
Managing and Processing Office Documents in Oracle XML Database

Sabina Petride, Asha Tarachandani, Nipun Agarwal, Sam Idicula
Oracle Inc. USA

Redwood Shores CA, USA
{sabina.petride, asha.tarachandani, nipun.agarwal, sam.idicula}@oracle.com

Abstract - Office Open XML, an XML-based file format
for office data, has been standardized, adopted by
Microsoft Office 2007 and supported by other major
office suites like OpenOffice. The question we try to
answer in this paper is where Oracle XML Database
(XMLDB) stands with respect to the new advances in
XML Open standards. We present the XMLDB
architecture that allows integration with Office Open
XML. We discuss the implications for content search,
generation and validation, brought by transparently
storing office content in the XMLDB Repository. We
explain how to use the XML storage model, XML
indexes and XMLDB Repository features for improved
querability, and how to integrate Office Open XML
content search with relational, non-XML data sources
available in a database.

Keywords - OOXML; Office 2010; XQuery; XMLIndex;
Content Management Repository

I. INTRODUCTION

Office Open XML [1] (OOXML for now) has emerged as
one of the industry standard file formats for representing
word documents, spreadsheet, presentation and charts. It has
been adopted by popular office applications: it is the file
format for Word 2007. OpenOffice version 3.0 supports
importing OOXML, with more products expected to follow.

With these emerging document standards come technical
challenges. Systems are supposed to offer fast ingestion
rates of data based on XML formats for data that has to be
persisted on disks or filesystems, provide good querability
and processing of such data, and integrate with easy to use
and popular file content management applications.
Moreover, users are expecting similar querability and
accessibility options on their filesystem XML data as if it
were stored in a database. Thus, more content management
solutions have made the shift to (1) transparency with
respect to the exact storage of the XML content, and (2)
integration with popular document handling applications.

XMLDB has been around for almost a decade [2][3]. It
allows for storing XML data in the database as a table
column or in a filesystem-like Repository [4], that allows
secure access to the data. Oracle XMLType is an abstraction
and supports different storage models under the covers,

from object relational (shredded over relational tables and
views), to a native binary XML format [5].

With respect to the storage transparency requirement (1),
XMLDB already offers a filesystem like abstraction of
XML content stored in the database, via the XMLDB
Repository. Structured as well as unstructured content can
reside in the repository and accessed via WebDAV or FTP
protocol, as well as via PL/SQL APIs and SQL views.
Furthermore, with the Oracle SecureFiles project [6], XML
content can be stored in the server or a file system with
relatively little performance difference. Here, we focus
mainly on (2), and on detailing how to tune the Repository
storage for best performance.

With large simplifications, both OOXML and Open
Document Format (ODT for now) documents are ZIP-
compatible archives that contain XML files together with
files describing relationships among these; most notably, the
actual content of the document is stored as XML. For
simplicity, for the remainder of this paper, we will be
talking about OOXML, with the note that the same
approach can be taken for ODT and for that matter for any
archive XML-based ZIP-compatible file format.

We present the architecture of a system that allows XML
content manipulated in Office 2007 or OpenOffice to be
transparently handled in the XMLDB repository and
illustrate the key benefits of this system:

1) By transparently storing archived XML-based files in

the XMLDB Repository, XML content can be navigated in
a file-system fashion (via WebDAV).

2) As the XML content internally resides in the
database, we maintain all the benefits of databases over
filesystems: manageability, backup and recovery, security,
integration with other features of the RDBMS.

3) New data conforming to the emerging open XML
standards can coexist with data stored in the database; this
allows for both XML content validation based on an
RDBMS, as well as for dynamic content generation.

4) Internally, the system stores OOXML content in the
binary-XML format allowing for good compression and
disk space management, streaming XPath evaluation,
piecewise updates, improved fragment-level querability, and
integration with other database features like partitioning,
utilities, native binary-XML midtier processing etc.

5) XMLIndexes are built on top of the binary-XML
OOXML content; since query evaluation is internally
optimized for binary-XML in the presence of XMLIndexes,
this model gives efficient inter-document fragment-level
search and intra-document XML processing.

