
NORMALDB – A Logic-Based Interactive e-Learning Tool for Database

Normalization and Denormalization

Lule Ahmedi
Computer Engineering

University of Prishtina

Kodra e diellit pn

Prishtina, Kosova

e-mail: lule.ahmedi@uni-pr.edu

Naxhije Jakupi
Computer Science

South East European University

Ilindenska pn

Tetovo, FYR Macedonia

e-mail: naxhijejakupi@yahoo.com

Edmond Jajaga
e-Learning Center

South East European University

Ilindenska pn

Tetovo, FYR Macedonia

e-mail: e.jajaga@seeu.edu.mk

Abstract—This paper introduces the design and development

of an e-learning tool, NORMALDB, that teaches normalization

and denormalization phases of database design. What

characterizes and makes unique this tool is that it smoothly

integrates two entirely diverse paradigms: at the internal level,

an intelligent layer based on logic rules in Prolog implements

the normalization and denormalization of a given database,

whereas at the external level, the user may friendly interact

with the tool through a common Web interface, and not

concerned with the complexity of the tool internally. Using this

tool, students may stepwise exercise and explore the whole

process of normalization and denormalization, which

otherwise constitute an important but troublesome phase of

database design.

Keywords-E-learning tool; database normalization and

denormalization; logic rules; client-server programming.

I. INTRODUCTION

Learning technologies is one of the fields that highlighted
the potential of the web for education. Easy access, location
and time independent resources, unlimited design space,
flexibility, and a wide range of functionalities of the web
prompted the development of a new branch of learning
named e-Learning [1]. The advantages of the web were by
default inherited by e-Learning technologies built upon them,
enabling thus more sophisticated teaching and learning
environments. That way, the utilization of e-Learning
technologies by universities has led them to transform from
didactic teaching methods to flexible and independent
learning. Subject-based e-Learning is an example of
providing support for even more complex subjects to learn
[2], as is database normalization and denormalization, which
is a subject-to-learn through our e-Learning tool we will here
introduce.

Database design is the art and science of improving the
structure of database relations that are most suited to
represent a small portion of the world called the “universe of
discourse” [3]. The relational schema that results at the end
of the design phase must consist of normalized relations
accordant with the semantics of given entities and their
integrity constraints, avoiding at the same time as more as

possible data manipulation anomalies. Hence, normalization
is very important in practice, but also crucial to get familiar
with for every student studying databases. Unfortunately,
this subject is often dry and troublesome to learn, making it
not well received by students.

To ease learning of database normalization and
denormalization, we developed NORMALDB, a web-based e-
learning tool that will be introduced here. The tool is
designed to provide theoretical background on the subject
(normalization and denormalization): it explains stepwise
every single detail of the process as a whole. It also provides
an interactive interface of learning the subject driven by own
examples as given by the user (e.g., a student). The
organization of the tool is a pure reflection of how the
teacher organizes the subject.

There are already few tools that cover executing
normalization, like JMathNorm [4], a Web-based tool of
learning normalization [5], NORMIT [6], or a normalization
tool that bases on UML [7]. NORMALDB is unique in that it
smoothly integrates two entirely diverse paradigms, namely:

 at the internal level, an intelligent layer based on
logic rules in Prolog implements the normalization
of a given database as introduced by Ceri and
Gottlob [3], whereas,

 at the external level, the user may friendly and
stepwise interact with the tool through a common
Web interface, kept thereby not concerned with the
complexity of the tool at its internal level.

Moreover, using NORMALDB, students may step-by-step
experience the whole life-cycle of database relations up to
their normalized forms, or in a reverse process of
denormalization which means rollbacking relations into their
original form whenever deemed necessary for the sake of
efficiency of join operations. Driven by examples, each step
is in addition accompanied with comprehensive explanation
of the theories applied in that given step. Navigation through
theoretical blocks across individual steps / subtopics is
another strong reason to leverage NORMALDB. The level of
interactivity, the ease of use, and its logic-base of rules and
the Web interface make NORMALDB unique among existing
tools which support normalization.

