
How Good is Openly Available Code Snippets Containing Software Vulnerabilities to
Train Machine Learning Algorithms?

Kaan Oguzhan
T RDA CST SEL-DE

Siemens AG
Munich, Germany

email: kaan.oguzhan@siemens.com

Tiago Espinha Gasiba
T RDA CST SEL-DE

Siemens AG
Munich, Germany

email: tiago.gasiba@siemens.com

Akram Louati
T RDA CST SEL-DE

Siemens AG
Munich, Germany

email: akram.louati@siemens.com

Abstract—Machine learning has been gaining more and more
attention over the last years. One of the recent areas where ma-
chine learning has been applied is secure software development
to identify software vulnerabilities. The algorithms depend on the
amount and quality of data used for training. Although many
studies are emerging on machine learning algorithms, one must
enquire about the data used to train these algorithms. This paper
addresses this question by investigating and analyzing freely
available vulnerable code snippets. We investigate their quantity
and quality in terms of the existing categorization of security
vulnerabilities used in industrial environments. Furthermore,
we investigate these aspects in dependency on several different
programming languages. In addition, we provide the database
containing the collected vulnerable code snippets for further
research. Our results show that, while a large number of training
data is available for some programming languages, this is not the
case for every language. Our results can be used by researchers
and industry practitioners working on machine learning and
applying these algorithms to improve software security.

Keywords–machine learning; deep learning; industry; software;
vulnerabilities.

I. INTRODUCTION
The rapid increase of digitalization and the fast-changing

technology landscape are continuously increasing the potential
attack surfaces for organizations [1]. According to AV-TEST
[2], the number of cybersecurity incidents has been steadily
increasing swiftly. One possible root cause of these incidents is
poor software development that results in vulnerable code. A
cybersecurity incident occurs when vulnerable code is attacked
by malware. In 2013, the total number of known malware was
about 182 million, whereas, in 2021, this number increased to
1313 million - an increase by more than sixfold compared to
preceding years.
One way to address vulnerabilities in software, which is

widely used in the industry, is by detecting vulnerabilities
during the software development lifecycle through static code
analysis. The traditional method of developing a new vulner-
ability detection algorithm starts from mathematical formulas
or known vulnerable patterns and turns them into computer
code that follows the exact mathematical formula or matches
the exact pattern [3]–[7]. There are already many examples of
static code analysis tools as both open source, such as [8] and
commercial, such as [9]. The biggest drawback in developing
such tools is the need for handcrafting new formulas or
patterns for every type of vulnerability or, in the best case,

2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

0

500

1000

1500

2000

2500

Nu
m

be
r o

f p
ap

er
s

Number of papers published in each year

Figure 1. Appearance of both keywords ”Cybersecurity” and ”Machine
Learning” in Academic Papers according to Scopus

adapting the old patterns to capture the new vulnerabilities.
This process is time-consuming and requires much expertise
in cybersecurity, which is not always available and can incur
high costs.
It is not surprising that the traditional methods have started

failing to keep up with the pace of new vulnerabilities, which
are being introduced at an ever-increasing rate. It is beneficial
to introduce new vulnerability detection methods to keep pace
with the increasing number of vulnerabilities.
Machine learning is a sub-field of artificial intelligence;

in contrast to the traditional methods, it does not require
handcrafted formulas by experts. It is based on the idea that a
neural network, which is essentially a vastly complex model
designed after the human brain, can learn to make accurate
decisions from large amounts of data through optimization
processes like Gradient Descent [10] with minimal human
intervention.
Although relatively new, the field of machine learning is

expanding at an accelerating pace. Its expansion is driven by
the explosion of Big Data [11], [12] and the ever-increasing
pace of growth in accelerator computing power [13]. The
implementation of these algorithms can be very efficient
through the usage of highly optimized computations, such
as Coppersmith–Winograd algorithms [14] and the use of
specialized primitives [15].
Machine learning and deep learning algorithms can poten-

tially significantly transform the cybersecurity field, e.g., by

25Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

Figure 2. Word Cloud generated from 2-gram’s over all the snippet titles

allowing adaptation to changes at a much faster pace and
detecting very complex patterns in the data. Through the
literature, we observe a significant uptrend in the number
of work-related to deep learning applications in cybersecurity
over the last decade (see Figure 1). We expect to see a growth
in the number of static code analysis tools both open source
and commercial following the trend by harnessing the power
of machine learning for source-code [16] or byte-code analysis
[17]–[19].
Deep learning has the potential to make cybersecurity

simpler and more effective. However, it can only do so if
the underlying data has enough samples and contain a distinct
variety of information. In other words, deep learning models
can only be as good as the data in which it has been trained.
Unfortunately, when it comes to cybersecurity, that data is
often lacking.
Secure coding is vital in the industry because it helps to

