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Abstract—Oversharing exposes risks such as improved tar-
geted advertising and sensitive information leakage. Requiring
only the bare minimum of data diminishes these risk factors
while simultaneously increasing the privacy of each individual
user. Using anonymized data for finding communities enables
new possibilities for large organizations under strong data pro-
tection regulations. While related work often focuses on privacy-
preserving community detection algorithms including differential
privacy, in this paper, the focus was set on the anonymized
data itself. Channel membership information was used to build
a weighted social graph, and groups of interest were identified
using popular community detection algorithms. Graphs based on
channel membership data satisfactorily resembled interest groups
within the network but failed to capture the organizational
structure.

Keywords—Data Privacy. Open Data. Large Organizations.
Clustering.

I. INTRODUCTION

It is estimated that a median of 300 terabytes (TB) of data
is generated by large organizations on a weekly basis [1]. The
data is generated from the use of various methods of communi-
cation (chat, email, face-to-face, phone, short message service,
social media) between organization members, data sharing
tools, internal processes, different hardware units (mobile
phones, tablets, laptops, etc.), and more [1]. Publishing this
data to be used for analysis and research has been a excellent
source of information for researchers, promoting innovation
and advancements in various areas while facilitating coop-
eration between diverse groups [2][3]. In this context, the
term used to describe data available freely for anyone to
use for analysis and research is open data [4]. There have
been different initiatives for collaboration based on open data,
such as the Netflix Prize, OpenStreetMap, CERN (Conseil
européen pour la recherche nucléaire) Open Science Initiative,
Open City Initiatives, and more [2][4][5]. The purpose of
these projects has been to improve existing technologies and
algorithms and facilitate innovation and collaboration [2].
Besides these projects, organizations internally analyze user

behavior and user data and create new or improve existing
services, usually relying on continuous user surveying and
behavior tracking while invading their privacy [6].
Sharing of personal data that contains identifiers, quasi-

identifiers, and sensitive attributes has been identified as a
common issue with similar projects [2]. Sensitive and personal
data should not be accessed freely; organizations have to
protect and secure it. To achieve this, organizations usually
secure and do not release this type of data. By doing so,
possible benefits available from private data are not explored.
To avoid privacy breaches and to publish organizational data,
multiple privacy-preserving techniques for data were devel-
oped. Most of them are based on pseudo-anonymization or full
anonymization of data [7]. Utilization of anonymized private
data gave rise to privacy-preserving data analytics methods.
These methods offer a way to utilize private data safely, by
considering privacy requirements [8].
CERN always stood for principles of open data and open

science, facilitating research and development that is col-
laborative, transparent and reproducible and whose outputs
are publicly available [5]. One such initative is the CERN
anonymized Mattermost data set, which contains anonymized
user data, relationships between users, organizations, building,
teams and channels. The goal of this data set is to facilitate
innovation for channel recommendations, user clustering, fea-
ture extractions, and others [9].
This research aims to analyze the provided CERN data

set and determine privacy aspects and attributes that can be
used for privacy aware clustering methods. Based on the
observations stated above, more specifically, the main research
questions are:

• RQ1: Which user information can be extracted from the
anonymized Mattermost organizational open data?

• RQ2: Is it possible to detect user groups without invading
user privacy?

The remainder of this paper is organized as follows: Section
II covers the literature overview and discusses current topics
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in privacy-preserving data mining, open data, and clustering
methodologies. In Section III, we discuss and describe the
CERN Mattermost data set. Section IV focuses on the find-
ings from the data set and explains the usage of clustering
methodologies on the previously mentioned data. We conclude
the work in Section V with the discussion of the research
questions and future works.

