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Abstract—Literature-based discovery (LBD) combines known
facts in the scientific literature to generate discoveries, or hy-
potheses. Potential discoveries have the form of relations between
concepts; for example, in the biomedical domain (on which
we concentrate), a drug may be determined to treat a disease
other than the one for which it was intended. We view the
domain knowledge underpinning LBD as a network consisting
of a set of concepts along with the relations connecting them.
In the study presented here, we used SemMedDB, a database
of semantic relations between biomedical concepts extracted
with SemRep from MEDLINE. SemMedDB is distributed as a
MySQL relational database, which is not optimal for dealing with
network data. We transformed and uploaded SemMedDB into a
Neo4j graph database, and implemented the basic LBD discovery
algorithms with the Cypher query language. We conclude that
storing the data needed for semantic LBD is facilitated by a
graph database. Also, implementing LBD discovery algorithms
is conceptually simpler with a graph query language when
compared with standard SQL.

Keywords–Data science; Databases; Data mining; Semantics;
Literature-based discovery.

I. INTRODUCTION

The corpus of biomedical papers in online bibliographical
repositories, nowadays referred to as the bibliome, is of
considerable size and complexity. The amount of biomedical
literature available is growing at an explosive speed, but a large
amount of useful information in it remains undiscovered [1].
For example, MEDLINE contains over 24 million references
to biomedical journals, with approximately 3000 references
added each day. Exploiting this information effectively cru-
cially depends on linking information from diverse sources
into coherently interpretable knowledge. In this regard, devel-
opment of automated knowledge discovery tools is of utmost
importance. Computer-based methods can greatly complement
manual literature management and knowledge discovery from
biomedical data [2].

Literature-based discovery (LBD) is a mature text min-
ing methodology for automatically generating hypotheses for
scientific research by uncovering hidden, previously unknown
relationships, from existing knowledge. The LBD methodology
was pioneered by Swanson [3], who proposed that dietary
fish oils might be used to treat Raynaud’s disease because
they lower blood viscosity, reduce platelet aggregation, and
inhibit vascular reactivity. Swanson’s hypothesis was validated
by DiGiacomo et al. [4]. Swanson’s approach is based on
the assumption that there exist two nonintersecting scientific
domains. Knowledge in one domain may be related to knowl-
edge in the other, without the relationship being known. The
methodology of LBD relies on the idea of concepts relevant to
three literature domains: X , Y , and Z (Figure 1). For example,

suppose a researcher has found a relationship between disease
X and a gene Y . Further suppose that a different researcher has
studied the effect of substance Z on gene Y . The use of LBD
may suggest an XZ relationship, indicating that substance
Z may potentially treat disease X . Many researchers have
replicated Swanson’s discoveries using various approaches:
Gordon and Lindsay [5], [6], Webber et al. [7], Hristovski et
al. [8], Srinivasan [9], Cameron et al. [10]. For a recent review
of LBD tools and approaches, see Hristovski et al. [11].

X

Raynaud’s disease

Z

Fish oil

Y

High blood viscosity

Figure 1. Swanson’s XYZ discovery model

Current knowledge of a particular biomedical domain can
be viewed as a set of concepts and the relationships among
them [12]. For example, in pharmacogenomics relations among
genes, diseases, and chemical substances constitute an impor-
tant part of knowledge. These associations can be naturally
represented as a graph consisting of nodes and edges, where
the former represent concepts and the later relationships.

The great majority of existing LBD systems are co-
occurrence based. Co-occurrence represents the simplest way
to capture associations between biomedical concepts (nodes),
but it does not express the meaning of the relationship between
those concepts. Even widely used document retrieval systems,
such as PubMed, typically have no access to the meaning of
the text being processed [13]. To fill the gap between raw
text and its meaning Rindflesch [14] developed the SemRep
system. SemRep is a rule-based, symbolic natural language
processing system that recovers semantic propositions from
the biomedical research literature. The system relies on do-
main knowledge in the Unified Medical Language System
(UMLS) [15] to provide partial semantic interpretation in
the form of predications consisting of UMLS Metathesaurus
concepts as arguments and UMLS Semantic Network relations
as predicates. SemRep uses a partial semantic analysis based
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on the SPECIALIST Lexicon [16] and MedPost tagger [17].
Each noun phrase in this analysis is mapped to a concept in
the Metathesaurus using MetaMap [18]. Both syntactic and
semantic constraints are employed to identify propositional
assertions. For example, SemRep extracts three predications
from the text “dexamethasone is a potent inducer of multidrug
resistance-associated protein expression in rat hepatocytes“:

1) Dexamethasone STIMULATES Multidrug
Resistence-Associated Proteins

2) Multidrug Resistance-Associated Proteins PART OF
Rats

3) Hepatocytes PART OF Rats

SemRep extracts 30 predicate types expressing assertions
in clinical medicine (e.g., TREATS, ADMINISTERED TO),
substance interactions (e.g., INTERACTS WITH, STIMU-
LATES), genetic etiology of disease (e.g., CAUSES, PRE-
DISPOSES), and pharmacogenomics (e.g., AUGMENTS, DIS-
RUPTS). The program has been run on all of MEDLINE and
the extracted predications deposited in a MySQL database
named SemMedDB [19] updated quarterly and available to
researchers.

In the last decade, various NoSQL (often interpreted as
Not only SQL (Structured Query Language)) technologies
for storing data have emerged. The term NoSQL refers to
schemaless database technology such as key-value stores
(e.g., Apache Cassandra), document stores (e.g., MongoDB),
and graph databases (e.g., AllegroGraph, OpenLink Virtuoso,
Neo4j). In this paper, we examine the Neo4j graph database
as an alternative for LBD on semantic relations extracted from
MEDLINE, because Neo4j is particularly useful for storing
data structured as a graph.

II. METHODS

A. Exporting data from SemMedDB
SemMedDB contains detailed information about all the

semantic relations extracted with SemRep from MEDLINE.
The general form of the semantic relations is Subject-Relation-
Object, for example Dopamine-TREATS-Parkinson Disease.
This particular relation was extracted 1080 times from dif-
ferent text sentences. We will refer to each of these 1080
extractions as a semantic relation instance. In other words, we
say that Dopamin-TREATS-Parkinson Disease is a semantic
relation with 1080 instantces. For LBD we were interested
in aggregated semantic relations, which means that for each
semantic relation we wanted to have the corresponding num-
ber of instances. In SemMedDB, there is no single place
where we could find aggregated semantic relations. Therefore,
we exported only the semantic relation instances in a text
CSV (Comma-Separated Values) format. For each instance,
the following fields were exported: subject concept id, sub-
ject name, relation type, object concept id, and object name.
We exported all the 52 616 158 semantic relation instances.

B. Aggregating the semantic relations and loading into Neo4j
Originally, we thought of aggregating the semantic rela-

tions with shell tools, such as Awk, sort and uniq. However, we
decided to put Neo4j to a test. We decided to load and aggre-
gate the data in Neo4j with the LOAD CSV command, which
is used for loading external text data (Figure 2). This command
is part of Cypher, which is Neo4js graph query language. The

command reads the input file line by line. Each input line is
split into fields. After loading, we used the MERGE command
for the subject part of the instance. If the concept that appeared
as subject was not found, then, a node with label “Concept”
was created with the corresponding concept unique id, name
and semantic type, and the frequency counter was set to 1.
All this was done with the ON CREATE part of the MERGE
command. However, if there already was a node for the
subject concept, then only its frequency counter was increased
with the ON MATCH part of the MERGE command. A similar
procedure was repeated for the object concept of the semantic
relation instance with another MERGE command. And finally,
a MERGE command was used for the semantic relation itself.
If there was no relation between the current subject and object
nodes, a new relation was created with the relation type, and
the frequency counter was set to 1 within the ON CREATE
part of the commend. If the relation already existed then its
frequency counter was increased with the ON MATCH part.
After the end of this procedure, we expected to have a graph
in which the nodes were the subjects and / or objects of the
semantic relations, with the nodes having relations between
them that corresponded to the semantic relations between the
arguments. This procedure worked well with a few million
relation instances. Unfortunatelly, it was not able to load
the entire set of semantic relation instances, despite the fact
that we used the USING PERIODIC COMMIT command as
instructed in the Neo4j documentation.