ensure that software is free from vulnerabilities that attackers
could exploit to gain access to systems and data. By ensuring
that the code is secure, organizations can reduce the risk of
data breaches and other cybersecurity incidents and improve
their compliance with regulations, such as the General Data
Protection Regulation (GDPR) [20], Payment Card Industry
Data Security Standard (PCI-DSS) [21] and IEC 62.443 from
the International Electrotechnical Commission.
There are several ways to improve code security, e.g.,

through following secure coding guidelines, conducting code
reviews, and using static analysis tools. Until recently, com-
mercial and open-sourced static code analysis tools existed
using non machine learning techniques. These tools are built
by handcrafting rules and using pattern matching techniques
to detect vulnerabilities [3]–[7] However, following the recent
trend in deep learning getting into many areas of Information
Technologies, we expect to see the same up trend in cyberse-
curity applications, such as [22]–[24] and more specifically,
into the field of static code analysis tools, such as [25].
The large amounts of data required to train deep learning

algorithms are difficult to acquire. A possible way to obtain
such a large amount of training data is to inspect existing

open-source projects and secure programming language stan-
dards. After vulnerabilities in open-source projects are publicly
disclosed, it is generally followed by the project maintainers
providing a fix. Therefore, the code before and after the
fix would be one way to train deep learning algorithms,
as many such code examples are available. According to
GitHub-2020-Digital-Insight-Report [26], as of 2020, there are
over 1.05 million open-source projects across all of GitHub.
This number should be more than enough for most machine
learning tasks. However, most open-source projects do not
use standardized vulnerability classifications, such as Common
Weakness Enumeration (CWE), for their code fixes. As such,
the task of collecting vulnerable code snippets directly from
GitHub repositories remains very challenging.

Our work focuses on known vulnerabilities with a standard-
ized classification that aligns with industrial security standards.
We explore existing and openly available sources that contain
vulnerable codes. In addition, we look at the possibility of
using these sources to create static code analysis tools using
machine learning techniques, thus improving overall security.
Our work contributes by analyzing the quality of openly
available data sources and the amount of data they can provide.
Our work also assists further research in this young discipline
by pointing to these data sources and also unveils possible
obstacles that further work in this field can experience - both
by researchers and practitioners alike. Furthermore, our work
presents an overview of the state of secure coding knowledge
of individual programming languages. Industry practitioners
can use our results to motivate their choice of a programming
language so that they can fulfill the requirements of industrial
security standards.

Our work is structured as follows. In Section II, we discuss
previous and related work. In Section III, we describe our
methodology and experiment. In Section IV, we provide the
significant contribution of the present work through a critical
discussion of the results obtained in the experiment. Finally,
in Section V, we finalize the paper through a brief overview
and consideration of further work.

26Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

102 103 104 105

Number of snippets

Source 1

Source 2

Source 3

Source 4

Source 5

Source 6

Source 7

Source 8

Source 9

Source 10

Source 11

141305

3169

2265

1135

922

713

484

267

118

30

18

Number of snippets per source (Log scale)
Source 1:https://samate.nist.gov/SRD/testsuites/juliet
Source 2:https://wiki.sei.cmu.edu
Source 3:https://vulncat.fortify.com/
Source 4:https://github.com/returntocorp/semgrep-rules/
Source 5:https://cwe.mitre.org/
Source 6:https://www.sonarqube.org/
Source 7:https://aquasecurity.github.io/tfsec/v1.9.3/checks/aws/api-gateway/enable-cache-encryption/
Source 8:https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/security-warnings
Source 9:https://github.com/snoopysecurity/Vulnerable-Code-Snippets
Source 10:https://github.com/conikeec/seeve
Source 11:https://github.com/fkie-cad/cwe_checker/tree/master/test/artificial_samples

Figure 3. Number of snippets taken from their respective sources

II. RELATED WORK
As the quantity and quality of Big Data increases, many

organizations have inevitably more and more demand for
secure software that can protect the data of their customers
and themselves. Due to the ever-increasing complexity of de-
veloping standardization, we can see more and more standard-
ization and categorization being done by organizations such
as, the PCI-DSS [21], International Standard Organization
ISO/IEC 27000 series [27], Computer Emergency Response
Team CERT [28], CWE [29], and Open Web Application
Security Project OWASP Top 10 [30].
Producers such as, the International Organization for Stan-

dardization (ISO) [31] and the International Electrotechnical
Commission (IEC) [32] have created a whole new standard
for data security, ISO/IEC 27000 family, due to the need for
a new standard ensuring the security of Big Data.
The ISO/IEC 27000 is a family of standards for Information

Security Management Systems (ISMS) used by organizations
of all sizes and industry sectors to protect their data. The
standard is based on a risk management approach and provides
a framework for organizations to identify, assess and manage
the risks to their Information security. The standards cover
various topics, including security policy, risk assessment, se-
curity controls, incident management, and business continuity.
IEC 62.443 is a family of standards for industrial automa-

tion and control systems security. The standards cover various
topics, including risk assessment, security controls, incident
management, and business continuity.
The ISO/IEC 27000 family of standards and the IEC

62.443 family of standards are complementary to each other.
The ISO/IEC 27000 family of standards provides a general
framework for Information security management, while the
IEC 62.443 family of standards provides specific guidance
for industrial automation and control systems.
Static code analysis is a process where the source code

of a software application is analyzed without executing it.