II. BACKGROUND AND RELATED WORK

A. Networks and Graphs
Networks are defined as interconnected or interrelated

chains, groups, or systems and can be found in a variety of
areas, such as the World Wide Web, connections of friends,
connections between cities, connections in our brain, power
line links, and citation links. In essence, a network is a set of
interconnected entities, which we call nodes, and their connec-
tions, which we call links. Nodes describe all types of entities,
such as people, cities, computers, Web sites, and so on. Links
define relationships or interactions between these entities, such
as connections among people, flights between airports, links
between Web pages, connections between neurons, and more.
A special type of network is a social network. It is a group
of people connected by a type of relationship (friendship,
collaboration, or acquaintance) [10].
The data structure commonly used for the representation of

networks is called a graph. A graph is defined as a set of
connected points, called vertices (or nodes) that are connected
via edges also called links. The set of vertices is denoted as
V = {v1, v2, v3, . . . }, while the set of edges is denoted as
E = {e1, e2, e3, . . . }. The resulting graph G consists of a set
of vertices V and a set of edges E that connect them and can
be written as G = (V,E). Two vertices that are connected by
an edge are called adjacent or neighbors and all vertices that
are connected to a vertex are called neighborhood [11].
Graphs have a variety of measures associated with them.

These measures can be classified as global measures and nodal
measures. Global measures refer to the global properties of a
graph, while nodal measures refer to the properties of nodes.
The most important measures are degree measures, strength
measures, modularity measures, and clustering coefficient
measures. The degree measure is a nodal. It is the sum of
edges connected to a node. The sum of the weights of all
edges connected to a node is defined as the strength measure,
while the extent to which a graph divides into clearly separated
communities (i.e., subgraphs or modules) is described by
modularity measures [12].

B. Clustering Methods
Fundamental tasks in data mining are clustering and clas-

sifications, among others. Clustering is applied mostly for
unsupervised learning problems, while classification is used
as a supervised learning method. The goal of clustering is
descriptive, and that of classification is predictive [13].
Clustering is used to discover new sets of groups from sam-

ples. It groups instances into subsets using different measures.
Measures used to determine similar or dissimilar instances

are classified into distance measures and similarity measures.
Different clustering methods have been developed, each of
them using different principles. Based on research clustering
can be divided into five different methods: hierarchical, parti-
tioning, density-based, model-based clustering, and grid-based
methods [13][14].
Hierarchical Methods - Clusters are constructed by recur-

sively partitioning items in a top-down or bottom-up fashion.
For example, each item is initially a cluster of its own, then
clusters are merged based on a measure until desired clusters
are formed [14].
Partitioning Methods - These methods typically require a

pre-determined number of clusters. Items are moved between
different pre-determined clusters based on different metrics
(error-based metrics, similarity metrics, distance metrics) until
desired clusters are formed. To achieve the optimal cluster
distribution extensive computation of all possible partitions
is required. Greedy heuristics are used for this computation
because it is not feasible to calculate all possible partitions
under time constraints [13].
Density-Based Methods - These methods are based on the

assumption that clusters are formed according to a specific
probability distribution. The aim is to identify clusters and
their distribution parameters. The distribution is assumed to
be a combination of several distributions [15].
Model-based Clustering methods - Unlike the previously

mentioned methods, which cluster items based on similarity
and distance metrics, these methods attempt to optimize the fit
between the input data and a given mathematical model [16].
Grid-based methods - The previous clustering methods

were data-driven, while grid-based methods are space-driven
approaches. They partition the item space into cells discon-
nected from the distribution of the input. The grid-based
clustering approach uses a multi-resolution grid data structure.
It groups items into a finite number of cells that form a grid
structure on which all of the operations for clustering are
performed. The main advantage of the approach is its faster
processing time [17].

C. Open Data and Privacy-aware Data Analysis
Open Data describes data available without restrictions for

anyone to use for analysis and research [4]. Open innovation
is defined as the use of purposive inflows and outflows of
knowledge to stimulate internal innovation, while increasing
the demands for external use of innovation, respectively. The
goal of open innovation and open data is to increase account-
ability and transparency while providing new and efficient
services [18].
Privacy-friendly analytics is a set of methods for collecting,

measuring, and analyzing data respecting individual privacy
rights. These methods allow for data-driven decisions while
still giving individuals control over personal data. Restricting
access to the data could be found to restrict to support
of various kinds of data analysis. Adopting approaches of
restricting information in the data so that they are free of
identifiers and free of content with a high risk of individual
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identification. Techniques for releasing data without disclosing
sensitive information have been proposed for various applica-
tions. Interest in developing data mining algorithms that are
privacy-preserving has been growing over the years [19].

