifically,

inside the SDP presentation description. To support the

decoupling of parameter sets from coded video data, the

AVC file format permits two possible mechanisms to store

AVC data in tracks:

• A single video elementary stream: in this case a unique

track contains samples that store video coding related

NAL units; the track may also store non-video coding

related NAL units such as SEI messages and access

unit delimiter NAL units. Sequence and parameter set

NAL units are stored in the sample description box of

the track (stsd).

• Video and parameter set elementary streams: in this

case one track contains samples that store the same

type of NAL units indicated in the previous option, but

sequence and parameter set NAL units are not stored in

the sample description of this track; instead of that, they

are stored as data samples of a second track. This option

may be interesting when there are unusual frequent

changes in the parameter sets of the video stream.

Samples in AVC tracks correspond to access units in AVC

terminology, that is, complete video pictures. Each access

unit is made up of a set of NAL units, that usually contain

complete picture slices. To identify the limits between NAL

units of the same sample, each NAL unit is preceded with a

field that specifies its length in bytes. The length field can be

of 1, 2, or 4 bytes. The definition of AVC samples specified

in [7] is:

a l i g n e d (8) c l a s s AVCSample {
unsigned i n t p i c t u r e L e n g t h = s a m p l e s i z e ;
f o r (i =0 ; i<p i c t u r e L e n g t h ;) {

unsigned i n t ((LSMO+1)∗8) NALUnitLength ;
b i t (NALUnitLength ∗ 8) NALUnit ;
i += (LSMO+1) + NALUnitLength ;

}
}
/ / LSMO s t a n d s f o r L eng th S i z e Minus One

A video elementary stream is stored in a track identified

by means of a sample description that has the coding name

‘avc1’. Sample descriptions of this type have a special box

called avcC that contains the AVC decoder configuration

record. This record includes the list of sequence and param-

eter sets, specifies the AVC profile and level, and the amount

of bytes (LSMO) used to represent the NAL units length.

On the other hand, tracks that store parameter sets have the

coding name ‘avcp’.

After this short description of the main features of the

AVC file format, we can continue the discussion of the

SVC file format. In addition to a specific sample description,

there are three special constructions defined in the SVC file

format to support scalability: extractors, tiers and temporal

metadata statements.

Extractors are the first and simplest instrument to support

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

SVC adaptation. An extractor contains special NAL units

(with type 31), which enable the extraction of SVC data

from other tracks by reference. The extractor can represent

a concrete operation point of the SVC stream, identified by

the top value of the DQT triple in the NAL units referenced

by the extractor. In section III-B there is a more detailed

discussion about this adaptation instrument.

Tiers are a more complex mechanism that permit to select

operation points with more flexibility. A tier can represent a

set of operation points using special boxes to group samples

in an SVC video elementary track and to map groups

of samples to scalable layers. The characteristics of the

operation points (spatial resolution, bitrate, etc.) are stored

in the tier definition, and can be used to take the adaptation

decision.

SVC metadata tracks represent the more flexible and

complex adaptation mechanism defined in the SVC file

format. This type of tracks contain time parallel metadata

associated with the SVC media data. Metadata is structured

as statements that describe the scalability features of the

video data, and can help in the implementation of com-

plex extractors, specially when working with irregular SVC

streams.

III. SVC TRACKS

A. SVC video tracks

In this section we describe the procedure to store SVC

video elementary streams in SVC tracks. The file format

specification permits to split the stream in several tracks.

For instance, it could be interesting to store the base layer,

AVC compatible, in one track, and the rest of enhancement

layers in a second track. However, we have chosen to use a

single track to store all the SVC stream, because extractor

tracks (introduced below) can be employed to obtain similar

results.

To keep back compliance with AVC file format, a track

with a complete SVC stream must be described with the

coding name ‘avc1’. An AVC player can open this track

and feed the decoder with all the SVC stream; the decoder

must discard all the not understandable NAL units, in this

case the SVC NAL units.