Static code analysis aims to find errors and vulnerabilities
in the code that attackers can exploit. By finding these
vulnerabilities, software developers can fix them before the
application reaches end customers. Static code analysis tools
can be used to find a wide range of security vulnerabilities in
software. The classical static code analysis tools use a set of
rules and patterns to find vulnerabilities in the code; however,
they require much manual work to create those rules and
patterns. Another disadvantage of static code analysis is that it
can be time-consuming to run on large codebases. In addition,
those classic static code analysis tools can produce many
false positives and negatives, making it difficult to identify
real security issues while highlighting the fact that additional
processes must be used to write secure code.
With the rise of Big Data and machine learning, it is in-

evitable to think about other potentially promising and attrac-
tive solutions to the problem of finding security vulnerabilities
in software. By applying machine learning techniques, we can
accelerate the process of static code analysis and potentially
even reduce the number of false positives. These methods
require data to train the algorithms.
In our work, we look at vulnerable code snippets from those

that are openly available, e.g., the Juliet Test Suite from the
National Institute for Standards and Technology, the Common
Weakness Enumeration [29] from the MITRE foundation, the
Software Engineering Institute of the Computer Emergency
Response Team (SEI CERT) [28] from Carnegie Mellon, and
openly available data sets from commercial providers such as,
SonarQube [9] and Fortify [33].
The CWE list from the MITRE foundation constitutes a

standardized means to classify software vulnerabilities. In
the documentation of each vulnerability are vulnerable code
snippets for several programming languages.
The Juliet Test Suite contains a large and well-known

collection of vulnerable snippets for the C, C#, C++, and Java
programming languages. Although this data set is extensive, it

27Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

exists for only a few programming languages. Many providers
of static code analysis use this data set as a means of
benchmarking their tool.
SEI CERT provides a secure coding standard for C, C++,

Perl, Java, and Android. The standard contains code snippets
as examples for each described vulnerability.
Fortify is a commercial company that does not focus on

categorizing vulnerabilities; nevertheless, they provide snippet
examples for each vulnerability they document. SonarQube is
a commercial company selling a static code analysis tool; their
openly available documentation provides several examples of
code vulnerabilities and their corresponding CWE number.
Despite deep learning being still in its infancy in terms of

popularity, it has already performed well in solving several
problems in the cybersecurity field. It is worth noting that
although there are many examples in academia such as,
[34] most of these applications are not yet made into fully
functional and production-grade software.
Deep learning models optimize to predict certain outputs

given an input and is only as good as the data it has been
trained on. Thus dumping sheer amounts of data might not
always produce good results, after all the data quality is of
importance. Withing a dataset there is always some variance,
which can be minimized by increasing the number of samples,
but the noise in the data might never go away. Another form
of noise is the bias, which is a more structural problem and
it represents the difference between an algorithm’s expected
output on a dataset and its actual output. When not dealt
with properly, both of the problems would cripple the models
performance. This concept is called the Bias-Variance trade-
off.

III. EXPERIMENT
This section briefly discusses the methodology used to

collect openly available vulnerable code snippets. We also
present the results of the experiment together with an analysis
thereof.

A. METHODOLOGY
To collect data for our experiment, we considered the

following types of sources: (1) secure coding standards used
in the industry, (2) official databases, (3) open documentation
of available static code analysis tools, and (4) miscellaneous.
The following methods were employed in our work for each

source type to obtain vulnerable code snippets :
• (1) Standards, and (3) Documentation - the web page
where the standard or documentation is hosted was
parsed, and the code snippets were extracted employing
web crawling,

• (2) Official Databases - in this case, the code snippets
were already provided in individual files,

• (3) Miscellaneous - depending on the repository, web
crawling was used, or the code snippets were copied from
individual files.

One crucial aspect that was also carried out was the creation
of an SQL database, which contains one entry for each of the

vulnerable code snippets, with a corresponding classification
on the programming language and the standard secure coding
rule number.
Figure 4 shows the number of code snippets gathered from

each source. In [35], we provide the entire database to assist
further researchers and practitioners.