III. DATASET

The Mattermost data set was extracted from an internal
Postgre SQL (Structured Query Language) database and is
accessible as JSON (JavaScript Object Notation) formatted
file [9]. It includes data from January 2018 to November
2021 with 21231 CERN users, 2367 Mattermost teams, 12773
Mattermost channels, 151 CERN buildings, and 163 CERN or-
ganizational units. The data set states the relationships between
Mattermost teams, Mattermost channels, and CERN users, and
holds various pieces of information, such as channel creation,
channel deletion times, user channel joining, and leave times.
It also includes user-specific information, such as building and
organizational units, messages and mention count. To hide
identifiable information (e.g., Team Name, User Name, Chan-
nel Name, etc.) the data set was anonymized. The anonymiza-
tion was done by omitting attributes, hashing string values,
and removing connections between users/teams/channels.

Team Member
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user_id

delete_at

Team

team_id (PK)

create_at

delete_at

invite_only

email_domain_restrictedUser

user_id (PK)

building
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channel_id (PK)

team_id

create_at
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channel_id

user_id
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Fig. 1. CERN Mattermost data set Entity Relation Diagram

The entity relationship diagram shown in Figure 1 describes
the entities with data attributes and relationships between the
entities.

A. Data Transformation
The data set was analyzed and prepared to filter out su-

perfluous teams, channels, and users. Based on the analysis,
approximately 22.6% teams consist of only one person and can
be removed as they form isolated nodes that do not contribute
to the community structure.
Table I shows the five-number summary of the count of

members within teams with more than one member. The
five-number summary consists of three quartiles, Q1, Q2 or
median, and Q3, that divide the data set into two parts with
the lower part having 25%, 50% and 75% of the data set’s
values, respectively. The other two values of the five-number
summary consist of the minimum and the maximum value of
the data set.

Using the quartiles from the five-number summary, the
lower and upper team size fences can be calculated, which act
as a boundaries above or below which teams are considered
outliers. The upper fence can be calculated by UpperFence =
Q3 + 1.5 ∗ IQR, where IQR stands for interquartile range.
IQR is defined as IQR = Q3 −Q1. This results in an upper
bound of 51.5.

TABLE I
FIVE-NUMBER SUMMARY OF TEAMS WITH MORE THAN ONE

MEMBER.

Minimum Q1 Median Q3 Maximum
Team Members 2 4 10 23 4512

When counting the number of teams above that threshold,
approximately 87.7% of teams have less than 52 members. The
lower fence is calculated by LowerFence = Q1− 1.5 ∗ IQR
and yields −24.5. Since we do not have negative team sizes,
we can limit the lower bound to 2, as team sizes of 1 are
isolated nodes.

B. Graph Creation

Channel membership relations were used to generate graphs
that act as a basis for community detection and user group
analysis. A weighted edge between two users is added if
they share the same channel, and the weight of the edge is
increased for each additional channel they share. The idea
behind channel membership for the graph creation is that team
members within CERN join channels related to their orga-
nization and work interest. Consequently, the more channels
members have in common, the more likely they belong to
the same organizational structure. The goal is to find the best
communities that resemble CERN’s organizational structure
and communities.

IV. FINDINGS AND DISCUSSION

Following the procedure described in Section III-B with an
upper team threshold of 52, a weighted graph was produced.
The igraph’s implementation of the Large Graph Layout
(LGL) with 2000 iterations was used to visualize it [20].
LGL was used as it creates good layouts for large number
of vertices and edges and produces well-observable clusters.
The produced graph is displayed in Figure 2.

Fig. 2. Graph based on channel membership relationship.
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TABLE II
RESULTS INCLUDING FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN MATTERMOST TEAMS AND FOUND COMMUNITY WITH

DIFFERENT ALGORITHMS. VALUES WITHIN COLUMNS REPRESENT MEAN AND STANDARD DEVIATION OVER 25 ITERATIONS.