Regarding the sample description box stsd, the SVC

file format makes use of the inheritance mechanism of

the ISO Base Media file format to define a new sample

description atom that contains, in separate sub-atoms, the

AVC configuration (sequence and picture parameter sets)

and the SVC configuration (sequence, subset sequence and

picture parameter sets). An AVC player can retrieve the AVC

configuration as usual, whereas an SVC player can use the

SVC configuration to prepare the decoder. Additionally, this

box stores a SEI NAL unit containing only a scalability in-

formation message. The scalability information includes the

spatial, temporal and quality dimensions of each operation

point as well as its bitrate requirements. This SEI message is

fundamental to take decisions on operation point selection.

Samples in the SVC track correspond to SVC access units,

that is, each sample contains information of a complete

picture, including all the spatial and quality enhancement

layers. NAL units of the access unit are stored in the

order found in the original SVC stream. Usually, the access

unit starts with a SEI NAL unit containing a sub-sequence

information message, followed by a set of AVC VCL NAL

units containing the base layer data (each one preceded by

an SVC prefix NAL unit), and finally concludes with a set of

SVC VCL NAL units representing the enhancement layers

of the picture.

B. SVC extractor tracks

Extractor tracks permit the pre-filtering of SVC streams

in order to reduce the server overload due to adaptation

during streaming time. An extractor track is identified with

the coding name ‘svc1’, and points to the original media

tracks in its tref box with the ‘scal’ reference type. The

samples in the extractor have a format similar to samples in

AVC tracks, except for a special extractor NAL unit (type

31). Below we :

a l i g n e d (8) c l a s s E x t r a c t o r () {
NALUnitHeader () ;
unsigned i n t (8) t r a c k r e f i n d e x ;
s ign ed i n t (8) s a m p l e o f f s e t ;
unsigned i n t ((LSMO+1)∗8) d a t a o f f s e t ;
unsigned i n t ((LSMO+1)∗8) d a t a l e n g t h ;

}

where NALUnitHeader() is an extended NAL unit header

as specified in [14] and represented in Figure 1.

The track ref index in the extractor specifies the index

of the ‘scal’-type reference in the tref box of the extractor

track, that points to the SVC media track from which data

is extracted. The sample offset gives a relative index of the

sample in the SVC media track to be used as source in the

extraction process. The relative positioning expressed in this

field corresponds to the decoding time line of the extractor

track. Usually it has value 0, indicating that the sample in

the media track to be used has the same decoding time as

the sample in the extractor track containing the extractor

NAL unit. The extractor NAL unit is completed with the

data offset field, that indicates the offset of the first byte

in the referenced sample to copy, and the data length field,

that contains the number of bytes to extract. The values in

the SVC NAL unit header are obtained from the values in

the original SVC media sample. The most important fields

are did (dependency identifier), tid (temporal identifier) and

qid (quality identifier). They contain the lowest values of the

fields in the extracted NAL units.

The extractor track is created with a user selected interval

of operation points, specified by a pair of DQT triples:

DQTmin and DQTmax. Obviously, the DQTmin value

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

f nri 24 NAL unit size

NAL unit · · ·

Figure 2. RTP payload field format

can specify the {0, 0, 0} value, indicating that the extractor

selects the SVC video from the base layer up the DQTmax

operation point.

The sample description of the extractor track stores an

SVC configuration box and a scalability info SEI box. This

two boxes are filled with data extracted from the original

SVC media track. More specifically, the SVC parameter sets

included in the extractor sample description are those used

by the NAL units pointed from the extractor track. Regarding

the scalability info SEI box, the extractor contains a new

scalability info message that describes only the layers in the

interval of operation points specified by the user.

