
Time Coherent Animation of Dynamic 3D Objects from Kinect Camera using 3D

Features

Naveed Ahmed

Department of Computer Science

University of Sharjah

Sharjah, United Arab Emirates

nahmed@sharjah.ac.ae

Salam Khalifa

Department of Computer Science

University of Sharjah

Sharjah, United Arab Emirates

salam.khalifa@gmail.com

Abstract— We present a system for creating a time coherent

animation of dynamic 3D objects from Kinect sensor using 3D

features. We record a dynamic object using the Kinect sensor

resulting in a sequence of Red, Green, Blue and Depth (RGB-

D) frames of that object. We extract 3D features from the

depth data and using these features, we estimate the motion of

unrelated 3D geometry between two consecutive frames.

Extending this motion compensation over the complete

sequence, we manage to create a time coherent 3D animation

of a dynamic 3D object, which can be used in a number of

applications that require smooth temporal data for post

capture analysis, e.g., action or object recognition, motion

capture, 2D or 3D gesture recognition, motion editing, or non-

interactive 3D animation.

Keywords-Kinect; Dynamic Point Clouds; Point Sampling;

3D Animation

I. INTRODUCTION

Kinect sensor [13] has opened a completely new way of

how we can visualize real world objects in the digital

domain. It not only allows capturing the general appearance

of a real-world object by means of a Red, Green, and Blue

(RGB) camera, but also its 3D geometric shape using the

depth camera. The latter feature allows it to be used in a

number of applications that rely on capturing the true

appearance of any object or gesture-based natural user

interface. When used for capturing the dynamic 3D

geometry, Kinect captures a depth image for each frame of

the recorded video. The depth image provides the distance

from the object to the camera. This depth image can be

resampled into a 3D point cloud, in which every point has a

specific location in the 3D space. If one has to visualize the

dynamic 3D geometry of a real world object then this

dynamic 3D point cloud representation is sufficient.

Unfortunately, this representation is not suitable for a

number of post processing tasks, e.g., motion analysis,

motion compression, action recognition, etc. The reason

being that each frame of the dynamic 3D point cloud is

completely independent of the other, and there is no time

coherence in the data. If this data has to be used in any of

the aforementioned applications, then this time coherence

has to be established, by either some form of mapping

between each frame of the animation or estimating the

motion of the dynamic object over the whole sequence.

In this paper, we present a new method for creating time

coherent 3D animation from a sequence of depth images

obtained from a Kinect camera. Our method is not confined

to the depth image representation, rather we resample the

depth images into dynamic 3D point clouds, and therefore

our approach will work for any 3D animation in the form of

3D point clouds. We show that by means of 3D feature

extraction from 3D point clouds, we can estimate motion of

a dynamic object between two consecutive frames. Tracking

the object over the whole sequence, results in a compact

motion compensation representation of a time coherent 3D

animation. As the result of our work, we do not need to

store a dynamic object at each frame; rather the motion of

the dynamic object is encoded at each subsequent frame.

Thus, our method smoothly tracks one dynamic 3D object

over the whole sequence that goes through the same

animation that was captured in the non-coherent

representation. The resulting time coherent representation

can be employed in a number of applications for a post

processing and post recording analysis.

A number of methods has been proposed to create 3D

animations. Carranza et al. [7] presented a Free-viewpoint

system for 3D animation that recorded a dynamic object

using eight RGB cameras. The video data from eight

cameras was used to capture the motion and shape of the

actor. They used a template model to capture the

approximate shape of the real-world actor. They did not use

the multi-view data to reconstruct the dynamic 3D

geometry. One of the drawbacks of this work was that it did

not capture the surface reflectance of dynamic objects.