Algorithm Communities Modularity Minimum [%] Q1 [%] Median [%] Q3 [%] Maximum [%]
1. Community structure via greedy
optimization of modularity [21]

41 ± 0 0.75 ± 0.00 7.85 ± 0.00 23.43 ± 0.00 45.24 ± 0.00 66.67 ± 0.00 100 ± 0.00

2. Infomap community finding [22] 414 ± 3 0.71 ± 0.00 18.13 ± 1.18 46.52 ± 0.19 61.75 ± 0.68 75.97 ± 0.61 100.00 ± 0.00
3. Finding communities based on
propagating labels [23]

463 ± 8 0.70 ± 0.00 15.68 ± 2.23 48.18 ± 1.07 61.25 ± 0.81 75.08 ± 0.28 100.00 ± 0.00

4. Community structure detecting
based on the leading eigenvector of
the community matrix [24]

43 ± 0.00 0.67 ± 0.00 5.85 ± 0.00 15.17 ± 0.00 26.92 ± 0.00 52.48 ± 0.00 95.65 ± 0.00

5. Finding community structure of
a graph using the Leiden algorithm
[25]

1290 ± 3 0.64 ± 0.00 2.04 ± 0.00 20.00 ± 0.00 42.86 ± 0.00 66.67 ± 0.00 100.00 ± 0.00

6. Finding community structure by
multi-level optimization of modu-
larity [26]

40 ± 2 0.78 ± 0.00 8.80 ± 0.77 14.79 ± 1.12 21.75 ± 1.64 50.87 ± 6.80 86.51 ± 6.57

7. Computing communities using
random walks [27]

344 ± 0 0.72 ± 0.00 8.33 ± 0.00 55.56 ± 0.00 66.67 ± 0.00 80.00 ± 0.00 100.00 ± 0.00

8. Community detection based on
statistical mechanics [28]

25 ± 0 0.77 ± 0.00 8.10 ± 0.71 11.23 ± 0.79 14.06 ± 1.05 17.700 ± 1.39 31 ± 8.51

To evaluate community detection algorithms and their ef-
fect on different modularity scores, the following ones were
assessed:

Fig. 3. Communities detected by using the label propagation algorithm. A
clear separation between individual cluster in the outer part of the graph can
be observed.

Out of all available algorithms, algorithms 2, 3, and 7 deliv-
ered the best performances concerning modularity, similarity,
and communities, as shown in Table II. Calculating the com-
munity structure with the highest modularity value (commu-
nity_optimal_modularity) and community structure detection
based on edge betweenness (community_edge_betweenness)
were not feasible in practice, since the runtime was too long.
Figure 3 displays the result of the label propagation algorithm
applied to the previously created graph. Each community
gets assigned a unique color, so the separation of individual
clusters can be observed. The label propagation algorithm
finds communities with slightly less similarity than the in-

fomap algorithm, which performs best concerning similarity
measurement. However, it finds many and much more detailed
communities.

Figure 4 represents the similarities of users between found
communities and the Mattermost teams and Figure 5 illustrates
the results of 10 iterations as violin plots. An upper threshold
of 52 for the teams was used for this figure, as described later
in this section. Of all detected communities, 75% have sim-
ilarities above 47.79%, 50% have similarities above 61.18%,
and 25% have similarities above 74.99%. Similarities are
measured by comparing the discovered community with all
Mattermost teams and counting the common members in both
sets. The percentage value of the Mattermost team with the
most common members is used.

Fig. 4. Sample run showing similarities of users between found communities
and Mattermost teams.