We then used a few other approaches. For example, loading
and aggregating only the nodes as described above worked well
and finished successfully. However, we could not load all the
relations at once. We then tried loading the relations in batches
by adding corresponding START and LIMIT parameters to
the LOAD CSV command. In addition to this being too slow,
there was another problem with this command. It does not
allow setting the label of a node based on a field value in the
input line, which we wanted to do. We wanted the semantic
type of the nodes to become one of its labels. For example,
we wanted to have nodes such as “c:Concept:dsyn” which in
Neo4j terminology is read as node “c” with labels “Concept”
and “dsyn” (where “dsyn” is our abbreviation for the concept
semantic type “Disease or Syndrome”).

LOAD CSV FROM ’semmed_sub_rel_obj.txt’
AS line

WITH line
MERGE (c1:Concept {cui: line[0]})
ON CREATE SET c1.name=line[1],
c1.type=line[2], c1.freq=1

ON MATCH SET c1.freq = c1.freq + 1
MERGE (c2:Concept {cui: line[4]})
ON CREATE SET c2.name=line[5],
c2.type=line[6], c2.freq=1

ON MATCH SET c2.freq = c2.freq + 1
MERGE (c1)-[r:Relation {type:
line[3]}]->(c2)

ON CREATE SET r.freq = 1
ON MATCH SET r.freq = r.freq + 1;

Figure 2. Loading semantic relation instances with the LOAD CSV Neo4j
command.
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We next tried to aggregate the instances with several Awk
scripts and with the sort and join shell commands. During this
process, for each semantic relation, all the instances of that
semantic relation were replaced with a single text line, which,
in addition to the instance level fields, also contained the total
number of instances. We noticed that sometimes the same
concepts appeared with different semantic types in different
instances. All these semantic types were also aggregated as a
comma-delimited list. To load the data into Neo4j we used a
stand-alone batch-import tool [20]. This tool requires two files
as input: a file describing the nodes, and a file describing the
relations between the nodes. From the aggregated relation file
prepared in the previous step we prepared the required two
files with two more Awk scripts. Additionally, for each node,
these scripts calculated in the number of relations in which
the node (biomedical concept) occurs as an argument (subject
or object). That number becomes a node property. The batch
import tool for Neo4j then loaded the prepared files into a new
database very quickly. It was also able to create labels for the
nodes from the list of semantic types for each node. Finally, in
Neo4j, we created an index on the node properties “name” and
“cui”, which is an abbreviation for “concept unique identifier”
(in the UMLS).

III. RESULTS

Currently, there are 269 047 unique concepts and
14 150 952 distinct relationships between them in our Neo4j
graph database. These relationships originated from 52 616 158
SemMedDB semantic relation instances. We illustrate the use
of this database with some LBD examples.

LBD is conducted using one of two modes: open and closed
discovery. In open discovery, a concept X (e.g., a disease) is
used to start, and the task is to find a new discovery Z (e.g., a
drug) regarding X through some intermediate concept Y (e.g.,
a gene associated with X). In closed discovery both the starting
concept X and final concept Z are know in advance. The goal
is to supply Y an explanation for the relation between X and
Z. Closed discovery can be used, for example, to elucidate
statistically determined relations between X and Z, which do
not have an explanation.

Figure 3 shows the most general LBD implementation with
a Cypher query. The relations between the concepts X , Y and
Z can be matched regardless of the direction of the relations.
We require a relation between X and Y , as well as a relation
between Y and Z, but we are interested only in those X and Z
concepts that are not already related. If we instantiate X with
a specific concept (e.g., Curcumin) and leave Z uninstantiated,
then we have an open discovery mode. If we instantiate both
the X and Z concepts with particular concepts then we have
closed discovery mode.

MATCH (x:Concept)--(y:Concept)--
(z:Concept)

WHERE NOT (x)--(z)
RETURN x, y, z;

Figure 3. The most general LBD implementation in Cypher.

UMLS semantic types are often used in LBD for concept
filtering or for working with a whole class of concepts.

Figure 4 shows how we can use semantic types for node
(concept) filtering. We implemented concept semantic types
as Neo4j labels. In our current implementation, each concept
has the label “Concept” and additionally all its semantic types
appear as additional labels. The query in Figure 4 searches
for drugs (concepts with semantic type “phsu” (abbreviation
for Pharmacologic Substance) which are related to some
concepts Y which are related to some diseases (concepts with
semantic type “dsyn” (abbreviation for Disease or Syndrome)).
Moreover, we add an additional constraint that the drug is not
already used to treat the disease. This is a declarative query for
discovering novel treatments. It can be used in several ways
depending on what kind of input data is provided. If a specific
drug is provided, the query finds diseases that have not been
treated with that particular drug before. If a specific disease
is provided, the query finds drugs that have not been used to
treat that particular disease before. And finally, in this query
we show how we can rank the potentially novel treatments by
the count of intermediate concepts Y , as it is usually done in
LBD.