C. SVC hint tracks

The Network Abstraction Layer for AVC was defined

having in mind the use of transport protocols to convey AVC

data. In fact, the RTP payload format for AVC establishes

that the first byte in the payload field of RTP packets mimics

the first byte of a NAL unit. In the most simple configuration

of the RTP packetization, each NAL unit can be transported

in a single packet, so that the payload is exactly the complete

NAL unit. This procedure is convenient when NAL units

have an amount of bytes that is nearly the MTU parameter

of the network (e.g., 1500 bytes in Internet, including RTP

and UDP headers). Nevertheless, this choice is not always

available, because the control of NAL unit size is done

during the encoding process (usually by limiting the size of

slices), but the encoding and hinting stages could be done

by different agents.

If small size NAL units are transported individually in

RTP packets, the protocol overload will be unacceptable. To

cope with this situation, the AVC and SVC RTP payload

formats define the use of a special type of RTP packets,

called aggregation units. Two type of aggregation units were

considered, Single-Time Aggregation Units (STAP) and

Multi-Time Aggregation Units (MTAP). In this document

we will focus on STAP in which all the NAL Units within

a packet pertain to the same decoding instant.

Single Time Aggregation units are identified with the type

field in the first byte of the RTP payload: its value is equal

to 24. In this case, the RTP packet can contain several NAL

units corresponding to the same access unit. Figure 2 shows

the format of the payload field in these RTP packets.

The f field in the packet header is set if any of the

aggregated NAL units has this field set. The nri field has the

greatest value of the corresponding fields in the aggregated

NAL units. Following this byte there is a sequence of NAL

units, each one preceded by a 16 bit field that specifies its

length.

It is also possible to have NAL units whose length exceeds

the MTU parameter. In this case, the hinter is obliged

to fragment the NAL unit into several consecutive RTP

packets with identical timestamp. Each RTP packet carries a

fragment of the original NAL unit. These RTP packets have

the structure shown in Figure 3.

The Fragmentation NAL unit header has a type value of

28. The following 8 bits contain a special header with the

fields:

• f: has the value of the same field in the fragmented

NAL unit.

• nri: has the value of the same field in the fragmented

NAL unit.

• s: start bit. Is set when the RTP packet carries the first

segment of the fragmented unit.

• e: end bit. Is set when the RTP packet carries the last

segment of the fragmented unit.

• r: reserved. Must be 0.

• type: contains the type of the original NAL unit.

• FU payload: contains a fragment of the NAL unit.

To finish this section, we discuss the inclusion of SDP

presentation descriptions in SVC hint tracks, because it is

a basic piece of information to carry out the adaptation.

As mentioned previously, there are two levels where SDP

data can be stored: the movie level, and the hint track level.

When an RTSP client sends a DESCRIBE operation to an

RTSP server, specifying an MP4 movie, the latter returns

the complete SDP description of the file. The complete

description joins the movie level SDP with the hint tracks

level SDP (there could be more than one).

It has to be taken into account that the streaming scenario

(RTSP) calls for a declarative use of session descriptions,

that is, the SDP description sent from the streaming server

as a response to the DESCRIBE operation represents session

properties that can not be modified by a client counter

proposal. In this context, the SDP description of a hint track

contains three parameters that have a special importance

during the adaptation process of the RTP stream generated

from the track: packetization-mode, sprop-parameter-sets

and sprop-scalability-info.

The packetization-mode parameter specifies the type of

packets used in the hint track. If this parameter takes the

value 0, RTP packets must carry single NAL units. When

the value is 1, aggregation and fragmentation packets can be

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

f nri 28 s e r type

FU payload

Figure 3. Fragmentation Unit payload field format

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

used, with the restriction of carrying information of a single

access unit. When the value is 2, NAL units of multiple

access units can be transported in the same RTP packet. As

said above we will consider up to mode 1.

To include sequence, subset sequence and picture pa-

rameter sets in the SDP description, the hinter uses sprop-

parameter-sets [9]. The value of this parameter is a comma

separated list of these parameter sets represented in Base64

format. This list of parameter sets is collected from the

sample description boxes of the extractor track or SVC

media track.

Finally, the sprop-scalability-info is used to convey the

scalability information SEI message in Base64 format.

Again, the SEI message is retrieved from the sample de-

scription boxes of the referenced track.