89

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

6) Applications need not devise or implement their own
authentication and authorization policy enforcement logic;
instead, one can rely on the database authentication and the
Access Control List (ACL) mechanism that protects
XMLDB resources.

7) Straightforward integration of OOXML content with
existing Oracle applications that render query output in
formats chosen by the application. For instance, integration
with BI Publisher for presenting fragment-level OOXML
extraction results as PDF.

The paper is organized as follows: In Section II, we give
the necessary background information for understanding the
Oracle XML Database, with a focus on XML storage and
indexing (Section II.A) and the Repository for XML
resources (Section II.B). Section III details the system
architecture for storing OOXML documents in XMLDB.
Special considerations on dynamic content generation and
content validation make the subject of Section IV, while
Section V gives an evaluation of document and fragment-
level security enforcement possible for OOXML data stored
in the database. In Section VI, we discuss fragment-level
query processing for OOXML, and Section VII details their
usage for a project tracking Oracle database application. We
conclude and point to related work in Section VIII.

II. BACKGROUND

We focus first on giving the necessary background
information on XMLDB.

A. XML Storage and Indexing

XML content can be stored in the Oracle database either
as large objects, in text format (CLOB), shredded as object-
relational if schema-based (see [2]), or in the more recent
binary-XML format (see [5]). With the binary format, XML
tags are compacted into token identifiers. Besides reduced
disk footprint, the binary-XML storage allows for fast query
processing [5].

XML tables and columns can be indexed for improved
XQuery performance. The XMLIndex [7] comes in a
number of flavors: unstructured content can be fully indexed
via an unstructured index, where essentially all paths in the
XML content are indexed; semi-structured and structured
content can be indexed via structured XML indexes, where
the index creation statement specifies an XMLTABLE
construct and the exact paths to be maintained by the index;
finally, one can fine-tune an unstructured index by
indicating that only certain types of paths be indexed via
path-subsetting XML indexes. The application developer
has the additional option of creating asynchronous XML
indexes to defer index maintenance to a time when the
server is less busy.

B. Repository Events

XMLDB provides an infrastructure for associating
custom application code with XMLDB Repository actions.
Various actions on the repository are defined as events;

examples of events are PRE-CREATE, POST-CREATE,
PRE-UPDATE, POST-UPDATE, RENDER etc.
Application code, called event handlers, is used to integrate
application logic with the XMLDB repository. For example,
a recycle-bin application can be built on top of XMLDB
Repository using a PRE-DELETE event handler for all
folders except the recycle-bin folder that creates a hard-link
to the file that is to be deleted to recycle-bin.

Application specific event handlers are loaded into the
Oracle Database and associated to all or certain resources in
the repository via resource configurations, a particular type
of resource. Once associated, the event listeners are used for
any repository access – SQL views, PL/SQL APIs or
protocols.

III. OPEN OFFICE XML DATA STORE AND RETRIEVAL -
SYSTEM ARCHITECTURE

The XMLDB Repository is a filesystem-like abstraction
that resides in the Oracle database and allows resources
(with XML, text or binary content) to be stored and
accessed either via protocols like WebDAV(RFC2518) and
FTP, or via PL/SQL and JCR. Data in the repository is
organized hierarchically, in folders and leaf resources, while
internally it is stored in database tables.

MS Office 2007 uses WebDAV to save and open
documents. The event handling mechanism of XMLDB
Repository ensures that, when an OOXML document is
saved under the specified path in the repository, the event
handlers unzip it transparently (using the standard
java.util.zip class) in the XMLDB Repository and the actual
contents are moved to a Binary XML XMLType table.
Similarly, all the component files are zipped on the way out
of the repository at render time when the document is
opened.

As the actual XML content is stored in an RDBMS, one
can take advantage of the full-range of XML processing
available in the database. The XML content table can be
joined with relational tables present in the database. The
event-based mechanism can be further exploited to
dynamically build and enhance content that can be packaged
to an application as OOXML, or to validate OOXML
content against data available in a database. The system
architecture is illustrated in Figure 1.