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

This paper is organized as follows. A brief review on the
main concepts of database normalization and
denormalization in general is given in Section 2, while
Section 3 introduces the NORMALDB, our normalization and
denormalization tool. Further, Section 4 provides the
software architecture of NORMALDB, with its features then
summarized in Section 5. Finally, the conclusion and future
work are discussed in Section 6.

II. DATABASE NORMALIZATION AND

DENORMALIZATION

It has been estimated that more than 80% of all computer
programs are database-oriented. This is easy to believe since
databases allow the applications to meet all their
requirements for storing, manipulating and displaying data
[8] at once.

For years now, the relational data model remains the
most used data model in databases. The central data
description construct in this model is a relation which can be
thought of as a set of records. The description of a data in
terms of data model is called a schema. In relational model,
the schema for the relation specifies its name, the name of
each field, and the type of each field. User requirements may
in addition result into certain integrity constraints (ICs)
within the schema. ICs may in turn cause redundancy-related
problems like: redundant storage, update anomalies, insertion
anomalies, and deletion anomalies. Special group of ICs that
plays the major role in the schema refinement are called
functional dependences (FDs) [9].

A. Normalization

Following the FDs that hold over a relation, one may
understand what redundancy problems, if any, might arise
from the current schema. To provide such guidance, several
normal forms have been [9] introduced in terms of FDs as
follows:

 1NF – First normal form: A relation R is in first
normal form (1NF) if and only if all underlying
domains contain atomic values only;

 2NF-Second Normal Form: A relation R is in
second normal form (2NF) if and only if it is in
1NF and every nonkey attribute is fully dependent
on the primary key.

 3NF – Third Normal Form: A relation R is in third
normal form (3NF) if and only if it is in 2NF and
every nonkey attribute is nontransitively dependent
on the primary key.

 BCNF- Boyce-Codd Normal Form: A relation R is
in Boyce/Codd normal form (BCNF) if and only if
every determinant is a candidate key.

 4NF and 5NF are rarely achieved, and hence not
implemented in our tool at this stage.

The procedure itself of transforming a relation, given its

FDs, into any of the abovementioned normal forms (NFs) is
known as normalization, and it:

 leaves the relation unchanged if it already satisfies
the NF sought after, or

 decomposes the relation in two or more smaller
relations, i.e., relations with less number of
columns, each satisfying the NF sought after.

B. Denormalization

Normalization of a relational schema given a set of FDs
results into a relational schema which is free of redundancy-
derived anomalies, but might yet suffer from eventual
performance-derived problems. To address that kind of
problems, a reverse process to normalization, namely
denormalization, has been introduced. Denormalization is
the process of adding columns to the table to reduce joins in
favor of performance, and is considered only if the integrity
of data is not seriously compromised [10].

III. NORMALDB

As stated in [11], students find it difficult to understand

the concept of FDs and normalize data in order to obtain

smaller well-structured relations. NORMALDB is a web-

based e-learning tool that we developed to aid students

understand and experience the most complex tasks of

database design, i.e., normalization and denormalization.

The organization of NORMALDB resembles the way how a

teacher schedules his / her class while teaching

normalization and denormalization. Further, the ability to

explore every single step / subtopic of normalization by

running own examples and breaking them down to

elementary details makes NORMALDB far more

advantageous vs. traditional in-class teaching of the subject.
In the following subsections, a description of

NORMALDB to reflect its implementation in two layers, the
logical and the interface layer, is given.

A. Logical Layer

At the data tier and business logic layer of NORMALDB,
we adopted the Ceri and Gottlob’s script [3] implemented in
Prolog. The Prolog programming language is known for its
contributions to problem solving in artificial intelligence
[12]. A common integrated framework for describing both
data structures (“facts”) and algorithms (“rules”), and the
facilitated interaction with the code through the “trial and
error” interface are few among several advantages readily
provided by the Ceri and Gottlob code due to the
representation in Prolog of the logic of normalization to the
machine [3].

The adopted Prolog script [3] of normalization consists
of the following:

 the facts which provide data about relations (the
relation name, attributes, and FDs), and

 the rules which relate facts, and implement all
algorithms throughout normalization.

For example, according to [3], a relation schema rel

with the set [a,b,c] of attributes, and a set [ab,bc]
of FDs is represented with the following facts at our logical
layer:

schema(rel, [a, b, c]).

fd(rel, [a], [b]).

fd(rel, [b], [c]).

