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Abstract— Analyzing and modelling the spreading of any 

information through a social network (SN) is an important issue 

in social network analysis. The proposed solutions for this issue 

do not only help with observing the information diffusion, but 

also serve as a valuable resource for predicting the 

characteristics of the network, developing network-specific 

advertising, etc. Up-to-date approaches include probabilistic 

analysis of information spreading and the information cascade 

models. In this paper, we propose a hybrid model, which 

considers an information spreading model, and combines it with 

cascades and social behavior analysis. We propose a new hybrid 

usage approach to represent a real-world modelling for the 

information spreading process. 

Keywords-social network analysis; information spreading; 

information cascades. 

I.  INTRODUCTION  

Information spreading on social networks (SNs) is getting 

more popular in social network analysis. Thanks to the 

developing technology, information has become quickly 

accessible, especially via SNs. This situation creates new 

domains on SNs, such as advertising, marketing, etc. Hence, 

it is important to have an information spreading model for 

predicting the effect of the information on SNs. 

In the literature, there are many models that either support 

or modify the Susceptible – Infected – Removed (SIR) model 

[1], [2], [3] or adopt it to new approaches. We selected some 

of the most current ones and presented them in Section 3. 

However, it is hard to find a model that matches real-life 

scenarios because SNs are dynamic platforms and SN users 

act with their emotions. Therefore, models should also 

represent SN users’ real behaviors. Developing such a model 

serves as a solution to problems in many areas, like security. 

For example, in the case of any malicious information existing 

in the network, we can predict its spreading area and pattern. 

In this way, we can take precautions against a possible crisis. 

These are the reasons for which we would like to propose a 

real-world information spreading model.  

In this paper, we present out work in progress as well as 

our opinion. The existing models do not provide a complete 

solution to reflect real SN user’s decisions for spreading the 

information. We point out the deficient points on proposed 

studies and propose an alternative hybrid model.  

The paper is organized as follows. Section 2 proposes 

some of the current requirements for a realistic information 

spreading model. Section 3 gives an overall explanation of the 

basis information spreading model “SIR” in the literature and 

its current applications, with some modifications and new 

approaches. Section 4 includes our proposed hybrid solution 

for a real-world modelling of information spreading. We 

conclude the paper and outline our future research directions 

in Section 5. 

II. IDENTIFIED REQUIREMENTS OF A REALISTIC 

INFORMATION SPREADING MODEL 

As SNs have a dynamic characteristic, it is hard to model 

the spreading of information only with a probabilistic 

approach. Current information spreading models should 

focus on a user-specific approach and consider SN users’ 

behavioral effects, because SN users shape the diffusion of 

any information on the network. 

Based on our research, we noted some requirements, as 

listed below, for a realistic information spreading model with 

behavioral analysis: 

• Popularity of the source: Popularity level of the 

information source affects SN users’ decisions on 

whether to spread that information or not. This factor 

can also be related with the trustworthiness and 

credibility of the source. 

• Strength of relations among users: Strong 

relations/features (such as similar political views, 

education, gender, etc.) among SN users cause 

information to spread faster. 

• Content of the information: If a SN user gives 

importance to the content of any information, he/she 

is more likely to spread it. 

• Personal interests: If a SN user’s interests are related 

to the information, he/she becomes more likely to 

spread it. 

• Privacy preferences: Privacy preferences of a SN 

user in his/her profile have an impact on information 

spreading. For example, if the user is conservative 

about his/her privacy, then he/she is more likely to 

abstain from spreading information. 

Each mentioned requirement affects the information 

spreading on SNs with a probability. However, the value of 

this probability may vary according to each user. Hence, 

developing models for information spreading should take 

into account these real-world conditions. 
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III. INFORMATION SPREADING MODELS 

In SNs, information spreads via posts from one user to 

another. This spreading continues until it loses actuality and 

attractiveness to users. In literature, researchers proved that 

the information spreading process and epidemics resemble 

each other [4]. Hence, the SIR model reflects epidemics. We 

present this model in the following section and then provide 

an overview of up-to-date information spreading models. 