Figure 2 is an example of how the storage table and its
index are created.

IV. CONTENT VALIDATION AND GENERATION

Two main applications of this framweork are automatic
content validation and generation.

A. Content validation

Storing the XML content of an OOXML in the database
allows applications users to transparently validate the

90

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Figure 2: Binary XML t able and XMLIndex

CREATE TABLE BOOK_XML OF XMLTYPE XMLTYPE STORE AS
BINARY XML;

CREATE INDEX BOOK_XIDX ON BOOK_XML(OBJECT_VALUE)
INDEXTYPE IS XDB.XMLINDEX
PARAMETERS('PATHS(INCLUDE(
/w:document/w:body/w:sdt//w:tbl)
NAMESPACE MAPPING
(xmlns:w="http://schemas.openxmlformats.org/wordpr
ocessingxml/2006/main"))');

Figure 1: System architecture

SELECT BOOK_INFO.* FROM BOOK_XML BOOKS,
XMLTABLE(xmlnamespaces
('http://schemas.openxmlformats.org/wordprocessing
ml/2006/main' as "w"),
'/w:document/w:body/w:sdt'
passing BOOKS.OBJECT_VALUE
COLUMNS
TAG VARCHAR2(100) PATH
'/w:sdt/w:sdtPr/w:tag/@w:val' ,
VALUE XMLType PATH
'/w:sdt/w:sdtContent/w:p/w:r//w:t//text()')
BOOK_INFO;

TAG VALUE
Title The art of writing code

Category Technical

Chapter Chapter 1: Introduction

Chapter Chapter 2: Understanding code

Section Computer Languages: Similarity and
Differences

Chapter Chapter 3: Writing code

Figure 4: Selecting tags and corresponding values
from Word 2007

CREATE TABLE BOOK_DATA(
AUTHOR_NAME VARCHAR2(4000),
BOOK_NAME VARCHAR2(4000),
START_DATE TIMESTAMP,
PUBLISHING_DATE TIMESTAMP);

Figure 3: Relational table

OOXML content based on relevant data across multiple
relational databases.

Consider for instance the case of a publisher database for
managing the books submitted for review. Each book is a
single Word 2007 document and, for the purpose of this
section, we assume that the content is stored in a
BOOK_XML table created via the statement shown in
Figure 2. Author and book names, as well as the initial
editing date and the actual publishing date are stored in a
relational table of the form shown in Figure 3.

The system is supposed to validate the author and book
names, as well as the date information in the Word
document against the relational table. This can be easily
incorporated into the application by issuing query checks
involving the relational table BOOK_DATA and XML
extract operators on the XML content in BOOK_XML.
Figure 4 shows an example of a query against the
XMLType table BOOK_XML that selects all the tags and
their corresponding values from the document. Proper
predicates with this query will achieve the desired results.

Figure 5 shows a simple query that finds the oldest
publishing date of all authors who have at least one book in
the category “Technical”. It involves both the XMLType
table BOOK_XML and the relational table BOOK_DATA.

Using such joins, various validation rules can be applied
automatically at ingestion time. For instance, to ensure that
only authors of some technical books published prior to a
fixed date are allowed to upload new books under a certain
repository, the application event handlers can issue a query
similar to Figure 5.

B. Dynamic Content Generation

Any content that can be retrieved from the database, can
be added to an OOXML document. For instance, an
application that stores book-related documents may have
access to various relational databases for publishing
companies extra information, or book prices offered by
different vendors. Such additional content may or may not
be stored as XML. Applications may expect to store a book
document in the repository and, upon retrieval, to get back
from the repository the book document together with the
corresponding data from the other databases. Another
desirable usage we have encountered comes from Excel
applications: as loosely formatted Excel sheets are dropped
in the repository, structured parts (e.g., columns that are
titled "owner", "user" or "manager") are looked up against
an LDAP database and edited to include a hyperlink with
"mailto: <email address retrieved from LDAP database>".
This functionality is achieved by having a render event on
the XML content resource issue queries on various tables,