Theobalt et al. [16] extended the work of Carranza et al. [7]

and added dynamic surface reflectance estimation. Still, the

method used a course template mesh, which was not the true

geometry reconstructed from the video data. Different

approaches were employed by Vlasic et al. [17] and Aguiar

et al. [8] to capture realistic shape appearance and motion of

dynamic objects. For the shape, both methods relied on high

quality laser scans of the person. Both methods used high

definition RGB cameras to capture the appearance of the

actor. They differ in their approach on capturing the

dynamic shape. Vlasic et al. [17] used a skeleton-based

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

method to deform the template geometry. Their method

works well for most of the objects, but had some limitations

for the objects where the skeleton representation does not

apply. On the other hand, Aguiar et al. [8] used a data driven

approach to capture shape deformations. Their method is

well suited to any kind of 3D geometry representation, as

long as a high quality template model is available. Ahmed et

al. [1] presented a work on reconstructing time coherent 3D

animation without using the template geometry. They first

created dynamic 3D visual hulls of the real world object,

which were then tracked using a feature based dense

matching algorithm. Their feature based matching does not

incorporate any geometric features. They obtain Scale

Invariant Feature Transform (SIFT) features from RGB

images and match them over the animation while mapping

them on the visual hulls. Their method is not suitable for 3D

point cloud representation because it explicitly requires a

smooth 3D surface to be available for calculating the

geodesic distance between two points. Whereas, our method

does not rely on any surface information because getting a

smooth surface representation from noise Kinect data is a

very challenging task.

In the past four or five years, an increasing number of

methods for 3D geometry and animation reconstruction

have started using depth cameras. It was initially made

possible with the availability of the relatively low cost

Time-of-Flight [11] depth cameras that can provide low-

resolution dynamic geometry at high frame rate. A number

of applications were proposed [3] [11] using the Time-of-

Flight cameras. Microsoft completely changed the landscape

of a general-purpose depth camera by bringing the

extremely low cost Kinect for Xbox 360 as a general

consumer electronics equipment. Kinect was a revolutionary

device, because it could capture both color and depth data at

30 frames per second. The resolution of both cameras is

really low (640x480) but because of its lower cost and

deployment with Xbox 360, it was widely adopted. Apart of

the gaming community, the research community also

employed Kinect in a number of applications. A number of

new methods were proposed in the areas of gesture

recognition, motion capture, surface deformation, and

motion editing.

Researchers have been employing depth cameras for

reconstructing both dynamic and static real-world objects.

One or more depth cameras were used by Kim et al. [11]

and Castaneda et al. [6] for reconstructing a three-

dimensional representation of static objects. Depth cameras

are also used to reconstruct 3D shape, pose, and motion in

the works presented by Berger et al. [4], Girshich et al. [9],

Weiss et al. [18], and Baak et al. [3]. Multiple depth sensors

are employed for capturing the dynamic scenes. Ahmed et

al. [19] used six Kinect sensors to record a dynamic 3D

object and create a 3D animation. Kim et al. [10] and Berger

et al. [4] also used multiple depth sensors for object

acquisition. Both of these methods do not establish any time

coherence in the time varying data. On the other hand,

Ahmed et al. [19] do reconstruct the time-coherent 3D

animation but their work relies on RGB data for the feature

points, whereas we show that one can reconstruct time

coherent animation only using the geometric features.

Our work derives from the motivation of not using RGB
data in the time coherent animation reconstruction. Even
though RGB data has been successfully used in this line of
research, it requires an additional mapping from depth data
to RGB. In case of Kinect, this mapping is only one
directional, i.e., from depth to RGB and that too is many to
one. It means that multiple depth values can be mapped to a
single RGB pixel. Thus, a feature point in RGB has an
ambiguous representation in the three-space geometry. We
therefore propose a framework that can work on the
acquisition by one or more depth cameras and only utilizes
the depth data for time coherent 3D animation
reconstruction. We record a sequence using the Kinect
camera and resample it in the form of a dynamic 3D point
cloud representation. These point clouds are not time
coherent and are completely independent of each other. In
the following step, we extract a number of 3D features from
each point cloud and match two consecutive frames using
these features, starting from the first frame of the sequence.
Using the mapping between the first two frames, we estimate
the motion of the 3D point cloud between the two frames.
This tracking is done over the whole sequence and we end up
with a representation where for each frame we only need to
store the motion with respect to the previous frame. Thus,
our main contribution is a motion compensation
representation by means of tracking using 3D features that
creates a time coherent animation of a dynamic object.

Figure. 1 One RGB and depth frame captured from Kinect.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

II. VIDEO ACQUISITION

We acquire the dynamic 3D object using one Microsoft

Kinect camera. Our method is not limited to a single camera

setup, and can easily be extended to data from multiple

cameras, as long as it is registered in a global coordinate

space. An example of a multi-view setup can be seen in the

work of Ahmed et al. [19].