IV. SENDER DRIVEN ADAPTATION

With the support of the SVC file format described in

the previous sections, it is relatively straightforward the

implementation of the server driven adaptation in the context

of video streaming. In this scenario the server takes the

adaptation decision based on static and dynamic context

information. Static context information refers to the informa-

tion relative to the whole session and stays immutable during

it, such as client screen size. On the other hand, dynamic

context is considered as the mutable information to be

altered during the streaming time, such as the instantaneous

available bandwidth.

It is important to consider that the MP4 file could have

extractors for some (not all) of the possible intervals of

operation points [DQTmin, DQTmax]. The server performs

the selection in two steps: first, the scalability information

message located in the single SVC track, which contains

the complete representation of the video, is analysed to

find the best operation point that complies with the static

context. This operation point is called DQTtarget; then, the

server searches the best extractor (with greater DQTmax)

that fulfils the conditions:

DQTmin = {0, 0, 0}

DQTmax <= DQTtarget

Once the server has selected a hint track for the streaming

session, it prepares an SDP description that includes only the

media level SDP sub-string corresponding to the selected

hint track. This implies that the client is forced to ask for

the SETUP of the unique hint track proposed by the server.

Dynamic fluctuations of the context (like network condi-

tions) can oblige to perform a thinning of the RTP stream

obtained from the selected hint track. To accommodate to the

new conditions, the streaming server periodically renews the

target operation point. If the operation point moves below the

value of the hint track selected during the session setup, the

RTP stream is forced to cross an SVC filter [15]. The filter

de-packetizes the NAL units, removes those whose DQT

identifiers aren’t between the dependencies of the selected

operation point, and re-packetizes the NAL units that pass

the filter.

Dynamic adaptations can be performed at a MANE be-

tween the server and the client. The procedure to implement

the dynamic adaptation is similar to the one described

previously for the streaming server. It is important to note

that the MANE has access to the scalability information that

describes the input RTP stream, because this information is

included in the SDP sprop-scalability-info parameter that is

intercepted during the RTSP conversation between client and

server.

V. RECEIVER DRIVEN ADAPTATION

To implement the receiver driven adaptation, some ad-

ditional information must be included in the SDP boxes

of the MP4 file: the dependencies between hint tracks

created from extractors. As mentioned in section III-B,

extractors can be created using intervals of operation points

[DQTmin, DQTmax]. Suppose an administrator creates n

SVC extractors in an MP4 file with intervals defined by:

I(i) =
[

DQT i
min, DQT i

max

]

(1)

such that:
n
⋃

i=0

I(i) = [{0, 0, 0}, {Dmax, Tmax, Qmax}] (2)

where Dmax, Tmax and Qmax represent the maximum

scalability dimensions of the complete SVC stream. Then,

the streaming client must be able to detect the decoding

dependencies between extractors with DQTmin 6= {0, 0, 0}
in order to be able to setup enough RTP streams to convey

a certain overall operation point.

The SDP extension defined in [16] is the choice of the

RTP payload format for SVC [5] to describe the decoding

dependencies between media elements defined in an SDP

session. The signalling of dependencies proposed by the

IETF is described with the following example:

v=0

o= john 2890844526 2890844526 IN IP4 1 0 . 1 0 . 0 . 1

s =SVC R e c e i v e r Dr iven

c=IN IP4 1 0 . 1 0 . 0 . 1

t =0 0

a=group :DDP L1 L2

m= v i d e o 20000 RTP/AVP 96

a= c o n t r o l : t r a c k I D =4

a=rtpmap : 9 6 H264 /90000

a=fmtp : 9 6 p r o f i l e −l e v e l−i d =4 d400a ;

p a c k e t i z a t i o n−mode =1 ;

sprop−pa rame te r−s e t s ={ s ps 0 } ,{ pps0 } ;

sprop−s c a l a b i l i t y −i n f o ={ s i 0 } ;

a=mid : L1

m= v i d e o 20002 RTP/AVP 97

a= c o n t r o l : t r a c k I D =5

a=rtpmap : 9 7 H264−SVC/90000

a=fmtp : 9 7 p r o f i l e −l e v e l−i d =53000 c ;

p a c k e t i z a t i o n−mode =1 ;

sprop−pa rame te r−s e t s ={ s ps 1 } ,{ pps1 } ;

sprop−s c a l a b i l i t y −i n f o ={ s i 1 } ;

a=mid : L2

a=depend : 9 7 l a y L1 : 9 6

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

At the session level, the grouping type ‘DDP’ specifies the

labels of the video tracks that have a decoding dependency.