91

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

SELECT FRAGVAL.VAL AS "Extracted Fragment"
FROM BOOK_XML BOOKS,
 XMLTABLE(XMLNAMESPACE
 ('http://schemas.openxmlformats.org/wordproce ssingml/2006/main' as "w"),
 '/w:document/w:body/w:sdt'
 PASSING BOOKS.OBJECT_VALUE
 COLUMNS TAG VARCHAR2(4000) PATH '/w:sdt/w:sdt Pr/w:tag/@w:val',
 WHOLE XMLTYPE PATH '/w:sdt/w:sdtConte nt') TAGS,
 XMLTABLE(XMLNAMESPACES
 ('http://schemas.openxmlformats.org/wordproce ssingml/2006/main' as "w"),
 '/w:document/w:body/w:sdt'
 PASSING BOOKS.OBJECT_VALUE
 COLUMNS TAG VARCHAR2(4000) PATH '/w:sdt/w:sdt Pr/w:tag/@w:val',
 VAL XMLTYPE PATH '/w:sdt/w:sdtContent //text()') FRAGVAL
WHERE TAGS.TAG = :search_in_tag AND
 FRAGVAL.TAG=:return_tag AND
 INSTR(UPPER(TAGS.WHOLE), UPPER(:search_string))>0;

Figure 5: Example of OOXML join with relational dat a

SELECT BOOK.AUTHOR_NAME, min(BOOK.PUBLISHING_DATE)
FROM BOOK_DATA BOOK
WHERE BOOK.BOOK_NAME IN
 (SELECT XMLCAST(XMLQUERY('
 declare namespace
 w="http://schemas.openxmlformats.org/wordpro cessingml/2006/main";
/w:document/w:body/w:sdt[w:sdtPr/w:tag/@w:val="Titl e"]/w:sdtContent//w:t//text()'
 PASSING BOOKS.OBJECT_VALUE
 RETURNING CONTENT) AS VARCHAR2(100))
 FROM BOOK_XML BOOKS
 WHERE XMLEXISTS('
 declare namespace
w="http://schemas.openxmlformats.org/wordprocessing ml/2006/main";
/w:document/w:body/w:sdt[w:sdtPr/w:tag/@w:val="Cate gory"][w:sdtContent//w:t//text()="Technical"]'
 PASSING BOOKS.OBJECT_VALUE))
GROUP BY BOOK.AUTHOR_NAME
ORDER BY BOOK.AUTHOR_NAME;

Figure 6: Querying content control

generate XML fragments from the queries results and
update the XML content with them.

V. SECURITY AND PRIVACY CONSIDERATIONS

We mentioned in Section III that a user can open a .docx
document in Word and save it in a folder in the XMLDB
repository residing in the database. The user will need to
provide valid database user/password credentials in order to
connect to the repository. Once the user is authenticated,
access control over OOXML data residing in the repository
is handled, as for any other resources in the repository, via
access control list (ACL) checks.

ACL checks are by default enforced at a document level.
With XMLDB integration with Office 2007, certain
fragments of the documents can be tagged with ACLs and
honored by the application at the fragment level.

VI. FRAGMENT-LEVEL SEARCH AND RETRIEVAL

OOXML documents can be queried to retrieve

information just like any other XML data. This has a large
number of applications. For example:

1) Searching using XQuery across a set of documents to
retrieve relevant documents or parts.

2) Extracting out a specific part of the document such as
abstract, instead of whole documents, to use for re-
publishing, report generation etc.

3) Extracting out information from MS Word tables
embedded in documents for application uses such as
aggregation, population of relational tables etc.

4) Transparently control access to search results by
taking advantage of the document and fragment-level
security options when storing OOXML as content in the
XMLDB repository.

When certain elements are tagged using content-
controls, they can be queried in the WHERE clause as well
as selected out as showin in Figure 6.