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

For each normalization step, there is a rule or a set of
rules that may be invoked in any order. This way a user may
observe results incrementally by executing certain rules step
by step over the input base of facts. Some of the
normalization rules provided in the script are as follows [3]:

 findonekey(REL, K) - Determines one key K of
relation REL

 assertallkeys(REL) - Determines and asserts all
keys of REL

 findmincover(REL) - Finds a minimal cover of the
functional dependencies defined for REL

 thirdnf(REL) - Decomposes REL into third normal
form

 haslj(REL) - Tests for losslessness of the
decomposition of REL

 makelj(REL) - Makes the decomposition of REL
lossless

 projectfds(REL, RELl) - Projects functional
dependencies holding for the relation REL to the
relation RELl

 isinbcnf(REL) - Tests whether REL is in Boyce-
Codd normal form

 bcnf(REL) - Decomposes REL into Boyce-Codd
normal formminimize(REL) - Minimizes the
decomposition of REL

Denormalization also supported in NORMALDB is a
rather intuitive task driven primarily by queries which are
frequently invoked in a database and involve expensive
joins. The implementation in NORMALDB of
denormalization extends the existing Prolog knowledge base
of normalization with the following:

 rules for the direct re-composition of tables, and

 a parser written in Definite Clause Grammar (DCG)
notation of Prolog, which is able to read queries
against the database and reason upon them to infer
which tables need re-composition in favor of
performance.

In addition to denormalization, few more modifications
of the Prolog script of Ceri and Gottlob [3] were applied to
make that script work in our web-based tool, i.e., adding new
rules and facts for rendering Prolog results into the web
page. Most of new rules are HTML generators which convert
the adopted Prolog script to the Prolog server, namely they
generate HTML tags which hold the results of retrieved
predicates. Section 4 will reveal more details about HTML
generators.

B. Interface Layer

Next we discuss the interface layer of NORMALDB which
is mainly developed in PHP language. The HTML tag
rendering is provided through PHP scripts, whereas
JavaScript, especially its libraries jQuery [13] and jQuery UI
[14] help make the interface of NORMALDB simple and easy
to navigate.

Fig. 1 shows the organization of NORMALDB from a user

perspective. The colored boxes represent web pages, whereas
the grey box represents the knowledge base of the
application supplied by the Prolog server which runs
whenever examples are carried out. Connection to the
knowledge base does not require any extra procedure from
the user. Simply, the given connection hyperlink makes a
request to the Prolog server which in turn displays the result.

The interconnection between topics and examples is done
via hyperlinks, while results are represented in accordance to
the actual web page template. Depending on the content, the
result appears within a dedicated tag of the page, or in a
message box that shows after clicking the link. The
JavaScript language and its libraries jQuery and jQuery UI
are employed for user-friendly purposes of the interface.
jQuery tabs and message boxes helped us prevent the
overload of the interface.

The whole interface of the tool (colored boxes in Fig. 1)
is organized in three main parts:

Theoretical part: Consists of theoretical explanations of
the topics covering the normalization phase of the database
design. Each topic explanation appears as a hyperlink, and
may further contain links which illustrate the application of
the given theory to a given example. That example is
referred to as a default example in our tool, and is designed
to serve the demonstration of each of the theories over a
given set of (default) relations and their FDs.

Practical part: This is the core part of NORMALDB, and
is aimed to serve exercises. The user (e.g., a student) shall
input the relation name, attributes, as well as functional
dependencies of the relation that he / she wants to examine in
terms of normalization and denormalization, and the tool will
then start exploring the topics upon the given relation.

Exam part (Self-assessment part): This part is planned
for future work. It is designed to provide a testing
environment where users (e.g., students) may themselves
examine their knowledge gained in the field concerning both
exercises and the theory.

Figure 1. Organization of the interface layer in NormalDB.

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

IV. THE SYSTEM ARCHITECTURE

The development environment in building NORMALDB
consisted of the scripting language PHP, JavaScript, and the
logic programming language Prolog.

The logic of the NORMALDB relays in the server side of
the application. The client side shares just the functionalities
given by JavaScript codes.

