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Abstract—In order to better exploit Deep Reinforcement 

Learning (DeepRL) systems such as DeepMind’s Alpha Go & 

Alpha Zero, it is desirable to understand how they acquire 

knowledge, and how human knowledge acquisition can 

contribute to or benefit from such an understanding. We 

analyze a series of DeepRL models trained to play the board 

game of chess in a human-like fashion, to study if these models 

acquire concepts differently from self-trained DeepRL models 

such as AlphaZero. Our preliminary results indicate that 

human chess players may acquire concepts very similarly to 

self-trained models. We further discuss some of the potential 

consequences of such an outcome. 

Keywords-Artificial Intelligence; Deep Reinforcement 

Learning; Reinforcement Learning; Deep Learning; Explainable 

AI. 

I.  INTRODUCTION 

The game of chess has been called the “drosophila” of 
artificial intelligence (AI), referring to the extensive use of 
fruit flies (drosophila) in experimental biology. While 
traditional chess engines rely primarily on tree search with 
advanced heuristics, many modern approaches have 
exploited deep learning or deep reinforcement learning. 

One such recent project is AlphaGo Zero, which uses a 
combination of Monte Carlo Tree Search (MCTS) and a 
deep neural network [1]. Leela Chess Zero is an open-source 
implementation of both the MCTS and the (convolutional) 
neural network of AlphaGo Zero, and achieves a similar 
level of performance (i.e., playing strength), which is to say, 
a superhuman level: capable of consistently defeating any 
known human player.  

It may be reasonably hypothesized that such neural 
systems are learning implicit knowledge about chess-playing 
concepts and strategies. Understanding the internal 
knowledge acquisition processes of these and similar 
systems have the potential to provide insight into both chess 
as a game and the application of a similar process to varied 
adversarial domains, such as international trade, nuclear 
deterrence, and other negotiations. 

The MCTS algorithm is used to examine the possible 
outcomes of the game depending on which move is chosen, 
by searching through trees generated from different choices 
the player could make, and examining which ones lead to the 

highest probability of winning [2]. These trees are generated 
by the deep neural network. 

The deep neural network is fundamentally a two-state 
regression or classification model which accepts some input 
and produces one or more outputs [3]. The network will 
accept the input and produce derived features, which are then 
used to produce further derived features depending on 
network depth, and derived features are combined using an 
output function to produce the final output. Derived features 
are produced using linear combinations of the inputs and 
activation functions and other operations at different layers 
of the network. The first few layers more closely match the 
structure of the initial input, but as further derived features 
are generated, the derived features become more and more 
abstract.  

The deep neural network accepts the current state of the 
chess board, prior states of the chess board, including a 
number of additional game-specific parameters such as the 
current castling status, and finally move count as input, and 
produces two outputs via dual network heads: (1) the policy 
head, which produces the probability distribution of possible 
moves, and (2) the value head, which produces the predicted 
outcome of the game, based on making the suggested move, 
as a win, lose, or draw. The MCTS uses the output of the 
neural network to choose the best candidate move. AlphaGo 
Zero learnt to play chess without exposure to human moves 
or more abstractly, playing styles, and generated implicitly 
expressed strategies sophisticated enough that it prevailed in 
a multi-game match against Stockfish, then a traditional 
search-based engine (Stockfish has now been updated to 
additionally use a neural model). 

In an effort produce engines that behave more human-
like at a variety of skill levels, Maia Chess was created [4]. 
Different versions of Maia were trained on specific games of 
human players at different skill levels, in lieu of using self-
play, effectively training the neural network in human-style 
play. The different versions of Maia were able to produce 
gameplay choices similar to human players from 1100 ELO 
to 1900 ELO, where ELO refers to the ELO rating system, 
which is used almost exclusively in chess, and refers to a 
relative ranking of a particular player’s odds of winning 
against another player of a different skill level (i.e., ELO 
rating). Maia was built on the Leela Chess Zero framework, 
an open-source engine inspired by Alpha Zero. However 
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Maia does not use an MCTS, but rather uses a deep learning 
model exclusively. 

We will show how we can detect and compare the 
concepts that the various versions of Maia use. In section 2 
we indicate what motivated our work here and what similar 
work was done in the past. In section 3 we show the 
technique we used to get concepts and how they are detected. 
In section 4, we show the results we were able to generate. In 
section 5 we show what further work can be done in the 
future. 

