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Abstract— We present a system for creating a time coherent 

animation of dynamic 3D objects from Kinect sensor using 3D 

features. We record a dynamic object using the Kinect sensor 

resulting in a sequence of Red, Green, Blue and Depth (RGB-

D) frames of that object. We extract 3D features from the 

depth data and using these features, we estimate the motion of 

unrelated 3D geometry between two consecutive frames. 

Extending this motion compensation over the complete 

sequence, we manage to create a time coherent 3D animation 

of a dynamic 3D object, which can be used in a number of 

applications that require smooth temporal data for post 

capture analysis, e.g., action or object recognition, motion 

capture, 2D or 3D gesture recognition, motion editing, or non-

interactive 3D animation. 

Keywords-Kinect; Dynamic Point Clouds; Point Sampling; 

3D Animation 

I. INTRODUCTION 

Kinect sensor [13] has opened a completely new way of 

how we can visualize real world objects in the digital 

domain. It not only allows capturing the general appearance 

of a real-world object by means of a Red, Green, and Blue 

(RGB) camera, but also its 3D geometric shape using the 

depth camera. The latter feature allows it to be used in a 

number of applications that rely on capturing the true 

appearance of any object or gesture-based natural user 

interface. When used for capturing the dynamic 3D 

geometry, Kinect captures a depth image for each frame of 

the recorded video. The depth image provides the distance 

from the object to the camera. This depth image can be 

resampled into a 3D point cloud, in which every point has a 

specific location in the 3D space. If one has to visualize the 

dynamic 3D geometry of a real world object then this 

dynamic 3D point cloud representation is sufficient. 

Unfortunately, this representation is not suitable for a 

number of post processing tasks, e.g., motion analysis, 

motion compression, action recognition, etc. The reason 

being that each frame of the dynamic 3D point cloud is 

completely independent of the other, and there is no time 

coherence in the data. If this data has to be used in any of 

the aforementioned applications, then this time coherence 

has to be established, by either some form of mapping 

between each frame of the animation or estimating the 

motion of the dynamic object over the whole sequence. 

In this paper, we present a new method for creating time 

coherent 3D animation from a sequence of depth images 

obtained from a Kinect camera. Our method is not confined 

to the depth image representation, rather we resample the 

depth images into dynamic 3D point clouds, and therefore 

our approach will work for any 3D animation in the form of 

3D point clouds. We show that by means of 3D feature 

extraction from 3D point clouds, we can estimate motion of 

a dynamic object between two consecutive frames. Tracking 

the object over the whole sequence, results in a compact 

motion compensation representation of a time coherent 3D 

animation. As the result of our work, we do not need to 

store a dynamic object at each frame; rather the motion of 

the dynamic object is encoded at each subsequent frame. 

Thus, our method smoothly tracks one dynamic 3D object 

over the whole sequence that goes through the same 

animation that was captured in the non-coherent 

representation. The resulting time coherent representation 

can be employed in a number of applications for a post 

processing and post recording analysis.  

A number of methods has been proposed to create 3D 

animations. Carranza et al. [7] presented a Free-viewpoint 

system for 3D animation that recorded a dynamic object 

using eight RGB cameras. The video data from eight 

cameras was used to capture the motion and shape of the 

actor. They used a template model to capture the 

approximate shape of the real-world actor. They did not use 

the multi-view data to reconstruct the dynamic 3D 

geometry. One of the drawbacks of this work was that it did 

not capture the surface reflectance of dynamic objects. 