A. SIR Model 

The SIR Model is based on epidemics. Epidemics spread 

for a time and then lose their effect. The size of the area 

affected by the epidemics depends on population size.  It is 

obvious that the probability of the disease spreading in a 

crowded area is higher than in a deserted area. Hence, 

population size is an important determinant in the spreading 

process of epidemics [5]. Similarly, in SNs, a post spreads 

quickly if the owner of the post has lots of connections.  

In epidemics, time evolution of a disease is managed by a 

threshold; information spreading also has a threshold theorem. 

The Threshold Theorem of Kermack–McKendrick [1], [2] 

defines the evolution process of epidemics. This theorem 

models the population with three types: Susceptible (S), 

Infected (I), and Removed (R), which constitutes the SIR 

model. Each variable/state refers to the number of people in 

the related group. Susceptible ones are ignorant, which means 

that they are not yet infected but have a potential to be an 

Infected. Infected ones have the disease and they can infect 

the Susceptible ones. Removed ones have recovered from the 

disease and stopped the spreading process.  

 The theorem consists of two differential equations which 

define transitions between S, I and R states [1], [2]: 

• Transition from Susceptible state to Infected state, 

• Transition from Infected state to Removed state.  

A critical point here is to model the transition from the 

Infected state to Removed. Researchers first proposed a 

counter value (ctr) to control this process [4], [6]. The main 

idea behind this value is that it counts the number of users who 

became infected, and it stops spreading when this number 

reaches to the ctr value. The value is determined before the 

spreading process and is valid for each user in the network. 

Unsurprisingly, if we choose a big value for ctr, information 

reaches a bigger portion of the network, but more rounds are 

required to complete the spreading process. Eventually, 

ctr controls the termination of the spreading process and the 

size of spreading area in a network.  

In addition, information can be observed in two different 

ways within a spreading process; (i) static information and 

(ii) dynamic information. During the whole spreading 

process, if the information does not have any revision, it is 

accepted as static information. In the contrary case, it 

becomes dynamic information [7]. When we consider this 

concept in SNs, users may revise someone’s post and publish 

it as a new post, so information in SNs is dynamic. Hence, 

we need some modifications to the SIR model, or we need 

new approaches to model the current information spreading 

processes. 

B. Current Information Spreading Models 

Although most current studies consider the SIR model as 

a baseline and modify it according to today’s requirements, 

some of them also propose new approaches, such as cascades. 

Information cascades allow us to predict how well the 

information will spread. This section first summarizes the 

studies that focus on the adaptation of the SIR model and then 

describes an information spreading model with cascades. We 

do not provide an algorithmic comparison between the 

current studies, because our aim is not to find an algorithm 

which provides the best performance. Instead, we focus on 

how well the proposed algorithms represent real-world 

circumstances. In this study, we consider the effectiveness of 

the algorithms as the achievement level of realistic 

modelling. 

Bao et al. [8] criticizes the SIR model in terms of the idea 

behind the Infected state. They propose that an infected user 

does not have to believe/accept the information; may also 

oppose that information. Hence, they divided the infected 

state into two distinct ones: (i) positive infected (supports the 

information) and (ii) negative infected (opposes the 

information). They named this model Susceptible – Positive 

Infected – Negative Infected – Removed (SPNR). According 

to the SPNR model, when an ignorant user receives 

information from a positive/negative spreader, becomes a 

new positive/negative spreader with a probability value [8]. 

In the same way, there is a probability that a positive spreader 

may affect a negative spreader or vice versa. If a 

positive/negative spreader gets the information from a stifler 

(removed user), becomes a stifler, also with a probability. 

They define the transition from a spreader state to a removed 

one with a spreading threshold. This model is an enhanced 

version of SIR that takes into account users’ decisions to 

believing the information. However, they only use this 

decision as a probabilistic value; they do not consider the 

mentioned requirements.  