Labels are assigned to media identification attributes (‘mid’)

at the media level. When a specific media can be decoded

only when other media it depends on are available, the

‘depend’ attribute specifies this dependency (called layered

dependency) listing the labels and payload type values of

the required media. In the previous example, the first media

section describes the base layer of an SVC video (AVC

compliant). The second media section specifies an SVC

enhancement that depends on the base layer.

The control attributes in the media sections specify the

track identifiers that the client can use to setup indepen-

dently each stream. Thus, a multi-interface scenario can be

implemented using different client addresses (i.e., network

interfaces) during the RTSP setup of each hint track. The

receiver must inspect the complete SDP description of the

file and infer the set of sessions that must be started

to receive the best possible operation point, that is, the

operation point nearer to the target operation point that can

be obtained with the addition of one or more tracks. The

scalability information obtained with the combination of the

sprop-scalability-info parameters can be used in addition to

the static context in order to calculate the target operation

point. A receiver driven layered multicast scenario follows

a similar procedure, but in this case the media level SDP

contains the multicast address to which the receiver can

subscribe in order to receive the corresponding SVC media.

VI. SCALNET SVC FILE FORMAT TOOL

During the SCALNET project [17], a file format tool

implementing the features described above was developed.

The mp4creator open source software was extended to

support the creation of SVC media tracks, SVC extractor

tracks and SVC hint tracks. In addition to this, modifications

to Darwin Streaming Server and MPlayer were carried out

to implement the sender and receiver driven adaptation

scenarios, respectively. In the server side, these modifica-

tions included the implementation of an adaptation decision-

taking engine to adapt the streaming sessions to the adequate

operation point dynamically. An SVC filter was included in

the Darwin Streaming Server to do fine-grained rate-shaping

at the server side. Additionally, the filter was also employed

in a MANE implemented as an RTSP proxy.

In comparison with other MP4 file creation tools, the

SCALNET SVC file format tool includes the capability to

create extractor tracks and dependency descriptions in the

SDP metadata. Hint tracks permit to perform a coarse-grain

off-line adaptation with a low overhead in the space occupied

by the MP4 file. Without the availability of extractor tracks,

the administrator of the streaming server has to create one

media track for each offered operation point, and its cor-

responding hint track. To exemplify this, consider an SVC

stream that occupies 69058031 bytes, with 1500 frames, two

spatial layers with QCIF and CIF resolutions, five temporal

layers, and three quality layers. The following list shows

some of the values of each combination:

Layer R e s o l u t i o n Framerate B i t r a t e DTQ
0 176 x144 1 .5625 0 . 4 0 (0 , 0 , 0)
1 176 x144 3 .1250 8 . 3 0 (0 , 1 , 0)
2 176 x144 6 .2500 13 .50 (0 , 2 , 0)
3 176 x144 12 .5000 17 .40 (0 , 3 , 0)
4 176 x144 25 .0000 21 .00 (0 , 4 , 0)
5 176 x144 1 .5625 61 .10 (0 , 0 , 1)
6 176 x144 3 .1250 88 .50 (0 , 1 , 1)
7 176 x144 6 .2500 103 .00 (0 , 2 , 1)
8 176 x144 12 .5000 286 .80 (0 , 3 , 1)
9 176 x144 25 .0000 551 .20 (0 , 4 , 1)