Theobalt et al. [16] extended the work of Carranza et al. [7] 

and added dynamic surface reflectance estimation. Still, the 

method used a course template mesh, which was not the true 

geometry reconstructed from the video data. Different 

approaches were employed by Vlasic et al. [17] and Aguiar 

et al. [8] to capture realistic shape appearance and motion of 

dynamic objects. For the shape, both methods relied on high 

quality laser scans of the person. Both methods used high 

definition RGB cameras to capture the appearance of the 

actor. They differ in their approach on capturing the 

dynamic shape. Vlasic et al. [17] used a skeleton-based 
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method to deform the template geometry. Their method 

works well for most of the objects, but had some limitations 

for the objects where the skeleton representation does not 

apply. On the other hand, Aguiar et al. [8] used a data driven 

approach to capture shape deformations. Their method is 

well suited to any kind of 3D geometry representation, as 

long as a high quality template model is available. Ahmed et 

al. [1] presented a work on reconstructing time coherent 3D 

animation without using the template geometry. They first 

created dynamic 3D visual hulls of the real world object, 

which were then tracked using a feature based dense 

matching algorithm. Their feature based matching does not 

incorporate any geometric features. They obtain Scale 

Invariant Feature Transform (SIFT) features from RGB 

images and match them over the animation while mapping 

them on the visual hulls. Their method is not suitable for 3D 

point cloud representation because it explicitly requires a 

smooth 3D surface to be available for calculating the 

geodesic distance between two points. Whereas, our method 

does not rely on any surface information because getting a 

smooth surface representation from noise Kinect data is a 

very challenging task. 

In the past four or five years, an increasing number of 

methods for 3D geometry and animation reconstruction 

have started using depth cameras. It was initially made 

possible with the availability of the relatively low cost 

Time-of-Flight [11] depth cameras that can provide low-

resolution dynamic geometry at high frame rate. A number 

of applications were proposed [3] [11] using the Time-of-

Flight cameras. Microsoft completely changed the landscape 

of a general-purpose depth camera by bringing the 

extremely low cost Kinect for Xbox 360 as a general 

consumer electronics equipment. Kinect was a revolutionary 

device, because it could capture both color and depth data at 

30 frames per second. The resolution of both cameras is 

really low (640x480) but because of its lower cost and 

deployment with Xbox 360, it was widely adopted. Apart of 

the gaming community, the research community also 

employed Kinect in a number of applications. A number of 

new methods were proposed in the areas of gesture 

recognition, motion capture, surface deformation, and 

motion editing. 

Researchers have been employing depth cameras for 

reconstructing both dynamic and static real-world objects. 

One or more depth cameras were used by Kim et al. [11] 

and Castaneda et al. [6] for reconstructing a three-

dimensional representation of static objects. Depth cameras 

are also used to reconstruct 3D shape, pose, and motion in 

the works presented by Berger et al. [4], Girshich et al. [9], 

Weiss et al. [18], and Baak et al. [3]. Multiple depth sensors 

are employed for capturing the dynamic scenes. Ahmed et 

al. [19] used six Kinect sensors to record a dynamic 3D 

object and create a 3D animation. Kim et al. [10] and Berger 

et al. [4] also used multiple depth sensors for object 

acquisition. Both of these methods do not establish any time 

coherence in the time varying data. On the other hand, 

Ahmed et al. [19] do reconstruct the time-coherent 3D 

animation but their work relies on RGB data for the feature 

points, whereas we show that one can reconstruct time 

coherent animation only using the geometric features. 

Our work derives from the motivation of not using RGB 
data in the time coherent animation reconstruction. Even 
though RGB data has been successfully used in this line of 
research, it requires an additional mapping from depth data 
to RGB. In case of Kinect, this mapping is only one 
directional, i.e., from depth to RGB and that too is many to 
one. It means that multiple depth values can be mapped to a 
single RGB pixel. Thus, a feature point in RGB has an 
ambiguous representation in the three-space geometry. We 
therefore propose a framework that can work on the 
acquisition by one or more depth cameras and only utilizes 
the depth data for time coherent 3D animation 
reconstruction. We record a sequence using the Kinect 
camera and resample it in the form of a dynamic 3D point 
cloud representation. These point clouds are not time 
coherent and are completely independent of each other. In 
the following step, we extract a number of 3D features from 
each point cloud and match two consecutive frames using 
these features, starting from the first frame of the sequence. 
Using the mapping between the first two frames, we estimate 
the motion of the 3D point cloud between the two frames. 
This tracking is done over the whole sequence and we end up 
with a representation where for each frame we only need to 
store the motion with respect to the previous frame. Thus, 
our main contribution is a motion compensation 
representation by means of tracking using 3D features that 
creates a time coherent animation of a dynamic object. 
 