 

II. MOTIVATION & PRIOR WORK 

Since deep neural networks (DNNs) are inherently black 
boxes, the ability to understand and explain the presumed 
acquisition of concepts and strategies by the network in 
chess and other adversarial domains is highly desirable for a 
variety of reasons, including training humans in 
“superhuman” strategies, and interpreting them in terms of 
human strategies. A DNN learns derived features generated 
using the backpropagation algorithm, which updates 
intermediate node weights based on the gradient between the 
observed output and the expected output at the final layer of 
the network, a process which is not directly human-
interpretable. 

One interpretability technique is to use the technique of 
linear probing to examine the detectability of concepts at the 
intermediate layers of the neural network, and the acquisition 
of knowledge those concepts entail [5]. This approach is 
derived from a technique for detecting image concepts in 
computer vision using concept activation vectors (CAVs) 
[6]. We separate examples of game states which have some 
concept in common, and examples which do not exhibit that 
concept. These classifications are matched to the activations 
of a particular layer in a neural network, whose input 
matches our game state. We then train a linear classifier to 
differentiate between the inputs of the two classes. This 
allows us to detect if the set of activations of a particular 
layer for a particular network contain the information needed 
to determine if a concept is present or absent at that layer. 
This has been the approach taken in [7], for interpreting 
concepts learnt by Alpha Zero. 

In this paper we present the results of a similar 
examination using linear probing, to compare the behavior of 
concept and strategy knowledge acquisition across various 
versions of weights learnt by the Maia network, to compare 
the concept acquisition of a model trained on human play 
against a model trained by self-play. Our preliminary results 
indicate that human chess players may acquire concepts very 
similarly to self-trained models. 

 

III. TECHNIQUE AND PROCESS 

To understand the concepts we will compare we must 

detect the concepts, preprocess our input data to be 

interpretable by the modified version of the network we 

need to use, and get the activations from the intermediate 

layers we examine. 

A. Concepts 

The concepts we tested for in the DNN’s chess 
understanding were material advantage and a modified 
version of material advantage from the perspective of the 
player with the white pieces. The concept of material 
advantage is defined by adding up the number of pieces one 
player has remaining on the board, adjusted by the assumed 
inherent value of those pieces, and subtracting the value of 
the other player’s pieces. A pawn is worth 100 points, a 
knight is worth 320 points, a bishop is worth 330 points, a 
rook is worth 500 points, and a queen is worth 900 points. 
So, a player with three pawns and one queen is worth 1200 
points and a player with only two rooks is worth 1000 points, 
so there would be a 200-point advantage for the first player 
over the second. The king is not assigned a material value, 
since losing the king is not possible in chess. 

 The second concept includes the previously mentioned 
material advantage modified by an increased weight for 
pieces in more advantageous positions and a penalty for 
disadvantageous positions. The weights of these positions 
are defined by a piece-square table. Each piece-square table 
is an 8x8 array of numbers where each defines a modifier for 
the quality of each piece in that position, referring to the 
postulated long-term strategic advantage or disadvantage of a 
piece being in that position. 

We created a unique piece-square table for each type of 
piece. These piece-square tables are each oriented towards 
whoever is the player whose board position is being 
evaluated. We used publicly available human-play ranked 
games from the online chess platform Lichess to generate the 
game states, to generate the game states over which to check 
for the two material advantage concepts. Lichess is a popular 
platform and has many years of games to draw upon. The 
Lichess games were also in same format of the games which 
were used to train the Maia networks used, the Portable 
Game Notation (PGN) format, used to notate each move 
made by either player over the course of a single game. 
Combined with knowledge about chess boards and game 
states, PGN files are sufficient to generate every game state 
occurring over the course of a game. The files also included 
the metadata about the players, including their ELO ratings. 