10 176 x144 1 .5625 208 .10 (0 , 0 , 2)
11 176 x144 3 .1250 318 .70 (0 , 1 , 2)
12 176 x144 6 .2500 420 .20 (0 , 2 , 2)
13 176 x144 12 .5000 1246 .40 (0 , 3 , 2)
14 176 x144 25 .0000 2439 .00 (0 , 4 , 2)
15 352 x288 1 .5625 317 .20 (1 , 0 , 0)
16 352 x288 3 .1250 447 .00 (1 , 1 , 0)
17 352 x288 6 .2500 558 .10 (1 , 2 , 0)
18 352 x288 12 .5000 1570 .40 (1 , 3 , 0)
19 352 x288 25 .0000 3090 .00 (1 , 4 , 0)
.
29 352 x288 25 .0000 9206 .00 (1 , 4 , 2)

Using the MP4Box tool with the following command:

MP4Box -add svcfile:svcmode=splitall mp4file

we create a media track per spatial and quality combina-

tion. This means six operation points, each one stored in a

media track. Using the MP4Box -hint option we obtain

the corresponding six hint tracks, one per media track. The

result is a file with 73840255 bytes, representing a 6.2%

overhead with respect to the original file.

Now we use the SCALNET SVC file format tool with

one media track, and six extractor tracks and hint tracks, to

provide the server with exactly the same offer of operation

points. These are the commands used:

mp4creator -rate=25 svcfile mp4file

mp4creator -x=0,0,0-0,4,0 mp4file

mp4creator -x=0,0,0-0,4,1 mp4file

mp4creator -x=0,0,0-0,4,2 mp4file

mp4creator -x=0,0,0-1,4,0 mp4file

mp4creator -x=0,0,0-1,4,1 mp4file

mp4creator -x=0,0,0-1,4,2 mp4file

mp4creator -hint=2 mp4file

mp4creator -hint=3 mp4file

mp4creator -hint=4 mp4file

mp4creator -hint=5 mp4file

mp4creator -hint=6 mp4file

mp4creator -hint=7 mp4file

The first call creates a new mp4file starting with an

SVC media track with the complete sequence at 25 frames

per second. Each call to mp4creator with the -x option

performs the creation of an extractor track with the range of

layers specified. Take into account that the tool employs a

DTQ triple instead of DQT. The subsequent calls with the

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

-hint option create a hint track for each extractor. The

value indicated in this option specifies the track to hint.

We obtain a file with 72953209 bytes, which represents

a 5.6% overhead. The save in disk space depends on the

characteristics of the SVC sequence, but such reduction can

represent a big amount of space when the server provides

an large collection of files.

In order to generate a file suitable for a receiver driven

adaptation scenario, we can create extractors with :

mp4creator -x=0,0,0-0,4,0 mp4file

mp4creator -x=0,0,1-0,4,1 mp4file

mp4creator -x=0,0,2-0,4,2 mp4file

mp4creator -x=1,0,0-1,4,0 mp4file

mp4creator -x=1,0,1-1,4,1 mp4file

mp4creator -x=1,0,2-1,4,2 mp4file

Hint tracks as in the previous example

mp4creator -R=6,8,9,10,11,12,13 mp4file

We have changed the extractor intervals and issued an

extra command to create the DDP dependencies as explained

above, where 6 is the number of hint tracks to be taken as

source and 8, 9, 10, etc., are the hint tracks to be used to

create the dependencies in the SDP description at the file

level. The result is a file with 71135866 bytes, only a 3%

overhead, which is lower than the sender driven adaptation

approach as a consequence of the use of fewer pointers in

the extractor tracks.

VII. CONCLUSIONS AND FUTURE WORK

This paper provides an overview of how to use the SVC

file format to implement two types of adaptation, server and

receiver driven, in scalable video streaming services. A SVC

file format tool is presented, incorporating new features with

respect to previous ones, and some results demonstrate the

reduction in the amount of disk space overhead obtained

with the use of extractor tracks. The usability of the tool

was tested in a complete streaming architecture.