 
 

 
 

Figure. 1 One RGB and depth frame captured from Kinect. 
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II. VIDEO ACQUISITION 

We acquire the dynamic 3D object using one Microsoft 

Kinect camera. Our method is not limited to a single camera 

setup, and can easily be extended to data from multiple 

cameras, as long as it is registered in a global coordinate 

space. An example of a multi-view setup can be seen in the 

work of Ahmed et al. [19].  

The Kinect can capture two simultaneous video data 

streams, one RGB stream, and one depth stream. We use 

Microsoft Kinect Software Development Kit (SDK) to 

capture RGB-D data. For our method, we do not use the 

RGB stream but we capture to verify the acquisition process 

and make sure that the results are consistent with the depth 

stream. Kinect SDK can record both streams at different 

resolutions. At 30 frames per second, it can only record at 

640x480 or a lower resolution. It can also capture at 

1024x768 but the frame rate drops to 15 frames per second. 

Since we are interested in recording a dynamic object, the 

frame rate gets higher preference than the resolution. 

Therefore, we record both streams at 640x480 at 30 frames 

per second. The recording is stored in a high-speed memory 

buffer to avoid any input/output (IO) read/write overhead 

during the process. Once the recording is finished, each 

frame of the captured data is written to the disk. 

The acquisition setup provides us with a frame-by-frame 

sequence of both RGB and depth data. One RGB and depth 

frame of the captured sequence can be seen in Fig. 1. 

III. CALIBRATION AND BACKGROUND SUBTRACTION 

Our acquisition system provides us with both RGB and 

depth streams. Each stream is comprised of a sequence of 

frames. For example, each frame of the depth stream is an 

intensity image of the resolution 640x480, where each pixel 

is associated to a depth value. There is no notion of how 

these depth values will be mapped to the three space for the 

visualization. Similarly, there is no relationship between the 

depth and RGB stream. For some methods that need both 

RGB and depth streams, a mapping has to be established 

between them. 

For our work, we need two types of calibrations. First, we 

need to estimate the intrinsic parameters of the depth 

camera. Then, we need to find the mapping of the depth 

values provided by Kinect in a form of a two-dimensional 

depth image in the three-dimensional world coordinate 

space. Optionally, we also obtain the mapping between the 

RGB and depth stream to verify the correct acquisition of 

the data. 

We use Matlab Camera Calibration toolkit [23] for the 

intrinsic calibration. We record a checkerboard from both 

color and infrared sensors to facilitate this calibration. We 

use the tool Kinect RGB Demo by Nicola Burrus [5] to 

convert depth data to real world three space distances, and 

find the mapping between RGB and depth streams. The 

depth camera calibration allows us to resample a depth 

image into a 3D point cloud and the RGB and depth stream 

mapping allows us to visualize the resampled point cloud 

with the color information to validate our acquisition setup. 

An example of the resampled 3D point cloud and the 

mapping of RGB to depth can be seen in Fig. 2. 

 

 

 
Figure. 2 A resampled 3D point cloud can be seen in the top image, while 

the same point cloud with RGB colors using the RGB and depth mapping 

can be seen in the bottom image. 

 
We store 3D point clouds in the Point Cloud Data (PCD) 

file format using the Point Cloud Library [14]. The Point 

Cloud Library allows for efficient storage and manipulation 

of the point cloud data. It also has a number of algorithms 

implemented that can be used to analyze the point cloud 

data. We make an extensive use of this library in our work 

that will be explained in the next section. 

After obtaining the resampled point cloud, we perform 

background subtraction to separate the dynamic object from 

the static background. In the first step, we record the same 

scene without the dynamic object. For the background 

subtraction, we record 30 frames of the background. 