Note that unlike full document search, specific parts of
the document can be searched like a table or tagged
elements. For example, a repository of books can be
searched with queries like “Find all books and their authors
that have at least one chapter with title containing keyword

92

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Figure 8: Functional Specification Word document
with custom tags

Figure 9: Creating a project transparently generates
a Word document

SELECT doc.c1.getStringVal() “LAYER NAME”, doc.c2.g etStringVal() “EFFECTS”
FROM BOOK_XML T,
 XMLTABLE(‘XMLNAMESPACE
 ('http://schemas.openxmlformats.org/wordproces singml/2006/main' as "w"),
 'for $i in $root//w:tbl[2]/w:tr
 where fn:contains{$i}/w:tc[1], $layer)
 return $i’
 PASSING T.OBJECT_VALUE as “root”, :p20_layer_na me AS “layer”
 COLUMNS C1 XMLTYPE PATH ‘/w:tr/w:tc[1]//text()’ ,
 C2 XMLTYPE PATH ‘/w:tr/w:tc[2]//text()’) doc;

Figure 7: Query the tables in a Word document for keywords

'haunted' and have been published in the last decade” and
“Find all authors who have at least one book whose title
contains keyword 'haunted' and who have had at least five
publications in the last 15 years”. All this information, even
though embedded deep inside the Office documents, can be
retrieved.

Certain parts of the documents like tables and figures,
can be seearched without requiring any user input at all. For
example, Figure 7 shows a query that looks for keyword
defined by bind variable :p20_layer_name in the first
column of the 2nd table of a docx document.

The search results can be returned in XML format and

integrated with various applications. For example, Oracle
BI Publisher can be used to display the report in various
formats such as PDF, Excel sheet etc. Similarly, the search
results can be utilized to generate parts of other Office
documents or they can be used to populate relational tables.

VII. CASE STUDY

We have built an internal application to track
development projects in various releases of Oracle database.
It allows online and real-time access to product
development tracking tools. Part of the process involves
maintaining a database of technical specification for
products. Typical technical specifications are 2MB in size
on average, with about 2000 projects with technical
specifications per release (up to 4TB of content per release).

This site has an estimated 19K users. The typical searches
and updates are real-time, while it is not rare for a DBA to

93

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Figure 11: Search results using BI Publisher

Figure 10: Search results – look for”XML” in
“Description” section and return “Abstract”

perform offline batch updates.
By moving the project tracking database OpenOffice

content to the XMLDB repository, the existing functionality
is maintained, while new functionality like fragment-based
search, publishing, 2-way sync with the relational table
using triggers, is gained.

Figure 8 shows a typical functional specification. Word
document where fixed fields, like tile, author, project id etc.
are tagged for easier search. In particular, note the
Not_Updatable tag: the update event handlers associated
with specification resources disallow changing XML
content with this particular tag.

Figure 9 shows the web page for creating new projects
that automatically generate docx file for the project. Figure
10 and Figure 11 show 2 web-based search interfaces – a
standalone one and with BI publisher and result of a popular
search. The search returns a document fragment matching
the query, one for each specification document, as well as
the Repository path of the specification, for easy full-
document access.

VIII. CONCLUSION AND FUTURE WORK

We have presented the XMLDB solution for storing,
querying and rendering Open XML content. Open XML
content can be saved in XMLDB as a resource in the
Repository providing direct WebDAV access to Office

applications. For best performance, the XML content is
stored in Binary XML format with a path-subsetted
XMLIndex on it. The event-based mechanism is a powerful
technique allowing dynamic content generation and
validation, using any database data. Document and
fragment-level access control enforcements methods
available for XMLDB resources can be also applied.

Open XML integration with content management
solutions for XML is carried out successfully also by
MarkLogic [8] [9]. Their toolkits for Word, Excel and
Powerpoint allow Open XML data to be saved in the
MarkLogic server and subsequently queried via XQuery,
manipulated and rendered. The main focus of the product is
on search and retrieval of text and XML granular
information. It allows for search results transformations,
template-based content creation, and dynamic assembly of
search results. There are a number of differences between
ours and their approaches.