Serrano et al. [9] consider that a SN user may have a first 

impression about an information before being infected by 

other users. In this model, they modified SIR and proposed 

the following four states: (i) neutral (initial state), (ii) infected 

(believe the information), (iii) vaccinated (believe the anti-

information before being infected) and (iv) cured (believe the 

anti-information after being infected). According to this 

model, all users are initially neutral. Then, they assign some 

of them as infected. Infected ones start to infect their neutral 

neighbors with a given probability. To simulate cured or 

vaccinated ones, they define a time as delay. At that time, a 

randomly selected infected user starts to spread anti-

information, which says the opposite of the original 

information in the network. Hence, they try to cure or 

vaccinate their neighbors with a probability of accepting or 

denying (probAcceptDeny). Finally, cured and vaccinated 
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ones try to cure or vaccinate their neighbors with the value of 

probAcceptDeny. This model uses an agent-based modelling 

so that it can reflect the real world better than SIR. However, 

it is still insufficient to be applied to SNs today. 

Cordasco et al. [10] consider the infected state of the SIR 

model from a different aspect. They propose that a user may 

not immediately start spreading just after it is infected; they 

define a new state for this situation: “aware”. They claim that 

there should be a threshold that controls the transition from 

being aware to start spreading. This model resembles the 

Susceptible – Exposed – Infected – Removed (SEIR) 

epidemic model [11], which differs from SIR model with the 

additional “Exposed” state. This state contains people who 

had contact with an infected user but have not yet started to 

infect other people. Similarly, Cordasco et al. [10] propose 

three states: (i) ignorant, (ii) aware and (iii) spreading. As 

usual, all users are ignorant at the beginning. When an 

ignorant user takes information from a spreader, it becomes 

aware. To be a spreading one, any aware user should take the 

information from more than a pre-defined number (threshold 

value) of spreading users. This model has no state for 

removed, but they define a termination rule in the original 

paper [10]. Although this model considers the transition 

process from being aware to start spreading, the model is not 

sufficient to represent today’s information spreading process. 

Tong. et al. [12] describes an information cascade model 

in SNs. First, they provide an extensive study on cascade 

scales, the scope of the cascade subgraphs, and topological 

attribute of spread tree. Then, based on the evaluation results, 

they analyze the spread of the user’s decisions for city-wide 

activities. Decisions include “want to take part in the activity” 

and “be interested in the activity”. This study introduces three 

mechanisms to use for making a decision:  

• Equal probability: A user has an equal probability 

to make any of two decisions. 

• Similarity of users: Similarity of users is the 

criteria to make a decision for any user. 

• Popularity of users: Popularity of users affects 

users’ decision. 

Experimental results show that the popularity of users is 

an important criterion for information spreading. Although 

this study evaluates some user-specific parameters, such as 

popularity of the information source and similarity of users 

to model information spreading on SNs, it does not satisfy all 

the requirements proposed in Section 2 and it does not 

consider an epidemic approach.  

When we examine the existing studies, we notice that most 

of them consider a behavioral effect/model on the 

information spreading process and so modify the SIR model 

to represent this effect in some way. However, they do not 

propose the factors that affect this behavioral model; they just 

take it as a probabilistic value for the behavior decision. 

Indeed, there are many factors (some of which were proposed 

in Section 2 as the requirements) that affect SN users’ 

behavior on the information spreading process, and they are 

completely interrelated. Hence, we need to consider them all 

as a complete impact on users’ decisions for the spreading 

process. 

IV. A HYBRID INFORMATION SPREADING MODEL 

We propose to develop a hybrid model, which considers 

the models of Bao et al. [8] and Cordasco et al. [10] but 

modifies their threshold idea by using information cascade 

characteristics to meet requirements mentioned in Section 2. 