The Kinect can capture two simultaneous video data

streams, one RGB stream, and one depth stream. We use

Microsoft Kinect Software Development Kit (SDK) to

capture RGB-D data. For our method, we do not use the

RGB stream but we capture to verify the acquisition process

and make sure that the results are consistent with the depth

stream. Kinect SDK can record both streams at different

resolutions. At 30 frames per second, it can only record at

640x480 or a lower resolution. It can also capture at

1024x768 but the frame rate drops to 15 frames per second.

Since we are interested in recording a dynamic object, the

frame rate gets higher preference than the resolution.

Therefore, we record both streams at 640x480 at 30 frames

per second. The recording is stored in a high-speed memory

buffer to avoid any input/output (IO) read/write overhead

during the process. Once the recording is finished, each

frame of the captured data is written to the disk.

The acquisition setup provides us with a frame-by-frame

sequence of both RGB and depth data. One RGB and depth

frame of the captured sequence can be seen in Fig. 1.

III. CALIBRATION AND BACKGROUND SUBTRACTION

Our acquisition system provides us with both RGB and

depth streams. Each stream is comprised of a sequence of

frames. For example, each frame of the depth stream is an

intensity image of the resolution 640x480, where each pixel

is associated to a depth value. There is no notion of how

these depth values will be mapped to the three space for the

visualization. Similarly, there is no relationship between the

depth and RGB stream. For some methods that need both

RGB and depth streams, a mapping has to be established

between them.

For our work, we need two types of calibrations. First, we

need to estimate the intrinsic parameters of the depth

camera. Then, we need to find the mapping of the depth

values provided by Kinect in a form of a two-dimensional

depth image in the three-dimensional world coordinate

space. Optionally, we also obtain the mapping between the

RGB and depth stream to verify the correct acquisition of

the data.

We use Matlab Camera Calibration toolkit [23] for the

intrinsic calibration. We record a checkerboard from both

color and infrared sensors to facilitate this calibration. We

use the tool Kinect RGB Demo by Nicola Burrus [5] to

convert depth data to real world three space distances, and

find the mapping between RGB and depth streams. The

depth camera calibration allows us to resample a depth

image into a 3D point cloud and the RGB and depth stream

mapping allows us to visualize the resampled point cloud

with the color information to validate our acquisition setup.

An example of the resampled 3D point cloud and the

mapping of RGB to depth can be seen in Fig. 2.

Figure. 2 A resampled 3D point cloud can be seen in the top image, while

the same point cloud with RGB colors using the RGB and depth mapping

can be seen in the bottom image.

We store 3D point clouds in the Point Cloud Data (PCD)

file format using the Point Cloud Library [14]. The Point

Cloud Library allows for efficient storage and manipulation

of the point cloud data. It also has a number of algorithms

implemented that can be used to analyze the point cloud

data. We make an extensive use of this library in our work

that will be explained in the next section.

After obtaining the resampled point cloud, we perform

background subtraction to separate the dynamic object from

the static background. In the first step, we record the same

scene without the dynamic object. For the background

subtraction, we record 30 frames of the background.

Afterward, we average the 30 depth frames to average out

the noise in the data. The mean background depth image is

then subtracted from each depth frame of the recorded video

sequence. This results in a separation of the dynamic model

from the background and significantly reduces the storage

cost for the point cloud. The depth data from Kinect is

marred by very high temporal noise. This is a limitation of

the technology and because of the high frame rate, it can be

really pronounced when visualized. Therefore, using the

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

Point Cloud library we also de-noise the data by means of

simple Gaussian filtering. A 3D point cloud after

background subtraction and filtering can be seen in Fig. 3.

IV. TIME COHERENT ANIMATION

So far, we have obtained a segmented 3D point cloud for

each frame of the video sequence. These point clouds are

completely independent of each other and there is no

coherence from one frame to the other. This is the

preliminary requirement of data representation for our

method to create time coherent 3D animation. Our method

is not limited to data obtained from Kinect. As long as

dynamic 3D point cloud data is available, from either depth

or RGB cameras, our method will work equally well. The

only reason we are using Kinect is that we can obtain

dynamic 3D point cloud representation from just one

camera, whereas in a traditional RGB camera acquisition

system, at least two cameras are required to reconstruct the

depth information.