The server side of the application is comprised of two
distinct servers. Apache server is needed for processing PHP
scripts and generating HTML pages for the client while
Prolog server provides the knowledge base of the system.
The later one is accessed from the client side through links
generated from the PHP scripts.

Fig. 2 describes the used architecture in NORMALDB with
the pursued workflow of the functionalities. In the following
subsections we will explain the challenges that appeared
during the development of our tool.

A. Preserving the state

The process of normalization and denormalization flows
over a step by step evaluation which requires keeping and
following the active state of the script execution. This
happens because of the modifications that are done to the
knowledge base after evaluating a particular step. Traversing
through the Prolog script to find the predicates that will
implicate the required rule, results in asserting new facts that
affect the next step. For example, if a user wants to test
whether a particular decomposition has the lossless join

property, a clause of the form haslj(rel) is searched in
the base of facts. This kind of facts is provided after the
execution of the 3NF algorithm. This way it was necessary to
have the knowledge base updated with the information
required by the future user requests. Hence, it was needed
somehow the Prolog application to be active as long as a user
session is active.

When addressing this concern, we ended up with three
alternative solutions, each applying distinct techniques
originating from different fields.

One solution was to run the Prolog script using the

system(), exec(), and shell_exec() built-in PHP
functions. These functions are easy to implement, but the
troubles arise after running a required predicate since the
script then closes up such that the newly asserted predicates
cannot be saved.

Another solution was to use a relational database at the
backend of the application which will track every inference
deduced by the Prolog script, and accordingly modify
respective tables in the database. Yet for the sake of the
simplicity of the tool, and to avoid difficulties that might
appear while tracking Prolog inferences, this solution was
omitted.

Finally, we experienced the use of the Prolog server [15]
as the most appropriate solution for surpassing this problem,
which will be discussed in detail in the following
subsections.Communication with Prolog server

The Prolog logic programming language supports a
number of libraries for accessing data on HTTP (Hypertext

Transfer Protocol) servers, as well as for providing HTTP
server capabilities from SWI-Prolog. Both server and client
are modular libraries. The server can be operated from the

Unix inetd super-daemon, as well as a stand-alone server
that runs on all platforms supported by SWI-Prolog [15].

In order to use these libraries, certain modifications to the
actual normalization script in Prolog of Ceri and Gottlob
were required. Thereby, the mere logic of the script is kept
unmodified, extending it with built-in predicates to deal with
HTTP requests to configure the HTML pages.

Request handlers are built-in predicates that handle the
HTTP requests made from instantiated HTML pages using
hyperlinks. When an HTTP request arrives at the server, then
Prolog starts traversing through the predicate tree for finding
the handle that matches the path came with the HTTP
request. This required path is noted as first parameter of the
predicate. The second parameter defines the main predicate
that handles the handler. As the third parameter of this
handler is the list of the options related with the handler. A
code that creates a common handler is written below:

:- http_handler(root(module),home,[]).

After calling a handler, one thread is employed to search

for the predicate supported by the handler which is defined in
the code. Within the HTTP request can be sent variables
which can be extracted from the request and inherited to
other predicates that build up the rule. The base predicate
that is retrieved from the handler renders the HTML page
with enclosed html, title and body tags, by the following
rule:

Figure 2. Workflow and request chains of NORMALDB tool.

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

home(Request):-http_parameters(Request,

[name(Name,[length >= 2]),

relation(Rel,[length >= 2])]),

reply_html_page(title('Example'),

[\html_requires(css('style.css')),

\case(Name, Rel)]).

The body part of this new arranged HTML page is filled

with other HTML tags that are derived from the next HTML
generators used from other predicates.

Weaving of the HTML tags with the appropriate results
is done through HTML tag generators included in the special
defined rules which are called with DCG notation of Prolog.
These rules get the results inferred from the base predicates
and render them into HTML tags that can be read from every
web browser.

The formulated HTML reply of the Prolog server is
injected into the HTML page rend from the PHP server

within a <iframes> tag.
A sample Prolog rule that makes the rendering of the

result of 3NF normalization in a special div tag looks like
follows:

case(thirdnf,Rel)-->

 {cleandecomp(Rel)},

 html(div([\step1_html(Rel),

 \step2_html(Rel),

 \step3_html(Rel),

 \step4_html(Rel),

 \step5_html(Rel)])).