Novelty comes from using such a hybrid model, which 

combines epidemic models with up-to-date approaches like 

cascades to represent behavioral effect on SNs. Considering 

this effect together with the proposed requirements is so 

important to observe information spreading on SNs because 

it affects users’ decision on spreading the specific 

information or not. By using this approach, we can make 

more realistic transitions between different states of our 

model. In addition, we will use the idea of Bao et al. [8] 

regarding the infected state. We will also divide our infected 

state into two: positive infected and negative infected, 

because there is a probability that a user will reject an 

information. 

Figure 1 shows the state transitions of our model. The 

proposed model includes the following properties: 

• There will be five states: (i) ignorant (user is not aware 

of the information), (ii) aware (user is aware of the 

information but he/she has not started to spread it), 

(iii) positive infected (user believes the information 

and spreads it) (iv) negative infected (user opposes the 

information and tries to convince other people in this 

way) and (v) removed (user stops spreading). 

 
    Figure 1. A Hybrid Information Spreading Model 

 

• Initially, we assume that all users are ignorant. Then, 

some of them are selected as positive infected and 

some as negative infected. This selection may be 

important for some domains. For example, if we are 

working in the advertising or marketing sectors, it is 

important to reach more users in a short time. Hence, 

the selection process of initial positive/negative 

infected users should be performed according to the 
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topology of the network. After this selection, 

information starts to be spread in the network.  

• If an ignorant user takes the information from a 

positive/negative infected user, he/she becomes 

aware. After being an aware, the user passes to one of 

three possible states: (1) he/she may believe that the 

information is true and pass to a positive infected state 

via function “t(𝑎𝑃𝐼): transition from aware state to 

positive infected state”, (2) he/she may refuse the 

information and decide to infect others negatively by 

passing to a negative infected state via function 

“ t(𝑎𝑁𝐼) : transition from aware state to negative 

infected state”, and (3) an aware user may prefer not 

to infect any other user either positively or negatively. 

In this case, that user may pass directly to the removed 

state via transition function t(𝑎𝑅).  
• After being a positive/negative infected, there may be 

a transition between those two infected states, which 

can be controlled with “t(𝑁𝐼𝑃𝐼): transition function 

from negative infected state to positive infected state” 

or “t(𝑃𝐼𝑁𝐼): transition function from positive infected 

state to negative infected state.” Alternatively, they 

may pass to removed state via “ t(𝑁𝐼𝑅) : transition 

function from negative infected state to removed 

state” and “t(𝑃𝐼𝑅): transition function from positive 

infected state to removed state”.  

• All transition functions will have a threshold value, 

including the effect of cascading mechanisms and 

behavioral effects to meet all five requirements. 

Hence, these functions will depend on a user-specific 

approach. We will first analyze each user based on the 

requirements and define user-specific behavioral 

effect values for them (training phase). This means 

that each SN user will have a behavioral impact value 

and this value will be used in the information 

spreading process. Hence, users will make a decision 

based on this impact value for any transition in our 

model.    

Consequently, we will base our hybrid model on the 

modified version of the SIR model and generate a new 

formulation by also using information cascades and users’ 

social behavior analysis. To verify our model, we will 

implement both referred models [8], [10] and our proposed 

model in a real SN dataset to observe effectiveness, and then 

we will compare them in terms of success and failure rates on 

real-world modelling. 

V. CONCLUSION 

In this paper, we discussed the main information spreading 

model SIR and the current modifications of it. We also 

emphasized that information cascades are important to adjust 

information spreading models to SNs to create more realistic 

structures. Hence, we are working on developing a hybrid 

information spreading model which can meet the presented 

requirements and dynamism of SNs. Because users’ decisions 

on spreading any information also depend on social 

behavioral factors, we will include behavioral analysis of SN 

users in our model. What we expect from this research is that 

anyone will be able to use our model to predict the spreading 

area and pattern of an information so that they can measure 

the effect of it on SNs. Additionally, this model can be used 

for interaction analysis among SN users. 

As this paper proposes our preliminary work, we roughly 

provided our model. We will continue with the formulation, 

validation, and simulation phases of the model. 
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