Figure. 3 Result from the background subtraction. The bounding box is

significantly reduced compared to the original point cloud in Fig. 2.

To reconstruct time coherent animation we start by

estimating a mapping between two consecutive frames of

the dynamic scene sequence. We start by extracting 3D

features from the first two frames t0 and t1. These features

are then matched to find a sparse mapping between the two

frames. This sparse matching is used to estimate the motion

between the two frames. If the object undergoes a simple

motion, e.g., translation, then only one match between the

two frames is sufficient to track the point cloud from one

frame to the next. Three or more matches can estimate a

rigid body transform. On the other hand, if the motion is

non-linear, which is true in our recordings then we need to

find the motion of every point in the point cloud. We

estimate the motion of all the points in the point cloud by

using the sparse matching as the starting point. In the

subsequent steps, we track t0 over the whole sequence,

resulting in a time coherent animation. Thus, our time

coherent animation reconstruction algorithm takes the

following form:

1) Find 3D feature points at each frame

2) Match two consecutive frames starting from t0 & t1

3) Estimate motion of each point on t0

4) Using the estimated motion at t0, track it to t1

5) Loop from step 2 and track t0 over the sequence

In the first step, we find a number of 3D feature points

for each frame of the 3D point cloud. We use the Point

Cloud Library to estimate the following 3D features:

1) Estimate 3D SIFT over the depth image. The depth

image is treated as an intensity image, and every

feature point has a unique three-space location

[20].

2) For every point on the point cloud, we estimate its

underlying curvature and normal.

3) Using the normal information from step 2, estimate

Clustered Viewpoint Feature Histogram (CVFH)

descriptor [21].

These 3D features are then used to find a sparse

correspondence between t0 and t1. 3D SIFT features are

matched over the two depth images. It provides us with a

one to one mapping for a sparse number of 3D positions.

While matching 3D SIFT descriptors, we make use of

curvature and normal to ensure that the matching is not an

outlier. On the other hand, CVFH provides us with the

matching clusters. Sparse matching approach is incorporated

in earlier works, e.g., [1] and [22]. Our method is

significantly different from those works, because it is

incorporating 3D features. In order to find the one to one

matching from the sparse correspondences, we make use of

the approach from Salam et al. [22]. The one to one

matching from 3D SIFT allows us to estimate the motion

vector for the sparse matching points:

Ms = FP1 – FP0 (1)

where Ms is the set of motion vectors for all 3D SIFT

feature points. FP1 and FP0 are the feature points at frame 1

and 0 respectively. Similarly, for each cluster from CVFH

we estimate its motion vector:

Mc = CP1 – CP0 (2)

where Mc is the set of motion vectors for all clusters. CP1

and CP0 are the centroids of the clusters at frame 1 and 0

respectively. In the next step, we need to estimate the

motion of all the points at t0. For every point at t0, we find

the four nearest points in FP0 and the nearest cluster with

respect to its centroid CP0. Each of these nearest points and

cluster has an associated motion vector, i.e. Ms0, Ms1, Ms2,

Ms3, and Mc0. The motion vector for any point at t0 is then

defined as:

Mv = (Ms0+ Ms1+ Ms2+ Ms3+ Mc0)/5 (3)

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

where Mv is the average motion vector for the 3D point.

Once this motion vector for each point is established, it is

used to track t0 to t1. Thus, for the time step t1 we do not

need to store the complete point cloud, rather we can

represent t0 at t1 in a motion compensation representation.
Using the estimated motion t0 and t1, we trivially track t0

over the whole sequence. For example, in the next step the
mapping between t1 and t2 is established but this mapping is
used to find the motion vector of each point of tracked t0.
The same procedure then follows for all subsequent frames.

V. RESULTS

We use two types of data sets to validate our method.

Both data sets are acquired through a single Kinect and each

is 100 frames long. In the first sequence, we only have one

object in the scene whereas in the second sequence there are

two dynamic objects. Our method for creating time coherent

animation managed to track both sequences completely. The

result of the animation is a single point cloud tracked over

the whole sequence.