B. RESULTS
For our analysis, we have gathered data from the online

websites that provide vulnerable code snippets and their stan-
dardized categories. We analyzed snippets from 11 sources and
then sorted these by programming language and vulnerability
types. In Figure 3, we have listed all the external sources we
have used and how many snippet examples they have publicly
provided, as discussed in the methodology sub-section.
When categorized by the programming language Figure 4,

we have found that four languages dominate the number of
snippets by a considerable margin. We have found more than
45.000 code snippets for the C programming language, about
37.000 for Java, about 34.000 for C#, and 29.000 for C++.
This large number is primarily due to the Julie Set. The
number of available code snippets sees a sudden drop starting
with 437 for Python. These results indicate that the number
of vulnerable code snippets openly found on the internet is
very language-specific and thus raises concerns about the
performance of machine learning models trained with minimal
data for these programming languages. Moreover, we have
355 standard vulnerability categories for Python, with an
average of around six code snippets per category. We note
that some categories overlap between different standards. To
our knowledge, it is almost impossible to train a machine
learning model with such limited data. Nevertheless, we expect
to see models trained solely on the publicly available data for
languages C, C#, C++, and Java as an extensive data set exists
to train the respective algorithms.
In our experiment, we have also analysed the standardised

vulnerability categories. Our main focus are on two categories,
namely OWASP TOP 10 (see Figure 5) and PCI-DSS (see
Figure 6).
For the OWASP TOP 10, we found and collected openly

available code snippets from 2004 to 2021. We have observed
that the number of publicly available snippets has increased
steadily over the years from approx. 1500 to approx. 2000
(see Figure 5). However, when investigating their categories,
it is clear that the snippets are not equally distributed among
all the ten categories (see Figure 5). To emphasize the differ-
ence, the category with the highest snippet count, ”2017-A03
Sensitive Data Exposure,” has 721 snippets, whereas ”2017-
A04 Server-Side Request Forgery” has only eight snippets. It
is also important to note that the number of publicly available
snippets is not necessarily representative of the number of
vulnerabilities that exist in the real world. There may be
more real-world vulnerabilities in category 2012:A10 than in
category 2017:A3.
These results highlight the importance of analyzing the sub-

dimension of a data set before deciding on a machine learning

28Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

C

Ja
va C# C+
+

Py
th

on

Te
rra

fo
rm JS

P

Ja
va

Sc
rip

t

PH
P

Ty
pe

Sc
rip

t

VB
.N

ET

Ru
by

AS
P.N

ET

Go
la

ng

Sw
ift

Ob
je

ct
iv

e-
C

YA
M

L

Pe
rl

Ko
tli

n

Vi
su

al
Ba

sic

An
dr

oi
d

Sc
al

a

JS
ON XM

L

Do
ck

er

Ac
tio

nS
cr

ip
t

AS
P

AB
AP

Un
iv

er
sa

l

VB
Sc

rip
t

Cl
ou

dF
or

m
at

io
n

HT
M

L

Co
ld

Fu
sio

n

PL
SQ

L

TS
QL

CO
BO

L

Ap
ex

Fl
ex

Ve
ril

og

Ba
sh

Ru
st

Sh
el

l

Te
xt

Programming Language

100

101

102

103

104

Nu
m

be
r o

f S
ni

pp
et

s (
Lo

g
Sc

al
e)

44942366593405228850

437 382 370 336 281
198 181 178 163 136 99 98 95 79 75 68 64 59 49 36 34 28 27 25 24 24 22 16 15 15 15 14 11 11 10

6

1 1 1

Non-Compliant snipper per language

Figure 4. Number of non-compliant snippets per language

2004 2007 2010 2013 2017 2021
Year

0

500

1000

1500

2000

Nu
m

be
r o

f s
ni

pp
et

s

1819

1528 1555

1701

2191

2336

Number of OWASP TOP 10 snippets per year

20
04

-A
01

20
04

-A
02

20
04

-A
03

20
04

-A
04

20
04

-A
05

20
04

-A
06

20
04

-A
07

20
04

-A
08

20
04

-A
09

20
04

-A
10

20
07

-A
01

20
07

-A
02

20
07

-A
03

20
07

-A
04

20
07

-A
05

20
07

-A
06

20
07

-A
07

20
07

-A
08

20
07

-A
09

20
07

-A
10

20
10

-A
01

20
10

-A
02

20
10

-A
03

20
10

-A
04

20
10

-A
05

20
10

-A
06

20
10

-A
07

20
10

-A
08

20
10

-A
09

20
10

-A
10

20
13

-A
01

20
13

-A
02

20
13

-A
03

20
13

-A
04

20
13

-A
05

20
13

-A
06

20
13

-A
07

20
13

-A
08

20
13

-A
09

20
13

-A
10

20
17

-A
01

20
17

-A
02

20
17

-A
03

20
17

-A
04

20
17

-A
05

20
17

-A
06

20
17

-A
07

20
17

-A
08

20
17

-A
09

20
17

-A
10

20
21

-A
01

20
21

-A
02

20
21

-A
03

20
21

-A
04

20
21

-A
05

20
21

-A
06

20
21

-A
07

20
21

-A
08

20
21

-A
09

20
21

-A
10

Year & Category

0

100

200

300

400

500

600

700

Nu
m

be
r o

f s
ni

pp
et

s

Number of OWASP TOP 10 snippets and their categories per year

Figure 5. OWASP TOP-10 Snippet count for each Year as well as snippet
count for sub-categories for each year