Depending on the number of communities found, there might
be overlaps, such that one team fits multiple communities
as the best match. This might be the case where the size
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of communities is smaller than the size of teams, such that
communities form subgroups of the teams. However, less
than 0.01% of discovered communities are matched against
the same Mattermost team. The average size of discovered
communities is 20 ± 23, the minimum is 2, the first quartile
Q1 is 6, the median is 13, the third quartile Q3 is 26, and
the maximum is 421. Figure 6 shows the similarities of users

Fig. 5. Similarities between discovered communities and Mattermost teams
over iterations with threshold 52.

between detected communities and the organizational units
with a threshold of 52, and Table III states the parameters of
this figure in detail. We can observe that the similarities are
relatively low, with 75% of communities having at most 5.07%
similarity. This indicates that the discovered communities
generally do not resemble organizational units very well.
The main reason is that Mattermost teams often consist of
members of different organizational units. This is especially
the case where users form groups of interest that are not related
to work. This results in discovered communities capturing
the teams and structure within Mattermost instead of the
organizational structure of CERN.

Fig. 6. Sample run showing similarities of users between found communities
and organizational units.

When creating the graph, two different methods were used
and compared for filtering teams and channels. With the
first method, the threshold was used as an upper limit for

team members, i.e. only the channels of the teams below the
threshold are considered for creating the graph.

TABLE III
FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN

ORGANIZATIONAL UNITS AND DISCOVERED COMMUNITIES
USING LABEL PROPAGATION ALGORITHM. VALUES WITHIN

COLUMNS REPRESENT MEAN AND STANDARD DEVIATION OVER
25 ITERATIONS IN PERCENT.

Minimum Q1 Median Q3 Maximum
0.0 ± 0.0 0.42 ± 0.04 1.77 ± 0.04 5.07 ± 0.29 74.68 ± 4.55

Because of the random nature of the label propagation
algorithm, the results of each run slightly differ. The mean and
standard derivation over 25 runs were calculated to get more
precise results. With the second method, the threshold was
used as an upper limit for channel members, i.e. all channels
below the threshold are considered for creating the graph. The
second method yields more nodes but fewer communities and
slightly less similarity than the first. Because of this, the first
method was preferred.

TABLE IV
NUMBER OF NODES, EDGES, AND AVERAGE AND STANDARD

DEVIATION OF EDGE WEIGHTS OVER DIFFERENT THRESHOLDS.

Threshold Nodes Edges Weight
52 9520 151501 2.94 ± 2.35
200 14906 809012 2.82 ± 2.25
500 17124 1909964 2.65 ± 1.88
1000 17948 3104814 2.53 ± 1.66
1500 18721 5000668 2.34 ± 1.58
None 19682 15194697 2.44 ± 1.62

With a higher threshold, more users are within teams and chan-
nels, increasing edge weight between many different users.
Because of this, the weight difference of the edges within
and outside communities gets smaller, resulting in fewer
communities. Table IV shows the number of users, edges,
and the average and standard deviation of edge weights over
different thresholds. Higher thresholds result in more nodes
and edges, but the average weight decreases, as many users
are only part of a few channels and teams. With no threshold,
the average weight increases due to channels increasing the
weight for numerous users. Higher thresholds do not improve
community discovery, as the typical size of teams is up to 52,
as stated previously. Based on our experiments, the clustering
tendency depicted by the modularity value decreased with
higher thresholds, with fewer communities found.

V. CONCLUSION AND FUTURE WORK

In conclusion, this research investigates which user infor-
mation can be extracted from anonymized open data [7].
Information such as user group matching has been the focus
of this research. Different clustering algorithms were used
for user group detection, without invading user privacy. To
achieve this, only communication and interaction user data
was used for cluster formation. It was expected to rediscover
organizational structure that closely matches the organiza-
tional hierarchical structures (organizational Units, Depart-
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ments, Groups, Sections, etc.). Our research shows that fitting
detected clusters to existing organizational structures was not
successful and yielded poor results. Matching detected clusters
with interest groups, such as Mattermost teams produced
satisfactory results. The main reason for this finding is that
users interact and communicate with individuals that share
their interests (same channels or Mattermost teams). These
individuals might not be in the same organizational units, or
users from different organizational units might be in the same
channel, introducing noise to the data.
Future work might include the usage of novel clustering

algorithms that are based on neural networks. Additionally,
new metrics for weighting user-to-user connections could be
used to identify not only interest groups but also organizational
connections between users. Besides these improvements, the
data could be brought into connection with external data to
identify certain teams, users, or organizational structures and
the level of communication between them.
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