MATCH (drug:Concept:phsu)-[r1]->(y)-
[r2]->(disease:Concept:dsyn)

WHERE NOT (drug)-[:TREATS]->(disease)
RETURN drug, disease, count(y) AS y_count
DESC;

Figure 4. A generic Cypher query for finding novel treatment rela-tions
between drugs and diseases.

A discovery pattern [21] reduces the number of false
positive discoveries and supports explanation by stipulating
a set of conditions which enhance the likelihood for a good
discovery candidate. Such conditions refer to the semantic
types of concepts and the relations between them. We show
here how to implement the LBD discovery pattern “inhibit
the cause of the disease”, which can be used to find novel
treatments or explain why certain drugs might be beneficial for
certain diseases [22]. This discovery pattern is more specific
than the one shown before because it also takes into account
the semantic relations between the concepts. The idea of the
discovery pattern is to find drugs that inhibit some genes that
are etiologically related to a disease. Additionally, we are
interested only in drugs that have not been already used to
treat the disease. In this Cypher query, “phsu”, “gngm” and
“dsyn” are UMLS semantic type abbreviations; and drug, gene
and disease are variables that are instantiated to particular
values when the query is run. Figure 5 shows a generic
implementation of this discovery pattern.

MATCH (drug:phsu)-[:INHIBITS]->
(gene:gngm)-[:CAUSES]-> (disease:dsyn)

WHERE NOT (drug)-[:TREATS]->(disease)
RETURN drug, gene, disease;

Figure 5. Generic Cypher implementation of the “inhibit the cause of the
disease discovery pattern”.

We would like to show how more advanced versions of
this discovery pattern can be implemented. In Figure 6, first,
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we find all the drugs in the “Antipsychotic Agents” class by
using the ontological relation IS A. We restrict the class of
diseases to neoplasms by using the semantic type “neop”.

MATCH (drug:Concept:phsu)-[:ISA]->
(m:Concept {

name:"Antipsychotic Agents"})
WITH drug
MATCH (drug)-[:INHIBITS]->

(gene:gngm)-[:CAUSES]->(s:neop)
WHERE NOT (drug)-[:TREATS]->(s)
RETURN drug, count(distinct gene),

count(distinct s);

Figure 6. More specific version of the “inhibit the cause of the disease”
discovery pattern.

IV. DISCUSSION

We faced some chalenges when using Neo4j and its declar-
ative graph query language Cypher. The LOAD CSV Cypher
command, although elegant and consise, was not able to load
our data in a reasonable amount of time. There is confusion
regarding indexing in the current version of Neo4j (2.1.6)
because two types of indexes exist: “schema indexes” and
“legacy indexes”. The “schema indexes” are recommended by
Neo4j, however they do not provide full text indexing and
they only index node properties and not relation properties.
The “legacy indexes” are not recommended by Neo4j, but they
provide full text indexing and relation properties can also be
indexed. However, they are more cumbersome to create and
use. We did not evaluate how fast Cypher was when answering
queries. Our subjective observation was that it was fast with a
small number of starting nodes and no aggregation. The queries
become much slower when dealing with a set of starting nodes
and when aggregation was required.

In the future we will conduct performance evaluation of the
proposed approach in terms of execution speed and memory
consumption. We will also implement the same algorithms
in a RDF triple store such as Virtuoso, and compare its
performance to traditional relational database (MySQL) and
Neo4j.

V. CONCLUSION

Research in LBD can be facilitated by considering the
relevant literature as a graph of interacting semantic predica-
tions, such as those extracted from MEDLINE using SemRep.
Implementing this graph using a graph database such as Neo4j
has several advantages over the use of SQL technology for
this task. We have illustrated this advantage by showing how
the graph query language Cypher naturally supports the use
of discovery patterns, a powerful mechanism for limiting the
number of false positive “discoveries” that must be human
reviewed and for providing explanation.
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