model. In the case of OWASP TOP 10, it is clear that if one
looks at the uniformity amongst years and directly trains a
machine learning model on them, the trained model will not be
able to generalize well for all categories. The reason is that the
model will be over-fitted on the categories with many snippets
and will not work for categories with only a few snippets. In
order to avoid such problems, one has to investigate the sub-
categories further and explore possible sub-dimensions of the
data to ensure that they are uniform.
For the case of PCI-DSS, we have snippets from main

categories (V X) V1, V2, and V3 from the years 2005, 2010,
and 2015. We did not observe an uptrend in the number

of available snippets between versions, as was the case for
OWASP TOP 10 (see Figure 5). However, by looking into
categories (V X.X), we can observe that the number of
snippets is uniformly distributed among them. It already looks
much better for a machine learning model to train on than
OWASP TOP 10. On the other hand if we go more finer
into sub-categories(V X.X-X), see Figure 6. We again see
an uneven distribution of snippets. For example, ”V1.2-02”
has only one snippet compared to ”V1.2-06,” which has 2782
snippets.

Again, the number of snippets is not equally distributed
among the PCI-DSS sub-categories. To the best of our knowl-
edge, if one trains a machine learning model based solely
on categories, where the numbers look uniformly distributed,
one will end up with a model trained only on a few sub-
categories without realizing it. In the best case, the model will
be accurate for those categories with abundant snippets, but it
will surely be heavily biased towards detecting them and will
detect categories with a very sparse number of snippets, see
Figure 6.

For our subsequent analysis, we wanted to understand the
most commonly used wordings among the vulnerabilities to
see if we could observe some patterns. For the analysis, we
have gathered all titles given to snippets by their respective
source. In the case of no title, we refer to their standard
category and get the name given to the category. If the snippet
has no title but has a standard category ”OWASP TOP 10
2017-A03,” then we assume it has the title ”Sensitive Data
Exposure” and add it to our corpus. After we had gathered all
the titles and then calculated 2,3,4-grams as well as made a
word cloud out of the 2-grams, the word cloud can be seen
in Figure 2. The Top-5 n-gram can be seen for each category
in Table. Table I. It is important to note that the stop-words
are only removed for the 2-gram and the word cloud, but for
the 3-gram and 4-gram, they are kept as they are important to
keep the semantics of the word groups intact. However, after
the n-gram calculations, we made an elimination for selecting
the Top-5; in case the n-gram starts or ends with a stop-word,
we ignore it.

29Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

1 2 3
PCI-DSS Version

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f s
ni

pp
et

s

6089

2508

11328
Number of PCI-DSS snippets per version (X)

1.1 1.2 2.0 3.0 3.1 3.2 3.2.1
PCI-DSS Version

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f s
ni

pp
et

s 2485

3604

2508

2829 2833 2833 2833

Number of PCI-DSS snippets per version (X.X)

1.
1-

02
1.

1-
03

1.
1-

04
1.

1-
06

1.
1-

07
1.

1-
08

1.
1-

10
1.

2-
02

1.
2-

03
1.

2-
04

1.
2-

06
1.

2-
07

1.
2-

08
1.

2-
10

2.
0-

02
2.

0-
03

2.
0-

04
2.

0-
06

2.
0-

07
2.

0-
08

2.
0-

10
3.

0-
02

3.
0-

03
3.

0-
04

3.
0-

06
3.

0-
07

3.
0-

08
3.

0-
10

3.
1-

02
3.

1-
03

3.
1-

04
3.

1-
06

3.
1-

07
3.

1-
08

3.
1-

10
3.

2-
02

3.
2-

03
3.

2-
04

3.
2-

06
3.

2-
07

3.
2-

08
3.

2-
10

3.
2.

1-
02

3.
2.

1-
03

3.
2.

1-
04

3.
2.

1-
06

3.
2.

1-
07

3.
2.

1-
08

3.
2.

1-
10

PCI-DSS Version

0

500

1000

1500

2000

2500

Nu
m

be
r o

f s
ni

pp
et

s

Number of PCI-DSS snippets per version (X.X-X)

Figure 6. Number of snippets per PCI-DSS Version, going into finer
categories from top to bottom

For the last analysis, we wanted to see if we could observe
some uniform patterns or detect unevenness for one of the
most common and comprehensive data sets, the Juliet Test
Suite. Many static code analysis tools use the Juliet Test Suite
to benchmark their software as well as due to the sheer number
of vulnerable snippets it includes, it is a tempting target for
training deep learning models. This data set has been used in
several previous studies [36]–[38]. We have used the same
techniques as in the previous analysis and focused on the
standardized vulnerability categorization CWE.
We again observed that the number of snippets is very

unevenly distributed among the CWE categories. Some cat-
egories have a whooping number of snippets compared to
others. For example, ”CWE-121” has 5906 snippets compared
to ”CWE-561,” which has only two snippets, see Table II.
The difference is again significant, and if one were to train a
machine learning model directly on the Juliet Test Suite as the

TABLE I
TOP-5 N-GRAMS

Top-5 | 2-gram

(improper, neutralization)
(integer, overflow)
(buffer, overflow)
(special, elements)
(integer, underflow)

