
Design Time Reliability Predictions for Supporting
Runtime Security Measuring and Adaptation

Antti Evesti, Eila Ovaska
VTT Technical Research Centre of Finland

Oulu, Finland
{antti.evesti, eila.ovaska}@vtt.fi

Abstract—The reliability of a quality-critical software
component affects the security level that is achieved. There is
currently no runtime security management approach that uses
design time information. This paper presents an approach to
exploiting design time reliability predictions in runtime
security management. The Reliability and Availability
Prediction (RAP) method is used to predict reliability at
software design time. The predicted reliability values are
stored in ontology form to support runtime use. The use case
example illustrates the presented approach. The presented
approach makes it possible to use design time reliability
predictions at runtime for security measuring and adaptation.
Hence, the reliability of security mechanisms is taken into
account when security adaptation is triggered.

Keywords - information security; quality; evaluation; metric;
architecture

I. INTRODUCTION
A variety of quality prediction and testing techniques are

used at software design time. The results of these predictions
are used to enhance architecture designs, select better
component alternatives, and reveal implementation errors.
The use of these prediction results ends when satisfactory
quality is achieved for a component or system and the
product is delivered. However, these prediction results could
also be used in runtime situations. This is reasonable,
especially in reliability and security management. Reliability
is an important factor in achieving a required security level,
as can clearly be seen from the security decomposition
presented in [1]. Weak reliability of a security-related
software component ruins the offered security. Hence, the
reliability information of component is valuable for security-
related decision-making. This paper therefore presents an
approach to bring the design-time reliability prediction
results for runtime security measuring and adaptation
purposes. To achieve this, ISMO (Information Security
Measuring Ontology) [2] is extended in a way that allows
prediction results to be stored at design time.

In the literature, different security adaptation approaches
exist. The adaptive SSL presented in [3] sets parameters for
the SSL session based on the environment information. An
Extensible Security Adaptation Framework [4] adds a
middleware layer for security mechanisms. The application
sets the required security policy and, based on the policy, the
middleware layer selects security mechanisms. Context-

sensitive Adaptive Authentication [5] uses time and location
information to calculate a confidence level for the
authentication. In some situations, a low confidence level is
sufficient while others require adaptation of the
authentication method used. Our earlier work presents an
approach that uses ontologies and risk-based measures for
security adaptation [6]. These adaptation approaches are
intended to work at runtime by observing the system’s
resources and environment. Based on the observations,
different security mechanisms or parameters are set. To our
knowledge, none of the existing approaches uses design-time
information for adaptation purposes.

Figure 1. presents the broader context of the contribution
of this paper. In the first phase, the Reliability and
Availability Prediction (RAP) method [7] is used to predict
future reliability from software designs. The prediction
results are stored in ontology form in order to ensure
exploitation at runtime. In this paper we will focus on this
first phase. In the second phase, application security is
measured at runtime. Reliability predictions are used as input
information for security measuring. The third phase is
security adaptation, which is triggered by the measuring
phase. The adaptation also uses reliability predictions to
select the most suitable security mechanism for different
situations. After the adaptation, the execution returns to the
measuring phase.

Figure 1. Broader scope

The contribution of this paper makes it possible to use
design-time reliability predictions for runtime security
measuring and adaptation. Hence, a wider information set is
available for triggering and making a decision on the
adaptation. In other words, information for runtime use can
be collected in different phases of the application lifecycle.
Thus, the adaptation is not only based on the measurements
made just before adaptation but also on knowledge of the
whole life cycle of the component.

The paper is organised as follows. After the introductory
section, background information is presented. Next, Section
3 is divided into three parts describing the design steps
towards applications with security adaptation, design time

94Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

reliability predictions, and a way to transform prediction
results into the ontology form. Section 4 illustrates the
presented approach by means of a case example. A
conclusion and future work ideas close the paper.

II. BACKGROUND
Reussner et al. define reliability as the probability of

failure-free operation of a software system for a specified
period of time in a specified environment [8]. ISO/IEC
defines security as follows: The capability of the software
product to protect information and data so that unauthorized
persons or systems cannot read or modify them and
authorized persons or systems are not denied access to them
[9].