The SVC file format tool can be improved to include other

adaptation aids proposed in the standard, including tiers and

metadata statements. The intention of partners involved in

the development of this tool is to offer it as open source

software in order to support the research and dissemination

of the SVC standard.

Acknowledgements: This work was supported by the

Spanish Ministry of Industry, Tourism and Commerce (MI-

TYC) in the context of the Celtic SCALNET (CP5-022) and

EU-ICT OPENLAB (FP7-287581) projects.

REFERENCES

[1] D. Singer, editor. ISO/IEC 14496-12:2005 Part 12: ISO
Base Media File Format. International Organization for
Standardization, 2005.

[2] D. Singer, M. Zubair Visharam, Y. Wang, and T. Rathgen,
editors. ISO/IEC 14496-15:2004/Amd2: SVC File Format.
International Standardization Organization, 2007.

[3] H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the Scalable Video Coding Extension of the H.264/AVC
Standard. IEEE Transactions on Circuits and Systems for
Video Technology, 17(9):1103–1107, September 2007.

[4] C. Perkins. RTP. Audio and Video for the Internet. Addison-
Wesley, 2003.

[5] S. Wenger, Y. Wang, T. Schierl, and A. Eleftheriadis. RTP
Payload Format for SVC Video. Technical report, Internet
Engineering Task Force, May 2011. Standard, RFC 6190.

[6] ISO/IEC 14496-14:2003 Part 14: MP4 File Format. Interna-
tional Standardization Organization, 2003.

[7] ISO/IEC 14496-15:2004 Part 15: Advanced Video Coding
(AVC) file format. International Standardization Organization,
2004.

[8] P. Amon, T. Rathgen, and D. Signer. File Format for Scalable
Video Coding. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1174–1185, September 2007.

[9] S. Wenger, M.M. Hannuksela, T. Stockhammer, M. West-
erlund, and D. Singer. RTP Payload Format for H.264
Video. Technical report, Internet Engineering Task Force,
2010. draft-ietf-avt-rtp-rfc3984bis.

[10] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven
layered multicast. In ACM, editor, SIGCOMM ’96: Confer-
ence proceedings on Applications, technologies, architectures,
and protocols for computer communications, pages 117–130,
1996.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. Tech-
nical report, Internet Engineering Task Force, July 2003.
Standard, RFC 3550.

[12] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Stream-
ing Protocol (RTSP). Technical report, Internet Engineering
Task Force, April 1998. Proposed Standard, RFC 2326.

[13] M. Handley, V. Jacobson, and C. Perkins. SDP: Session
Description Protocol. Technical report, Internet Engineering
Task Force, July 2006. Proposed Standard, RFC 4566.

[14] T. Wiegand, G. Sullivan, H. Schwarz, and M. Wien, editors.
ISO/IEC 14496-10:2005/Amd3: Scalable Video Coding. In-
ternational Standardization Organization, 2007.

[15] M. Ransburg, E. Martı́nez Graciá, T. Sutinen, J. Ortiz, M. Sab-
latschan, and H. Hellwagner. Scalable video coding impact
on networks. Workshop SVCVision - Mobimedia, 2010.

[16] T. Schierl and S. Wenger. Signaling Media Decoding Depen-
dency in the Session Description Protocol. Technical report,
IETF, 2009.

[17] Michael Ransburg, Eduardo Martı́nez, Tiia Sutinen, Jordi
Ortı́z, Michael Sablatschan, and Hermann Hellwagner. Scal-
able video coding impact on networks. In Mobile Mul-
timedia Communications, volume 77 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 571–581. Springer
Berlin Heidelberg, 2012.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-275-2

CONTENT 2013 : The Fifth International Conference on Creative Content Technologies

	Introduction
	File format
	Overview of MP4 file format
	Overview of the SVC file format

	SVC Tracks
	SVC video tracks
	SVC extractor tracks
	SVC hint tracks

	Sender driven adaptation
	Receiver driven adaptation
	SCALNET SVC file format tool
	Conclusions and Future Work
	References