Top-5 | 3-gram

(overflow, or, wraparound)
(neutralization, of, special)
(special, elements, used)
(integer, underflow, wrap)
(numeric, truncation, error)

Top-5 | 4-gram

(integer, overflow, or, wraparound)
(neutralization, of, special, elements)
(improper, neutralization, of, special)
(command, os, command, injection)
(improper, validation, of, array)

Top-5 | 5-gram

(improper, neutralization, of, special, elements)
(integer, underflow, wrap, or, wraparound)
(os, command, os, command, injection)
(improper, validation, of, array, index)
(use, of, externally-controlled, format, string)

data set, one would end up with a model that is heavily biased
towards detecting top categories such as, ”CWE-121”, ”CWE-
78”, ”CWE-190”. Meanwhile, detecting other categories such
as, ”CWE-561” would be very unlikely.
Before concluding our analysis, albeit not directly related

to vulnerability categories or classes, it is worth mentioning
that Juliet Test Suite snippets are usually very long. This
fact contrasts with our previous sources, where snippets were
relatively short and contained only a few lines of code. Such a
difference can potentially significantly impact the performance
of deep learning models. The Juliet Test Suite can test and
benchmark static code analysis tools. Therefore, it contains
many snippets that are very similar but have slight varia-
tions that make them unique. Those minor differences allow
the Juliet Test Suite to cover the vulnerabilities from many
angles. An oversimplified example would be ”if(True)...” vs
”if(1==1)...” vs ”if(varTrue)...”.
Due to the Juliet Test Suite’s previously mentioned goal

30Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

TABLE II
JULIET DATA SET SNIPPET COUNT PER CWE ID

C Java C# C++

ID Snippet count ID Snippet count ID Snippet count ID Snippet count

CWE 121 5906 CWE 190 6555 CWE 197 7695 CWE 762 5180
CWE 78 5600 CWE 191 5244 CWE 190 5643 CWE 122 4948
CWE 190 5040 CWE 129 4104 CWE 191 3762 CWE 36 3500
...
CWE 674 2 CWE 499 1 CWE 397 1 CWE 562 1
CWE 562 2 CWE 248 1 CWE 366 1 CWE 468 1
CWE 561 2 CWE 111 1 CWE 248 1 CWE 440 1

of coverage completeness, it is easy to find snippets de-
signed to reproduce the same vulnerability from 50 dif-
ferent approaches, where the difference between each ap-
proach is very tiny such as, 15 lines in a 450-line of
code. (CWE122_Heap_Based_Buffer_Overflow snippets). In
this case, the common acceptance of ”the more data, the
better” for machine learning is misleading. Having such a high
similarity between the data means no good; if not handled
correctly, those similarities can easily lead to overfitting, or
worse, the model will learn the similarities and ignore the
difference where the actual vulnerability is. Another likely
pitfall is that if Juliet Test Suite alone is used for training,
validation, and testing, the validation-split and test-split will be
very similar to the training-split as they would share the same
”common” parts of the vulnerable snippets. Therefore, using
Juliet Test Suite alone for training the model and evaluating its
performance will not be a good representation of real-world
vulnerabilities, thus leading to a poor representation of the
model’s generalization capabilities.

IV. DISCUSSION
Throughout our experiment, we have tried to analyze pub-

licly available vulnerable code snippets across programming
languages and tried to understand their fitness for training pop-
ular deep learning models. As our first finding, we have seen a
big difference in the number of publicly available vulnerable
code snippets across programming languages, which to the
best of our knowledge, has not been addressed in the literature.
There are so few snippets available for some languages that
it is impossible to train a model to detect vulnerabilities in
that language, see Figure 4. For others, we have found that
the sheer number of available snippets seems sufficient for
training a model, but just the number of snippets is not enough
to justify that a deep learning model trained directly on the
publicly available code snippets would generalize well.
For a deep learning model to generalize well, there needs to

be a certain amount of diversity in the snippets to make sure
that the model is not just memorizing the available code snip-
pets, as well as a uniformity among different vulnerabilities
to make sure that the model will not be biased towards some
specific vulnerabilities. A model lacking these two properties

cannot perform well enough to be deployed in production
environments.
We also looked at the distribution of snippets vs. standard-

ized vulnerability categories and tried to draw some patterns
to pin down possible pitfalls. We have found that one needs to
be very careful during inspection of the data as the distribution
of snippets might look uniform from a higher perspective, like
the year for OWASP TOP 10 (e.g., 2007 vs. 2010 vs. 2013 (see
Figure 5, Graph-1), but there could be a significant underlying
bias in the sub-categorizations, like the case of OWASP-2017-
A03 vs. OWASP-2017-A04 (see Figure 5, Graph-2). Such a
bias will ultimately make the model biased towards specific
vulnerabilities and lead to a bad performance. Depending on
the severity of the bias, the model might not learn to detect
some sub-categories.
We acknowledge that during the generation of our data set,

