
WLBench: A Benchmark for WebLog Data

Ahmad Ghazal
Oracle Endeca

Oracle
El Segundo, USA

ahmad.ghazal@oracle.com

Alain Crolotte
Teradata Labs

Teradata
El Segundo, USA

alain.crolotte@teradata.com

Mohammed Al-Kateb
Teradata Labs

Teradata
El Segundo, USA

mohammed.al-kateb@teradata.com

Abstract — In this paper, we propose a benchmark for semi
structured data based on the concept of late binding. Our
proposed benchmark, called WLBench, uses weblogs as a use
case. We discuss the data model, the data generation, and the
queries. Furthermore, we present a proof of concept using
Teradata Aster platform.

Keywords-Benchmarking; Weblogs.

I. INTRODUCTION

Data is produced by increasing volumes of a variety of
data types (i.e., structured, semi-structured, and unstructured)
from sources that generate new data at a considerably high
rate (e.g., click streams captured in web server logs). Data
with the above described volume, variety, and velocity
properties is referred to as Big Data. Big Data provides
numerous new analytic and business intelligence
opportunities such as fraud detection, customer profiling and
churn, and customer loyalty analysis. There is a tremendous
interest in Big Data from academia, industry, and a large user
base. Several commercial and open source providers released
a variety of products to support Big Data storage, processing,
and analytics. As these products mature, there is a need to
evaluate and compare their performance..

There are a few benchmarks related to Big Data, e.g.,
YSCB [1], CALDA [2], GridMix [3] and PigMix [4]. For the
most part, these benchmarks are micro and component
benchmarks. BigBench [5] is perhaps the first end-to-end
Big Data benchmark. It is based on a retail store that sells
products online and in stores. However, handling of semi-
structured weblogs by BigBench is quite limited. In
particular, its specification assumes that the weblogs contain
a small number and predefined set of keys.

In this paper, we propose WLBench - a self-contained
benchmark for weblogs that mandates late binding. The
nature of weblogs applications makes it impossible to parse
the weblogs upfront and capture their content in a structured
form such as relational tables. In practice, weblogs can have
hundreds or even thousands of keys from which only a small
subset is used in queries. This makes it impractical to
produce a schema ahead of time. Weblog queries usually
involve a small number of well-defined keys which are
different for each query. Hence, each query has its own
schema that needs to be extracted before its execution. This

concept of query-specific schema situation is called late
binding. With late binding, data parsing cannot be done in
advance since the schema is not known at the time data is
acquired and each query has its own schema. Instead, it is
carried out for each query within the query context. For
example, a weblog of a retailer may have a few thousand
keys and, at the same time, a query like “find the top most
visited 10 products” only needs the product id information.
To execute such a query, product ids need to be extracted
from the weblogs and then passed over to an aggregate query
that counts the number of occurrences and picks the top 10
out of those.

The contributions of the design of WLBench benchmark
cover the data model, data generation, and queries. In
addition, we present a proof of concept using Teradata Aster
[6].

The rest of this paper is divided into the following sec-
tions. Section II presents the data model. Section III contains
a detailed description of the data generation requirements.
Section IV describes the queries used for the proof of
concept (POC). The POC is presented in Section V. Finally,
Section VI provides a conclusion together with future work
directions.

II. DATA MODEL

WLBench addresses the retail business problem
encountered by online vendors. Clicks are done by users of a
fictitious retailer having brick and mortar as well as online
stores. Users can be registered or guests and they visit the
site to browse products or make purchases.

The data model is basically a set of records where each
record captures a single click by a guest or a registered user.
Each record consists of a set of key-value pairs that describe
the corresponding click. For instance, a click by user “user1”
browsing some books on 10/21/2013 at 11:30 AM is
represented as follows:

userid=“user1”,productid=“books”,timestamp=“2013-10-

21- 11:30”, key3=”vslue3”, key5=”value5”.

Note that key3 and key5 in the above record are generic

keys to represent the keys that are not referenced by the
workload but are part of the weblog records.

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

III. DATA GENERATION

We designed and developed the corresponding
generation special-purpose procedure for generating
weblogs. The data generator features the following key
functionality. The first part of the data generation concerns
users and their associate information. It produces weblogs
for two groups of users - registered users and guests.
Registered users sign in to the system and browse and/or buy
products. The activity of a registered user is logged and
associated to the user id. Guest users can browse products
but are not allowed to purchase until they sign in and their
activities are logged in weblog entries with no values
assigned to user id. The ratio between registered users and
guests can be specified to the data generator.

Generally speaking the data generation produces key
value pairs. For each weblog entry, there are two sets of keys
(1) fixed (or known) keys and (2) random (or unknown)
keys. Fixed keys correspond to the set of attributes that are
used by the query workload. The list of fixed keys is userid,
itemid, webpageid, transactionid, and timestamp. The userid
field identifies the user currently browsing an item itself
identified by itemid on a webpage identified by webpageid.
The transactionid field is assigned a value only when a user
makes a purchase. The timestamp field marks the time at
which the user started the current browsing or purchasing
activity. The values of these keys are produced in a
meaningful way. Random keys have different data types with
values generated randomly and are labeled key1, key2,...,
etc. We set the pool of keys to be a 100 random keys and
average number of 20 keys per click. This supports the issue
we highlighted before about the huge number of keys in the
clicks.