Afterward, we average the 30 depth frames to average out 

the noise in the data. The mean background depth image is 

then subtracted from each depth frame of the recorded video 

sequence. This results in a separation of the dynamic model 

from the background and significantly reduces the storage 

cost for the point cloud. The depth data from Kinect is 

marred by very high temporal noise. This is a limitation of 

the technology and because of the high frame rate, it can be 

really pronounced when visualized. Therefore, using the 
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Point Cloud library we also de-noise the data by means of 

simple Gaussian filtering. A 3D point cloud after 

background subtraction and filtering can be seen in Fig. 3. 

IV. TIME COHERENT ANIMATION 

So far, we have obtained a segmented 3D point cloud for 

each frame of the video sequence. These point clouds are 

completely independent of each other and there is no 

coherence from one frame to the other. This is the 

preliminary requirement of data representation for our 

method to create time coherent 3D animation. Our method 

is not limited to data obtained from Kinect. As long as 

dynamic 3D point cloud data is available, from either depth 

or RGB cameras, our method will work equally well. The 

only reason we are using Kinect is that we can obtain 

dynamic 3D point cloud representation from just one 

camera, whereas in a traditional RGB camera acquisition 

system, at least two cameras are required to reconstruct the 

depth information.  

 
Figure. 3 Result from the background subtraction. The bounding box is 

significantly reduced compared to the original point cloud in Fig. 2. 

 

To reconstruct time coherent animation we start by 

estimating a mapping between two consecutive frames of 

the dynamic scene sequence. We start by extracting 3D 

features from the first two frames t0 and t1. These features 

are then matched to find a sparse mapping between the two 

frames. This sparse matching is used to estimate the motion 

between the two frames. If the object undergoes a simple 

motion, e.g., translation, then only one match between the 

two frames is sufficient to track the point cloud from one 

frame to the next. Three or more matches can estimate a 

rigid body transform. On the other hand, if the motion is 

non-linear, which is true in our recordings then we need to 

find the motion of every point in the point cloud. We 

estimate the motion of all the points in the point cloud by 

using the sparse matching as the starting point. In the 

subsequent steps, we track t0 over the whole sequence, 

resulting in a time coherent animation. Thus, our time 

coherent animation reconstruction algorithm takes the 

following form: 

1) Find 3D feature points at each frame 

2) Match two consecutive frames starting from t0 & t1 

3) Estimate motion of each point on t0 

4) Using the estimated motion at t0, track it to t1 

5) Loop from step 2 and track t0 over the sequence 

 

In the first step, we find a number of 3D feature points 

for each frame of the 3D point cloud. We use the Point 

Cloud Library to estimate the following 3D features:  

 

1) Estimate 3D SIFT over the depth image. The depth 

image is treated as an intensity image, and every 

feature point has a unique three-space location 

[20]. 

2) For every point on the point cloud, we estimate its 

underlying curvature and normal. 

3) Using the normal information from step 2, estimate 

Clustered Viewpoint Feature Histogram (CVFH) 

descriptor [21]. 

 

These 3D features are then used to find a sparse 

correspondence between t0 and t1. 3D SIFT features are 

matched over the two depth images. It provides us with a 

one to one mapping for a sparse number of 3D positions. 

While matching 3D SIFT descriptors, we make use of 

curvature and normal to ensure that the matching is not an 

outlier. On the other hand, CVFH provides us with the 

matching clusters. Sparse matching approach is incorporated 

in earlier works, e.g., [1] and [22]. Our method is 

significantly different from those works, because it is 

incorporating 3D features. In order to find the one to one 

matching from the sparse correspondences, we make use of 

the approach from Salam et al. [22]. The one to one 

matching from 3D SIFT allows us to estimate the motion 

vector for the sparse matching points: 

Ms = FP1 – FP0   (1) 

where Ms is the set of motion vectors for all 3D SIFT 

feature points. FP1 and FP0 are the feature points at frame 1 

and 0 respectively. Similarly, for each cluster from CVFH 

we estimate its motion vector: 

Mc = CP1 – CP0   (2) 

where Mc is the set of motion vectors for all clusters. CP1 

and CP0 are the centroids of the clusters at frame 1 and 0 

respectively. In the next step, we need to estimate the 

motion of all the points at t0. For every point at t0, we find 

the four nearest points in FP0 and the nearest cluster with 

respect to its centroid CP0. Each of these nearest points and 

cluster has an associated motion vector, i.e. Ms0, Ms1, Ms2, 

Ms3, and Mc0. The motion vector for any point at t0 is then 

defined as: 

Mv = (Ms0+ Ms1+ Ms2+ Ms3+ Mc0)/5 (3) 
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where Mv is the average motion vector for the 3D point. 