Some of the links are processed at runtime during the

execution of the PHP page, while others are simple links and
are invoked when a user clicks them over.

B. Preserving Consistency

The consistency of the Prolog server will be intimidated
if the same predicate is queried two or more times without
rolling back to the actual state of the server. Multiple queries
are posed in case the user clicks the same link multiple times.
To avoid unwanted results from the repeated clicks, there are
specific rules asserted in Prolog server that take care to clear
the server from the previous results.

Additionally, using the same relation name within the
same knowledge base by different users will raise the
problem of interference among results of different users. To
avoid this, we used the unique session number functionality
of PHP. The opened index page automatically creates a new
session with unique number which will uniquely identify the
relation schema used by that session, concretely by one user.
The task of Prolog server in this case is to create a copy of
the default relation schema and to rename it with a
combination of its original name and the session number of
the user.

In this way, normalization rules consider every user
session as unique, enabling thus every user work with
exercises separately at the same time on the same server.

V. LEARNING NORMALIZATION IN NORMALDB

Accessing NORMALDB through a URL will initially open
its homepage as is common for web applications (Fig. 3a).
As mentioned earlier in Section 3, the tool is organized in
three individual modules: theoretical, practical, and the
testing module.

The theoretical module (opens when clicking the green
box in Fig. 3a) loads a sample example which illustrates all
steps of normalization one after another running in the
Prolog server. The relational schema used in the example is
named rel and is given a set of predefined FDs.

The normalization steps or subtopics are each provided
on a left menu in the page (Fig. 3b). Changing along the
menu links which represent subtopics does not affect the
Prolog server unless a button involving the example is
clicked. Such buttons contain links to the Prolog server,
invoking thus the corresponding predicate to run for the
given subtopic.

The left menu contains also the denormalization module
of the tool. This page, beside the theoretical explanation of
the topic, includes a form where the user may textually input
queries supposed to be executed over time against the
derived database schema. These queries are then analyzed
with a SQL (Structured Query Language) analyzer script
written in Prolog, which yields the statistics about which
tables need to be joined. This way, the user may decide
which tables need to be recomposed.

Navigation to the practical module is possible from any
page (by clicking the orange box placed at the top of the
page), not just when residing at the homepage of the
NORMALDB. Once opened, this module (see the Web page
in Fig. 3c) will first retract all facts belonging to the

Figure 3. Web interfaces of NORMALDB.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

sample example of the theoretical part, and afterwards
eventually load a new relational schema entered interactively
by the user through a Web form. At this input, if the user
provides also the types of attributes of the relation, then the
tool might generate a ready-to-deploy SQL script consisting
of procedures for creating the database and its tables.

The relation schema, and its attributes and FDs entered
through the Web form are then processed by PHP string
manipulation built-in functions, and are written as new facts
in a separate Prolog file. For instance, back to the example of
Section 3, let us assume that the user enters the same input

data, i.e., the rel relation schema with attributes [a,b,c]

and a set [ab,bc] of FDs through the Web form of
the Practice page as depicted in Fig. 4. It is the PHP script
that would translate these Web form data into the Prolog
facts listed earlier in Section 3.

These facts are further consulted by the main Prolog

server starting from the next opened page up to the last page
that requires evaluation of normalization rules, this time over
a given set of facts residing at an external Prolog file (Fig.
3d).

Continuing our example with the rel relation at the
input, Fig. 5 illustrates how finding all keys of the relation

works by clicking the Assert Key button which actually

triggers the evaluation of the assertallkeys(rel) rule
at the Prolog server. See at the “All keys are [[a]]” row
rendered at the bottom of the Web page in Fig. 5 which
reflects the result inferred by this rule.

As one may experience while using NORMALDB, the
requirement to keep its interface of teaching normalization
process of database design as simple as possible is met. The
organization of the page, its rich set of functionalities, and
the simple layout contribute altogether towards bringing
closer to students the normalization theory which has
otherwise proved to be troublesome to capture in a
traditional teaching classroom.