The data generator has the intelligence of generating
weblog entries that are amenable to forming sessions.
Sessions are generated for registered users with an average
number of weblog entries per session that can be specified by
the user. For the proof of concept in this paper, the average
number of weblog rows per non-registered user is assumed
to be 4 times that of registered users. Further intelligence
exists in the data generator for the distribution of values of
known keys. In general, no representation is made as to what
weblog size should be used.

IV. QUERIES

For our proposed benchmark, we have selected the 10
queries included below in Figure 1 below. They are
expressed in English so that they can be implemented freely.
The queries represent some common analytics applied to
weblogs like market basket, shopping cart abandonment,
session information, and affinity analysis.

• Q1: Find the 10 most browsed products.
• Q2: Find the 5 products browsed the most and not

purchased.
• Q3: List users with more than 10 sessions. A session

is defined as a 10-minute window of clicks by a
registered user.

• Q4: Find the average number of sessions per
registered user per month.

• Q5: Find the average amount of time a user spends
on the retailer website.

• Q6: Find the top 10 products mostly viewed together
with a given product.

• Q7: Find the 5 products mostly viewed within a
month before a given product is purchased.

• Q8: For users who had products in their shopping
cart but did not check out, find the average number
of pages they visited during their session.

• Q9: Compare the average number of items
purchased registered users from one year to the
next..

• Q10: Perform affinity analysis for products
purchased together.

Figure 1. List of WLBench Queries

The proposed benchmark is geared toward both Data
Base Management System (DBMS) and Map Reduce (MR)
[7] engines. The query set addresses the strengths of both
paradigms since some of them can easily be implemented
using a declarative language such as SQL (Q1, Q2 and Q4),
while the other 7 queries require procedural constructs in
addition to a declarative language.

As part of a standard specification rule set, the
implementation will require that no initial tables be built
with a priori knowledge of the fields ahead of time. Queries
will need to be run on the raw data whether a table is created
within the query and dropped after the query results are
produced or whether the query is run on the file itself or a
table with all the data fields lumped together.

V. PROOF OF CONCEPT

WLBench can be executed by traditional DBMS, MR
engines like Hadoop [7], or a mix of both. There is no
requirement on how click data is captured and how workload
queries are executed. A system under test can choose any
method to store clicks as long as no parsing is done
beforehand. A DBMS may capture clicks as a table with a
single column for the record text. Hadoop systems can store
clicks in HDFS. Workload queries can be executed in
declarative languages such as SQL [8], HQL [9] & Pig [4].
As mentioned before, some queries require procedural
constructs and those can be done by User-Defined Functions
(UDF) [10] or MR programs.

We executed WLBench on the Teradata Aster DBMS to
illustrate the feasibility of the proposed benchmark. Clicks
were captured using a simple table ClickTable where each
row captures one click. The key-value text of each click is
stored in a column called Payload of ClickTable. Payload is
defined as a long variable character field. The workload
queries were written using SQL-MR syntax which has both
the declarative and procedural constructs to cover all the
queries. Below is an example of a simplified SQL-MR
syntax for Q3.

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

SELECT userid, count(*) as cnt
FROM Sessionize (parser("userid,timestamp")
ON ClickTable)
GROUP BY userid HAVING cnt > 10;

Late binding is illustrated by the MR function parser

which parses ClickTable and forms a table with two columns
namely: userid and timestamp. The output of parser is
streamed out to another MR function Sessionize which fnds
the 10-minute sessions based on clicks by the same user.
Finally, a count, grouped by userid is done on top of the
result of the Sessionize function.

VI. CONCLUSION AND FUTURE WORK

In this paper, we laid the foundation to benchmark semi-
structured data based on the late binding concept. We
proposed WLBench that uses weblogs as a use case. We
discussed data model, data generation, and queries and
presented a proof of concept using Teradata Aster platform.

In the future, we plan on providing a full specification
and a benchmark kit implemented on Aster Express, a
Virtual Machine (VM) for Teradata Aster available online
[6].

REFERENCES
[1] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.

Sears, “Benchmarking cloud serving systems with ycsb,” in SoCC
’10. New York, NY, USA: ACM, 2010, pp. 143–154. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807152

[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S.
Madden, and M. Stonebraker, “A comparison of approaches to
large-scale data analysis,” in SIGMOD ’09. NewYork, NY, USA:
ACM,2009,pp.165–178.
http://doi.acm.org/10.1145/1559845.1559865

[3] GridMix.GridMixbenchmark:
http://hadoop.apache.org/docs/r1.2.1/gridmix.html [retrieved: July
2014]

[4] PigMix.Benchmark:
https://cwiki.apache.org/confluence/display/PIG/PigMix
[retrieved: July 2014]

[5] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-
A. Jacobsen, “Bigbench: towards an industry standard benchmark
for big data analytics,” in SIGMOD ’13. New York, NY, USA:
ACM,2013,pp.1197–1208.[Online].
http://doi.acm.org/10.1145/2463676.2463712

[6] Teradata. Teradata Aster: http://www.asterdata.com/ [retrieved:
July 2014]

[7] Hadoop. MapReduce: http://wiki.apache.org/hadoop/MapReduce
[retrieved: july 2014]

[8] Wikipedia. SQL: http://en.wikipedia.org/wiki/SQL [retrieved: July
2014.]

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-358-2

DATA ANALYTICS 2014 : The Third International Conference on Data Analytics