Our method is very efficient in its implementation. On

average we can track 10 frames each second, thus tracking a

100 frames animation takes less than 2 minutes on a Core i5

2.4 Ghz processor. Some results of our tracking method can

be seen in Fig. 4.

Our method is subject to some limitations. One of the

major limitations is the quality of the data. Depending on

the speed of the motion, the number of 3D features can

decrease, which will result in low quality of time coherent

animation. Even using RGB images for detecting feature

points will not solve this problem because fast motion

introduces motion blur, which reduces the quality of the

RGB data. This limitation can be rectified by using high

frame-rate cameras. Other limitation is the choice of 3D

features. We are limited to the types of 3D features because

of our data representation. Most of the 3D features require a

surface representation. In principal, one can generate the

surface from a 3D point cloud. For the data from Kinect, it

is a difficult problem because the depth data from Kinect

has a very high temporal noise, which makes surface

estimation a research problem in itself. In future, we would

like to simulate a smoother point cloud and test surface

reconstruction on it and evaluate the results from different

types of 3D features.

Despite the limitations, we show that it is possible to

create time coherent animation from dynamic 3D point

clouds from Kinect using only the 3D features from the

depth data.

(a)

(b)

Figure. 4 Two non-coherent consecutive frames of 3D point cloud are

shown in (a). Whereas (b) shows the same two frames generated using time

coherent animation method. The frames are frame #0 and frame #80. It can

be seen that in the non-coherent point clouds (a), the points change between

the frames, esp. the effect is visible in the shape of the eye and around. The

point cloud at frame #0 is tracked to frame #80 and does not show any

changes in its shape by frame #80 (b).

VI. CONCLUSION

We presented a method to create time coherent animation

from dynamic 3D point clouds using only 3D features from

the depth data. We show that noisy data from a Kinect

camera can be resampled to create a dynamic 3D point

cloud representation of a dynamic object. After the internal

calibration and background subtraction, we manage to

isolate the dynamic object for creating a time coherent

animation. Our time coherent animation reconstruction

method is an iterative process, which uses 3D features from

the point cloud to match two consecutive frames. The initial

matching is propagated from first frame to the last resulting

in a time coherent animation where a single 3D point cloud

is tracked over the complete sequence. Our method is not

restricted to the data obtained from Kinect. It can work for

any animation as long as it is represented in the form of

dynamic 3D point clouds. In future, we plan to extend our

work to incorporate dynamic surface reconstruction and new

3D feature representations. The resulting time coherent

animation from our method can be used in a number of

applications, e.g., action or object recognition, gesture

recognition, motion capture, analysis and compression.

ACKNOWLEDGMENT

This work was supported by the seed grant (110226) for
new faculty members from the Department of Graduate
Studies, University of Sharjah, UAE.

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

REFERENCES

[1] N. Ahmed, C. Theobalt, C. Rossl, S. Thrun, and H. P. Seidel,

“Dense Correspondence Finding for Parametrization-free
Animation Reconstruction from Video,” Proc. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR 08), IEEE Press, June 2008, pp. 1-8,
doi:10.1109/CVPR.2008.4587758.

[2] N. Ahmed, “A System for 360 degree Acquisition and 3D
Animation Reconstruction using Multiple RGB-D Cameras,”
Proc. Computer Animation and Social Agents (CASA 2012),
May 2012, pp. 1-4.

[3] A. Baak, M. Muller, G. Bharaj, H. P. Seidel, and C. Theobalt,
“A Data-driven Approach for Real-time Full Bodypose
Reconstruction from a Depth Camera,” Proc. IEEE
International Conference on Computer Vision (ICCV 2011),
November 2011, pp. 1092-1099,
doi:10.1109/ICCV.2011.6126356.

[4] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer, A. Scholz,
and M. A. Magnor, “Markerless Motion Capture Using
Multiple Color-depth Sensors,” Proc. 16th International
Workshop on Vision Modeling and Visualization (VMV
2011), October 2011, pp. 317–324.

[5] N. Burrus, “Kinect RGB Demo,”
http://www.computervisiononline.com/software/kinect-
rgbdemo, last access 07/03/2015.