Once this motion vector for each point is established, it is 

used to track t0 to t1. Thus, for the time step t1 we do not 

need to store the complete point cloud, rather we can 

represent t0 at t1 in a motion compensation representation. 
Using the estimated motion t0 and t1, we trivially track t0 

over the whole sequence. For example, in the next step the 
mapping between t1 and t2 is established but this mapping is 
used to find the motion vector of each point of tracked t0. 
The same procedure then follows for all subsequent frames. 
 

V. RESULTS 

We use two types of data sets to validate our method. 

Both data sets are acquired through a single Kinect and each 

is 100 frames long. In the first sequence, we only have one 

object in the scene whereas in the second sequence there are 

two dynamic objects. Our method for creating time coherent 

animation managed to track both sequences completely. The 

result of the animation is a single point cloud tracked over 

the whole sequence. 

Our method is very efficient in its implementation. On 

average we can track 10 frames each second, thus tracking a 

100 frames animation takes less than 2 minutes on a Core i5 

2.4 Ghz processor. Some results of our tracking method can 

be seen in Fig. 4.  

Our method is subject to some limitations. One of the 

major limitations is the quality of the data. Depending on 

the speed of the motion, the number of 3D features can 

decrease, which will result in low quality of time coherent 

animation. Even using RGB images for detecting feature 

points will not solve this problem because fast motion 

introduces motion blur, which reduces the quality of the 

RGB data. This limitation can be rectified by using high 

frame-rate cameras. Other limitation is the choice of 3D 

features. We are limited to the types of 3D features because 

of our data representation. Most of the 3D features require a 

surface representation. In principal, one can generate the 

surface from a 3D point cloud. For the data from Kinect, it 

is a difficult problem because the depth data from Kinect 

has a very high temporal noise, which makes surface 

estimation a research problem in itself. In future, we would 

like to simulate a smoother point cloud and test surface 

reconstruction on it and evaluate the results from different 

types of 3D features. 

Despite the limitations, we show that it is possible to 

create time coherent animation from dynamic 3D point 

clouds from Kinect using only the 3D features from the 

depth data. 

 

 

   
(a) 

   
(b) 

Figure. 4 Two non-coherent consecutive frames of 3D point cloud are 

shown in (a). Whereas (b) shows the same two frames generated using time 

coherent animation method. The frames are frame #0 and frame #80. It can 

be seen that in the non-coherent point clouds (a), the points change between 

the frames, esp. the effect is visible in the shape of the eye and around. The 

point cloud at frame #0 is tracked to frame #80 and does not show any 

changes in its shape by frame #80 (b). 

 

VI. CONCLUSION 

We presented a method to create time coherent animation 

from dynamic 3D point clouds using only 3D features from 

the depth data. We show that noisy data from a Kinect 

camera can be resampled to create a dynamic 3D point 

cloud representation of a dynamic object. After the internal 

calibration and background subtraction, we manage to 

isolate the dynamic object for creating a time coherent 

animation. Our time coherent animation reconstruction 

method is an iterative process, which uses 3D features from 

the point cloud to match two consecutive frames. The initial 

matching is propagated from first frame to the last resulting 

in a time coherent animation where a single 3D point cloud 

is tracked over the complete sequence. Our method is not 

restricted to the data obtained from Kinect. It can work for 

any animation as long as it is represented in the form of 

dynamic 3D point clouds. In future, we plan to extend our 

work to incorporate dynamic surface reconstruction and new 

3D feature representations. The resulting time coherent 

animation from our method can be used in a number of 

applications, e.g., action or object recognition, gesture 

recognition, motion capture, analysis and compression. 
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