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Abstract—Owing to open market policies and self-signed cer-
tificates, any malicious application developer can easily insert
malicious code into Android mobile applications and then dis-
tribute them in the Google Play market. Furthermore, even
applications that are known to be benign or safe are collecting
private information without asking users. Thus, there is a need
for a quantifiable measurement scheme that can evaluate the
degree of risk posed by an application beyond applications
simply being classified as normal or malicious. In this paper, by
using ensemble learning, we develop a quantifiable measurement
scheme to assess the sensitivity of the Android framework API,
and we experimentally evaluate the feasibility of this scheme.
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I. INTRODUCTION

With the increasing number of mobile devices, such as
smartphones, tablets, and wearable devices, based on the
Android operating system, the use of the Google Play market
has also dramatically increased. However, owing to open
market policies such as self-signed certificates, the number of
users suffering from malicious applications has also greatly
increased. For example, a malicious application developer can
download an application registered in the market and then re-
upload the application with added malignant behavior codes,
resulting in many problems such as private information leakage
and financial threats [1][2]. These applications can be installed
on a users devices and can secretly steal the users loca-
tion information or encrypt personal information and request
money in return for decryption. To implement these behaviors,
framework Application Programming Interfaces(API) or user-
defined methods are used. User-defined methods also use
framework APIs provided by the operating system. Therefore,
to understand the behaviors of the application, the APIs used
by the application must be analyzed.

In this paper, we generate an API sensitivity ranking by
using machine learning with API metadata. API metadata
includes the package name, class name, and API name, each
of which comprises words that reflect the behavior of the API
[3]. Thus, the learning model creates classification rules based
on these words, thereby predicting new input data [4]. On
the other hand, because the ensemble learning model is more
accurate than a single model, we use various learning models
in an ensemble to produce a high-accuracy result [5].

This is the first attempt to actually generate API sensi-
tivity ranking. API sensitivity ranking can be used for cri-
teria measuring the risk of an application, thus alert user to

potentially risky application. Also, It can make developers
refrain from abusing the sensitive API, and therefore spend
more attention to secure programming. Previous work has been
done to distinguish applications into normal and malicious [6].
However, users might use malicious application because it is
distinguished as a normal application. Therefore, applications
must be evaluated in a degree of risk to prevent harm.

The remainder of this paper is organized as follows. Section
2 describes the method used to generate the API sensitivity
ranking. Section 3 presents the experimental result of generated
ranking. Section 4 concludes the paper.

II. PROPOSED SCHEME

The API sensitivity ranking generator, as shown in the
following Figure 1, consists of an API Metadata Extractor,
Data Preprocessor, and Predictive Model via Ensemble Ma-
chine Learning.
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Figure 1. Framework of API sensitivity ranking generator

To generate the API sensitivity ranking, first, we build
training data for the nonsensitive and sensitive APIs. To do so,
we analyze more than 6,000 malicious applications collected
from Contagio [7] and VirusShare [8].

A. API Metadata Extractor

The API Metadata Extractor crawls the metadata of the
API in the Android developer site. The API metadata con-
sist of the API name, package name, class name, and API
description, which reflects the behavior of the API and the
resources that the API accesses. For example, the GetDeviceID
method belongs to the TelephonyManager class under the
android.telephony package. Through this, it can be seen that
GetDeviceID accesses the telephony service. In addition, the
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API description Returns the unique device ID of a subscription,
for example, the IMEI for GSM and the MEID for CDMA
phones explicitly states that it is used to retrieve the device
ID, such as IMEI and GSM. When this metadata extraction
process is finished, the vocabulary tokenization process is
performed for the package name, class name, API name, and
API description.

B. Data Preprocessor

1) Stop Words and Stemming: The extracted API Metadata
includes stop words such as this, that, and who that, by them-
selves, do not provide any useful information. Because these
words could degrade the performance of the learning model, in
this paper, they are removed by defining the following words
as stop words [9].

TABLE I. Defined stop words list

’i’, ’me’, ’my’, ’myself’, ’we’, ’our’, ’ours’,

’ourselves’, ’you’,’your’, ’yours’, ’yourself’,

’yourselves’, ’he’, ’him’, ’his’, ’himself’,

’she’,’her’, ’hers’, ’herself’, ’it’, ’its’,

’itself’, ’they’, ’them’, ’their’, ’theirs’,

’themselves’,’what’, ’which’, ’who’, ’whom’,

’this’, ’that’, ’these’, ’those’, ’am’, . . .

Stemming is a process by which a word is reduced to its
word root. It is usually performed by removing any suffixes
and prefixes from the word. For example, in the API metadata,
some words have the same meaning but in different forms,
such as retrieve, retrieved, retrieving, and retrieval. Because
these words could also degrade the performance of the learning
model, the stemming process proceeds in accordance of the
rules [10].

2) Vector Generator: After pre-processing the metadata,
they are transformed into a vector that is capable of machine
learning. To generate a vector from the metadata, first, a
dictionary of all words is created. Then, the metadata is
matched with the dictionary.

C. Predictive Model via Ensemble Machine Learning

Ensemble learning is a composite learning model that is
constructed by combining various learning models. When new
data is given, the individual learning model that makes up
the ensemble class votes the class label of the data, and
then, the ensemble model collects the votes of the individual
learning model and finally predicts the outcome. Under the
condition that the classifier outputs are independent, it was
proved that the voting combination will always result in a
performance improvement compared to a single classifier. The
API sensitivity ranking is generated by using the result of the
majority voting. As a simple example, assume that there exist
five learning models. When new data is entered, if four learning
models classify it as sensitive and one learning model classifies
it as non-sensitive, then it is given a ranking of 0.8.

III. EXPERIMENT

We generate the API sensitivity ranking using ten learning
models, in which the highest performance ten learning models
were selected using the cross-validation method. The following
table shows the API sensitivity ranking created by the en-
semble model. The most sensitive APIs are assigned a rank
of 1.0 as shown in Table II. For higher ranks, mainly SMS,

File, Network, and Contact related APIs are found, whereas
for lower ranks, data type, painting, and weather related APIs
are found. Our experimental results demonstrate that the top
rank results were actually confirmed to be mainly used for
malicious applications such as ransomware and Trojans.

TABLE II. Sensitivity API Ranking

Ranking API List

1.0

URLConnection.getPermission(),

TelephonyManager.getDeviceID(),

SmsManager.sendDataMessage(),

SmsManager.sendTextMessage(),

TelephonyManager.getLine1Number(), . . .

0.9

LocationProvider.requiresNetwork(),

AppWidgetHost.deleteHost(),

BasicHttpResponse.getStatusLine(),

UserManager.getUserForSerialNumber(),

SendSmsResult.getSendStatus(), . . .

. . . . . .

0.0

PictureDrawable.getPicture(),

DateFormatSymbols.getEras(),

TextView.getCompoundDrawablePadding(),

Deflater.getAdler(),

NumberFormat.getIntegerInstance(),

Resources.getColor(),

Resources.Theme.getDrawable(), . . .

IV. CONCLUSION

In this paper, we propose a scheme for quantitatively
evaluating the risk of an application by generating the sen-
sitivity ranking of the API. Because the API is mainly used to
implement the functionality of applications, it is expected that
risk assessment using the sensitivity ranking of the API can
be more objective compared to conventional risk assessment
methods.
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