 

B. Preprocessing 

We used the same tools used to generate the Maia 
training data, to create a dataset of 204,800 sample game 
states. First, we separated games by ELO using pgn-extract 
[8], a tool for extracting games using portable game notation 
formatted games. This allowed us to remove games which 
may have been trained on already, and allowed us to evaluate 
games which were not in the training dataset for a particular 
version of Maia.  These games were then converted into a 
format suitable for providing the Leela Chess Zero (Lc0) 
neural network using trainingdata-tool [9], which is designed 
to convert from PGN games to the Lc0 format. These are 
stored in binary files which are not human-readable. Since 
each game was entirely converted into a series of inputs - 
one input for each move in the game - we also needed to 
know which game state corresponded to which concept. 
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Therefore, we converted each given input back into a format 
which could be evaluated for material advantage and 
modified material advantage. This provided both the input in 
the correct format and a more easily interpretable version 
that we maintained as linked to each other. 

 

C. Activation Layers as Input 

For each activation layer and Maia version we wished to 
examine, we then generated the activations of the neural 
network up to that layer and stored those activation values. 
Examining 19 activation values for the version of Maia 
trained to behave like a player in the 1200-1299 ELO range 
created examples of what concepts the network could detect 
at each of those hidden layers, in the samples provided. 

We then created a new DNN model whose input was the 
original input and whose output was the activation values of 
the layer we wished to examine in the original network, 
creating 19 sets of activations for each input. These were 
then used as input to a classifier whose output was the 
presence or absence of the material advantage concept. We 
then trained a classifier to determine if a layer’s activation 
was correctly classified. That is, for a game state which 
shows a material advantage for the active player, that game 
state when converted to an input should produce layer 
activations which can be classified correctly if that layer 
includes the information that the concept classification 
requires. 

IV. RESULTS 

We examined the odd numbered activation layers for 
both the concepts previously mentioned, across the three 
ELO categories of 1200, 1400, and 1900, for both simple 
material advantage and material advantage incorporating the 
weights found in the piece-square tables. The more basic 
material advantage was detectable with roughly 73% 
accuracy across the three categories and across all the 
activations examined. To evaluate this, we split our classifier 
data into a training set of 200,000 samples and a testing set 
of 4,800 samples. 

TABLE I.  MATERIAL ADVANTAGE 

Maia 
Activation Layer Classification Accuracy 

Activation_1 Activation_9 Activation_19 

1200 0.737708 0.737916667 0.738958 

1400 0.738542 0.738125 0.738125 

1900 0.737708 0.7375 0.738333 

TABLE II.  MODIFIED MATERIAL ADVANTAGE 

Maia 
Activation Layer Classification Accuracy 

Activation_1 Activation_9 Activation_19 

1200 
0.534167 0.550625 0.529792 

1400 0.537083 0.544375 0.544375 

1900 0.535208 0.546041667 0.543958 

 

Comparable results were obtained from an examination 
of AlphaGo Zero in [7], the conclusion being that material 
advantage as a concept is relatively easy to detect, even from 
the inputs without activations, and provides a good baseline 
to evaluate the concept detection system. Each version of 
Maia was fully capable of detecting the concept to a similar 
degree: we can conclude that this concept is not sufficiently 
different across the different ELO categories of Maia 
models. 

The results of examining for modified material advantage 
show our technique to be less accurate. This may be because 
our modified version of material advantage is not sufficiently 
aligned with a concept that any version of Maia is looking 
for. There may be some weighted version of material 
advantage that Maia may use, but the specific concept we 
attempted to detect does not appear to be one used by Maia. 
This indicates that it is necessary to explore other concepts to 
further understand the different behaviors of the Maia 
models. 

V. CONCLUSION AND FURTHER WORK 

The specific domain concepts examined here represent a 
proof of concept of our strategy. Since the accuracy of each 
version of Maia is similar across the ELO ranges used, other 
more subtle concepts may be more effective at showing the 
differences between the human-trained models. Or, if the 
concept detection is the same across all versions of Maia for 
most concepts, further work is necessary to understand the 
difference in behavior but similarity in concept detection. If, 
for example, the data necessary to detect a particular concept 
differs between versions of Maia or Lc0, then we can say 
that part of that concept is potentially used in differentiating 
the final behavior. 

A more thorough examination of the behavior of a self-
trained model which exactly uses the Maia network’s 
structure would be additionally worth comparing to, as the 
default Leela Chess Zero weights did not match with the 
version used by Maia. Further work on comparing a self-play 
trained model such as Lc0 to one trained entirely on human 
generated data such as Maia, may show novel rationale for 
the difference in quality and behavior between these systems. 
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