[6] V. Castaneda, D. Mateus, and N. Navab, “Stereo Time-of-
Flight,” Proc. IEEE International Conference on Computer
Vision (ICCV 2011), November 2011, pp. 1684-1691,
doi:10.1109/ICCV.2011.6126431.

[7] J. Carranza, C. Theobalt, M. Magnor, and H. P. Seidel, “Free-
viewpoint Video of Human Actors,” Proc. ACM Siggraph,
August 2003, pp. 569-577, doi:10.1145/882262.882309.

[8] E. D. Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. P. Seidel,
and S. Thrun, “Performance Capture from Sparse Multi-view
Video,” Proc. ACM Siggraph, August 2008, pp. 15-23,
doi:10.1145/1399504.1360697.

[9] R. Girshick, J. Shotton, P. Kohli, and A. C. Fitzgibbon,
“Efficient Regression of General-activity Human Poses from
Depth Images,” Proc. IEEE International Conference on
Computer Vision (ICCV 2011), November 2011, pp. 415-
422, doi:10.1109/ICCV.2011.6126270.

[10] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun, “Design and
Calibration of a Multi-view ToF Sensor Fusion System,”
Proc. IEEE Computer Vision and Pattern Recognition
Workshop on Time-of-Flight, June 2008, pp. 55-62.

[11] Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Micusik,
and S. Thrun, “Multi-view Image and ToF sensor Fusion for
Dense 3D Reconstruction,” Proc. IEEE Workshop on 3-D
Digital Imaging and Modeling (3DIM09), September 2009,
pp. 1542-1549, doi:10.1109/ICCVW.2009.5457430.

[12] D. G. Lowe, “Object Recognition from Local Scale Invariant
Features,” Proc. IEEE International Conference on Computer
Vision (ICCV), 1999, pp. 1150–1157,
doi:10.1109/ICCV.1999.790410.

[13] Microsoft, “Kinect for microsoft windows and xbox 360,”
http://www.kinectforwindows.org/, last access 07/03/2015.

[14] B. R. Radu, and C. Steve, “3D is here: Point Cloud Library
(PCL),” IEEE International Conference on Robotics and
Automation (ICRA), May 2011, pp. 1-4,
doi:10.1109/ICRA.2011.5980567.

[15] A Tevs, A. Berner, M. Wand, I. Ihrke, and H. P. Seidel,
“Intrinsic Shape Matching by Planned Landmark Sampling,”
Proc. 32nd International Conference of the European
Association for Computer Graphics (Eurographics), April
2011, pp. 543-552.

[16] C. Theobalt, N. Ahmed, G. Ziegler, and H. P. Seidel, “High-
Quality Reconstruction of Virtual Actors from Multi-view
Video Streams,” IEEE Signal Processing Magazine, vol 24,
2007, pp. 45-57.

[17] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, “Articulated
Mesh Animation from Multi-view Silhouettes,” Proc. ACM
Siggraph, August 2008, pp. 24-31, doi:
10.1145/1399504.1360696.

[18] A. Weiss, D. Hirshberg, and M. J. Black, “Home 3D Body
Scans from Noisy Image and Range Data,” Proc. IEEE
Internation Conference on Computer Vision (ICCV),
November 2011, pp. 1951-1958,
doi:10.1109/ICCV.2011.6126465.

[19] N. Ahmed, and I. Junejo, “A System for 3D Video
Acquisition and Spatio-Temporally Coherent 3D Animation
Reconstruction using Multiple RGB-D Cameras,”
International Journal of Signal Processing, Image Processing
and Pattern Recognition, vol. 6, 2013, pp. 113-129.

[20] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol 60,
2004, pp. 91-110.

[21] A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu,
M. Vincze and G. Bradski, “CAD-Model Recognition and 6
DOF Pose Estimation,” Proc. IEEE International Conference
on Computer Vision Worskhops, 2011, pp. 585-592,
doi:10.1109/ICCVW.2011.6130296.

[22] S. Khalifa, and N. Ahmed, “Temporally Coherent 3D
Animation Reconstruction from RGB-D Video Data”, Proc.
International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing
(ICCGCVIP), 2014, pp. 1383-1389.

[23] J. Y Bouguet, “Camera Calibration Toolbox for Matlab,”
http://www.vision.caltech.edu/bouguetj/calib_doc/, last access
07/03/2015.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