although we tried our best not to miss anything, we could
not have included some sources. The results of our analysis
are solely based on the snippets we have collected. However,
we believe that our data set is large enough and includes
the most common public sources to give some insight into
the distribution of vulnerable code snippets that are publicly
available. Moreover, the results of our analysis can be used to
evaluate machine learning models that are trained on publicly
available vulnerable code snippets to see if they are indeed
biased towards some vulnerabilities or vulnerability categories.
We also acknowledge that the static code analysis can either

be done on source code or the byte/machine code; throughout
our analysis, we have not delved into the task of analyzing the
available byte code examples as we limited ourselves only to
the publicly available and reviewed code snippets.
Practitioners and researchers can use our work as a source

of information on where to find openly available data to
perform machine learning experiments. We also highlight
the limitations of the currently existing data. In particular,
we observe that many vulnerable code snippets exist for
the C, C++, Java, and C# programming language, while
other programming languages, e.g., Python and Rust lack a
good number of vulnerable samples to carry out meaningful
experiments.

31Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

V. CONCLUSION AND FUTURE WORK

In cybersecurity and secure software development, novel
methods that improve the security of applications are highly
desirable. Securing software development is an essential topic
for the industry as several cybersecurity standards require it.
One possible way to achieve such compliance is using machine
learning algorithms to identify vulnerabilities in software, as
academia has demonstrated.
We expect that static code analysis using machine learning

will become an essential part of future software development,
in particular, using deep learning algorithms. We foresee that
the developed tools will be integrated into existing Continuous
Integration / Continuous Deliver (CI/CD) pipelines.
In this work, we explore freely available only databases

containing vulnerable code snippets for different programming
languages, as a means to train our machine learning algorithm.
In particular, we focus on databases where the code snippets
are categorized by a standard vulnerability classification - the
common weakness enumeration from MITRE.
It is known that a large amount of high-quality data is

needed to train these algorithms, in order to achieve a good
detection rate. Our work shows that the number of freely
available code snippets that can be used to train machine
learning algorithms strongly depends on the programming
language. Even for programming languages for which a large
amount of snippets exist, these are not evenly distributed
depending on the type of vulnerability classification. This
presents a huge challenge to the field, as a non-uniform
distribution certainly causes a bias in the trained model. Our
results are in line with the authors’ expectation and experience
in secure coding field, and with standardized secure coding
guidelines.
Furthermore, we observed that exploring a data set from

different perspectives is essential, particularly in understanding
the amount of existing data and its quality. Exploring the data
set allows understanding it from different angles and avoiding
possible pitfalls when training machine learning algorithms.
In further work, we will intend to implement a machine

learning algorithm to detect vulnerabilities in C# code. We
will aim to study the performance of such algorithm in rela-
tion to existing open-source static application security testing
tools. The authors would also like to explore more simple
criteria than the vulnerability type, in particular on whether
the algorithm is simply vulnerable or not.

References

[1] The MITRE Corporation, “Common Vulnerabilities and Enumeration
Security Vulnerability Database.” https://www.cvedetails.com. [re-
trieved July, 2022].

[2] AV-TEST, “Malware statistics and trends report: AV-TEST.” https:
//www.av-test.org/en/statistics/malware/. [retrieved July, 2022].

[3] C. Flanagan et al., “Extended static checking for java,” in ACM
SIGPLAN Notices, vol. 37, 05 2002.

[4] Y. Xie and A. Aiken, “Context- and path-sensitive memory leak detec-
tion,” in ACM Sigsoft Software Engineering Notes, vol. 30, pp. 115–
125, Association for Computing Machinery, 09 2005.

[5] K. Karakaya and E. Bodden, “Sootfx: A static code feature extraction
tool for java and android,” in 2021 IEEE 21st International Work-
ing Conference on Source Code Analysis and Manipulation (SCAM),
pp. 181–186, 2021.

[6] E. Ersoy and H. Sözer, “Extending static code analysis with application-
specific rules by analyzing runtime execution traces,” in Computer
and Information Sciences (T. Czachórski, E. Gelenbe, K. Grochla, and
R. Lent, eds.), pp. 30–38, Springer International Publishing, 2016.

[7] J. Vanegue, S. Heelan, and R. Rolles, “SMT solvers in software
security,” in 6th USENIX Workshop on Offensive Technologies (WOOT
12), USENIX Association, 08 2012.

[8] AquaSecurity, “tfsec.” https://github.com/aquasecurity/tfsec. [retrieved
July, 2022].

[9] SonarSource, “Sonarqube.” https://www.sonarqube.org. [retrieved
March, 2022].

[10] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[11] D. Fasel and A. Meier, Big Data: Grundlagen, Systeme und
Nutzungspotenziale, in English: Big Data: Fundamentals, Systems and
Potential Uses. Springer-Verlag, 01 2016.

[12] J. Tang, T. Ma, and Q. Luo, “Trends prediction of big data: A case study
based on fusion data,” Procedia Computer Science, vol. 174, pp. 181–
190, 2020. 2019 International Conference on Identification, Information
and Knowledge in the Internet of Things.