1) XMLDB Repository being part of the Oracle
database, applications storing Open XML content in
XMLDB implicitly benefit from all the general database
features, like high availability, backup and recovery,
security, utilities etc., as well as from more recent or
particular features like smart lobs and secure files we can
take advantage of when choosing binary storage for Open
XML content.

2) Fine tuning of the actual storage and of the indexes
on top of XML content is essential for good fragment-level
querability. As detailed in Section II, the application
developer storing Open XML in XMLDB has the option of
specifying the XML storage format and of building XML
indexes tailored to a specific set of queries or applications.
To the best of our knowledge, there is no equivalent of path-
subsetted XML index with MarkLogic, nor is the

94

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

application developer able to fine tune the storage and
indexing method for particular query sets or applications.

3) XMLDB Repository events and resource
configurations allow for custom and automatic work flow in
applications. The application developer can use this single
framework for quite different purposes, like dynamic
content generation and content validation. Furthermore, this
can also be used for 2-way synchronization between
OOXML data and relational table with the help of event
handlers and database triggers.

4) Both dynamic content generation and validation can
use any data source in Oracle databases, which includes the
entire XMLDB Repository. In particular, this covers non-
XML, arbitrary relational data, while MarkLogic toolkits are
tied to the XML content in their repositories. For the same
reason, Open XML in the Oracle database is automatically
available for manipulation to any database application.

Clearly, this is a functionality-only comparison. As
products will become more mature and possibly other
similar toolkits will be available, we expect benchmarks for
Open XML and ODT handling in XML repositories to be
set; we leave performance evaluations to future work.

REFERENCES

[1] “Standard ECMA-376, Office Open XML File Formats”, 2006,

http://www.ecma-international.org/publications/standards/Ecma-
376.htm, 11.09.2010

[2] Ravi Murthy, Zhen Hua Liu, Muralidhar Krishnaprasad, Sivasankaran
Chandrasekar, et. al., “Towards an enterprise XML architecture” ,
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 953–957, 2005.

[3] Zhen Hua Liu and Ravi Murthy, “A Decade of XML Data
Management: An Industrial Experience Report from Oracle”, IEEE
25th International Conference on Data Engineering, pp. 1351–1362,
2009.

[4] Ravi Murthy and Eric Sedlar, “Flexible and efficient access control in
Oracle” , Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 973– 980, 2007.

[5] Ning Zhang, Nipun Agarwal, Sivasankaran Chandrasekar, Sam
Idicula, Vijay Medi, Sabina Petride, and Balasubramanyam
Sthanikam, “Binary XML Storage and Query Processing in Oracle
11g” , 35th International Conference on Very Large Databases
(PVLDB), volume 2, issue 2, pp. 1354– 1365, 2009.

[6] Niloy Mukherjee, Bharath Aleti, Amit Ganesh, Krishna
Kunchithapadam, Scott Lynn, Sujatha Muthulingam, Kam Shergill,
Shaoyu Wang and Wei Zhang, “Oracle Securefiles System” .
Procceedings VLDB Endowment,volume 1, issue 2, pp. 1301–1312,
2008.

[7] Geeta Arora, “XMLDB: Best Practices To Get Optimal Performance
Out Of XML Queries”, Oracle White Paper, June 2010,
http://www.oracle.com/technetwork/database/features/xmldb/xmlquer
yoptimize11gr2-168036.pdf, 11.09.2010

[8] “Dynamic Enterprise Publishing: Accelerating Information Creation,
Retrieval, and Delivery with Microsoft Office and Mark Logic”,
MarkLogic White Paper,
http://www.marklogic.com/resources/dynamic-enterprise-
publishing.html, 11.09.2010

[9] Mitchell Kramer, “BlueGuru JetBlues Content Management and
Publishing System” , Case Study Prepared for Mark Logic by Patricia
Seybold Group, 2009,
http://www.scribd.com/doc/17018347/MarkLogic-at-JetBlue-Cast-
Study-Blue-Guru-CMS, 11.09.2010

95

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