VI. CONCLUSION AND FUTURE WORK

This paper introduces the NORMALDB, an e-Learning
tool which provides to students a user-friendly environment
for learning and experimenting the normalization phase of
the database design. Simple interface with an internal
complex system and a wide range of functionalities
including experiments with self-chosen examples are some
of the main advantageous features of NORMALDB. The main
challenge was to enable an efficient communication between
PHP and Prolog. Among several alternatives we considered,
the interaction through a Prolog server [15] proved to be the
most appropriate solution for our application since it already
provides a number of Prolog libraries for accessing data on
HTTP.

NORMALDB is further planned to expand its capabilities
of a typical e-Learning tool by incorporating a test module
where the student may test himself / herself by solving a
given normalization problem, and then comparing his / her
solution with the one generated by the tool. Moreover, the
support for higher normal forms is also in view under future
plans, and easy to implement, since the same rationale
applies as when implementing the interface and its links to
the Prolog facts and rules for, say, 3NF.

REFERENCES

[1] Namahn, “E-learning: A research note by Namahn,”
www.namahn.com/resources/documents/note-e-learning.pdf,
22.11.2011.

[2] J. O. Uhomoibhi, “Implementing e-learning in Northern
Ireland: prospects and challenges,” Campus-Wide
Information Systems, vol. 23 no.1, 2006, pp. 4-14,
doi:10.1108/10650740610639697.

[3] S. Ceri and G. Gottlob, “Normalization of relations and
PROLOG,” Commun. ACM , vol. 29 no. 6, 1986, pp. 524-
544, doi:10.1145/5948.5952.

[4] A. Yazici and Z. Karakaya, “JMathNorm: A Database
Normalization Tool Using Mathematica,” ICCS (2), Lecture
Notes in Computer Science , vol. 4488, 2007, pp. 186-193,
doi:10.1007/978-3-540-72586-2_27.

[5] K. Hsiang-Jui and T. Hui-Lien, “A Web-based tool to
enhance teaching/learning database normalization,” Proc. of
the 2006 Southern Association for Information Systems
Conf., 2006, pp. 251-258.

[6] A. Mitrovic, “NORMIT: A Web-Enabled Tutor for Database
Normalization,” Intl. Conf. on Computers in Education
(ICCE), Auckland, New Zealand, 3-6 Dec. 2002, pp. 1276-
1280, doi:10.1109/CIE.2002.1186210.

[7] D. Akehurst, B. Bordbar, P. Rodgers, and N. Dalgliesh,
“Automatic Normalisation via Metamodelling,” ASE 2002
Workshop on Declarative Meta Programming to Support
Software Development, Sept. 2002.

Figure 5. Finding all keys of a relation with NORMALDB.

Figure 1. A Practice Web form to enter own examples

Figure 4. Web form to enter own examples.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

http://dx.doi.org/10.1007/978-3-540-72586-2_27

[8] R. Stephens, Beginning Database Design Solutions. Wiley
Publishing, 2008.

[9] R. Ramakrishnan and J. Gehrke, Database Management
Systems. 2nd ed., McGraw-Hill, 2002.

[10] S. S. Lightstone, T. J. Teorey, and T. Nadeau. Physical
Database Design: the database professional's guide to
exploiting indexes, views, storage, and more. 4th ed., Morgan
Kaufmann, 2007.

[11] S. Ram, “Teaching data normalisation: Traditional classroom
methods versus online visual methods - A literature review, “
Proc. of the 21st Annual Conf. of the National Advisory
Committee on Computing Qualifications, Auckland, New
Zealand, 2008, pp. 327-330.

[12] G. F. Luger, Artificial Intelligence: Structures and Strategies
for Complex Problem Solving, 6th ed., Addison Wesley,
2008.

[13] jQuery Documentation. Sept. 2009. The jQuery Project:
http://jquery.org/, 22.11.2011.

[14] jQuery User Inerface Library. Sept. 2009. The jQuery UI
library: http://jqueryui.com/, 22.11.2011.

[15] J. Wielemaker, SWI-Prolog HTTP support. SWI-Prolog's
home page: http://www.swi-
prolog.org/pldoc/package/http.html, 22.11.2011.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-180-9

eLmL 2012 : The Fourth International Conference on Mobile, Hybrid, and On-line Learning