[13] Y. Sun, N. B. Agostini, S. Dong, and D. R. Kaeli, “Summarizing CPU
and GPU design trends with product data,” CoRR, vol. abs/1911.11313,
2019.

[14] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–
280, 1990.

[15] S. Chetlur et al., “cudnn: Efficient primitives for deep learning,” 2014.
[16] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:

Assisted discovery of vulnerabilities using machine learning,” in 5th
USENIX Workshop on Offensive Technologies (WOOT 11), USENIX
Association, 08 2011.

[17] H. Xue, S. Sun, G. Venkataramani, and T. Lan, “Machine learning-based
analysis of program binaries: A comprehensive study,” IEEE Access,
vol. 7, pp. 65889–65912, 2019.

[18] W. Niu et al., “Opcode-level function call graph based android malware
classification using deep learning,” Sensors, vol. 20, no. 13, p. 3645,
2020.

[19] A. Drewek-Ossowicka, M. Pietrołaj, and J. Rumiński, “A survey of
neural networks usage for intrusion detection systems,” Journal of
Ambient Intelligence and Humanized Computing, vol. 12, pp. 497–514,
2020.

[20] Intersoft Consulting, “General data protection regulation GDPR.” https:
//gdpr-info.eu. [retrieved July, 2022].

[21] Payment Card Industry, “Payment Card Industry Data Security
Standard PCI-DSS.” https://listings.pcisecuritystandards.org/documents/
PCI-DSS-v4_0.pdf. [retrieved July, 2022].

[22] T. Guzella and W. Caminhas, “A review of machine learning ap-
proaches to spam filtering,” Expert Systems with Applications, vol. 36,
pp. 10206–10222, 09 2009.

[23] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,” Journal of Machine Learning Research, vol. 7,
pp. 2721–2744, dec 2006.

[24] X.-S. Gan, J.-S. Duanmu, J.-F. Wang, and W. Cong, “Anomaly intrusion
detection based on PLS feature extraction and core vector machine,”
Knowledge-Based Systems, vol. 40, pp. 1–6, 2013.

[25] G. Tang et al., “A Comparative Study of Neural Network Tech-
niques for Automatic Software Vulnerability Detection,” CoRR,
vol. abs/2104.14978, 2021.

[26] GitHub Inc., “Github 2020 digital insight report.” [retrieved July, 2022].
[27] G. Disterer, “ISO/IEC 27000, 27001 and 27002 for information security

management,” Journal of Information Security, vol. 04 No.02, p. 9, 2013.
[28] Carnegie Mellon University, “SEI external Wiki.” https://wiki.sei.cmu.

edu. [retrieved July, 2022].
[29] MITRE, “Common weakness enumeration CWE.” https://cwe.mitre.org.

[retrieved July, 2022].
[30] Open Web Application Security Project, “OWASP Top Ten.” https://

owasp.org/www-project-top-ten. [retrieved July, 2022].
[31] International Organization for Standardization. https://www.iso.org. [re-

trieved July, 2022].

32Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

https://www.cvedetails.com
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://github.com/aquasecurity/tfsec
https://www.sonarqube.org
https://gdpr-info.eu
https://gdpr-info.eu
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://listings.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://wiki.sei.cmu.edu
https://wiki.sei.cmu.edu
https://cwe.mitre.org
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://www.iso.org

[32] International Electrotechnical Commission. https://iec.ch. [retrieved
July, 2022].

[33] Micro Focus, “Fortify Taxonomy: Software Security Errors.” https://
vulncat.fortify.com. [retrieved March, 2022].

[34] R. Jusoh et al., “Malware detection using static analysis in android:
a review of feco (features, classification, and obfuscation),” PeerJ
Computer Science, vol. 7, p. 522, 2021.

[35] K. Oguzhan, T. Gasiba, and A. Louati, “List Vulnerable Code Snippets.”
https://zenodo.org/record/7019175. Online, Accessed 24 August 2022.

[36] F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability Detection with Deep
Learning,” in 2017 3rd IEEE International Conference on Computer and
Communications (ICCC), pp. 1298–1302, 2017.

[37] N. Ziems and S. Wu, “Security Vulnerability Detection Using Deep
Learning Natural Language Processing,” CoRR, vol. abs/2105.02388,
2021.

[38] Z. Li et al., “Vuldeepecker: A deep learning-based system for vulnera-
bility detection,” CoRR, vol. abs/1801.01681, 2018.

33Copyright (c) IARIA, 2022. ISBN: 978-1-61208-996-6

CYBER 2022 : The Seventh International Conference on Cyber-Technologies and Cyber-Systems

https://iec.ch
https://vulncat.fortify.com
https://vulncat.fortify.com
https://zenodo.org/record/7019175

	INTRODUCTION
	RELATED WORK
	EXPERIMENT
	METHODOLOGY
	RESULTS

	DISCUSSION
	CONCLUSION AND FUTURE WORK
	References