The RAP method evaluates the reliability of a designed
software system and its components already at architecture
design time [7, 10]. The RAP method reveals design flaws
and critical components from the reliability viewpoint. The
evaluation is based on architectural models, which means
that the first evaluation results are available before any
implementation effort is required. Hence, modifications can
be performed easily. The RAP method uses state-based
models, i.e., Markov models, to predict the reliability of
components. The path-based models are used to predict the
reliability of a single execution path and the whole software
system. The RAP method produces the following reliability
values, known as probability of failure (pof) values: 1)
independent pof values for software components, 2) pof
values for execution paths, 3) the component’s pof value in
each execution path, 4) the components’ system-dependent
pof values, and 5) the pof value for the whole software
system. The RAP method supports the feedback loop from
software testing [11]. The prediction results can therefore be
replaced with more accurate values when measured
reliability values are available from the software testing.
Tool support for the RAP method, called the RAP tool, is
also available. The RAP tool reads architectural models from
UML diagrams, i.e., state, component, and sequence
diagrams. In addition, the RAP tool uses usage profiles that
describe system usage, i.e., how many times each execution
path is called. The usage profiles make it possible to perform
own predictions for different user groups, e.g., professional
and normal users. In this work, the results from the RAP tool
will be made available for runtime use.

Evesti et al. present the ISMO ontology in [2]. The ISMO
composes security ontology and general software measuring
terminology. The ISMO thus offers a generic and extendable
way to present security measures. These measures are
connected to security threats and/or supporting mechanisms,
depending on the measure. Measures are divided into base
measures, derived measures, and analysis models. The base
measure is the simplest measure and is used for more
complex measures, i.e., derived measures and analysis
models. The ISMO is instantiated as an example using
authentication measures, especially Authentication Identity
Structure (AIS) measures [1] for password-based
authentication. The ISMO thus contains measures for
password age and type, i.e., length and the number of
different symbols. The software application uses different

measures from those of the ISMO to measure its security
level at runtime. In this work, the ISMO is extended to
contain design time reliability predictions.

Savola et al. present Basic Measurable Components
(BMCs) for security attributes (e.g., authentication,
confidentiality, etc.) in [1]. BMCs are derived by means of
the decomposition approach. The idea of BMCs is to divide
security attributes into smaller pieces that can be measured.
For example, authentication is divided into five BMCs in [1]
as follows: Authentication Identity Uniqueness (AIU),
Authentication Identity Structure (AIS), Authentication
Identity Integrity (AII), Authentication Mechanism
Reliability (AMR), and Authentication Mechanism Integrity
(AMI).

III. RELIABILITY PREDICTIONS FOR SUPPORTING
SECURITY MEASURING AND ADAPTATION

This section is dived into three subsections. Firstly, high-
level design steps for the application with security adaptation
features are described. Secondly, a design time reliability
prediction is presented. Finally, a way to store the prediction
results in ISMO in a way that supports runtime measuring is
described.

A. Designing an Application with Security Adaptation
Features
This subsection lists design steps that a software architect

has to take when designing an application with security
adaptation features. Figure 2. illustrates these design phases.
The last three phases of the process are iterative. This is not
depicted in the figure, however, for reasons of clarity.

1) Required security attributes
In the first phase, the software architect has a set of

required security attributes for the application, for instance,
S1 for communication confidentiality, S2 for user
authentication, and S3 for data integrity requirements. S
refers to a security requirement in general.

2) Adaptable security attributes
The software architect has to design adaptation features

separately for each security attribute. From the above-listed
required security attributes, the architect has to select which
ones to implement in an adaptable manner, i.e., variation will
take place at runtime [12]. In Figure 2. user authentication S2
is selected for the adaptable security attribute. Other security
attributes are thought of as static security requirements from
the runtime viewpoint. In other words, the possible variation
in these attributes is taken into account at design time.

3) Mechanisms for adaptable security attributes
The adaptable security requirement has to be met by

security mechanisms that can be changed or that have
parameters that can be modified at runtime. For example, in
the adaptable user authentication case, the architect designs
two alternative user authentication mechanisms for the
application, e.g., password-based and voice-based
authentications. Another alternative is to design one security
mechanism and set different parameters for it at runtime.

4) Measurements for triggering adaptation

95Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Software measures are designed for the application in
parallel with the mechanism design phase. In particular, this
means base measures that require measuring probes inside
the application. Adaptation at runtime will be triggered based
on derived measures and analysis models, which both
depend on base measures. In other words, base measures are
used to compose derived measures and analysis models.
Hence, the software architect has to implement these base
measures for the application.

5) Architecture design
The architect designs the architecture for the system.

From the security adaptation viewpoint, it is important that
variation points are designed with care. For adaptable user
authentication, this means that an authentication feature can
be called without knowing the currently used authentication
mechanism.

Figure 2. Steps towards adaptable application

B. Design Time Predictions
This subsection describes how the software architect

predicts the reliability of components from the architectural
designs. The architect uses the RAP method to perform these
predictions. Based on the steps listed in the previous
subsection, the architect has design documents for the
application. Firstly, the component diagram describes the
structure of the application. Secondly, the internal behaviour
of components is described by means of state diagrams.
Finally, sequence diagrams describe the mutual behaviour of

components, i.e., how the component calls other
components.

The RAP method contains state-based and path-based
reliability prediction methods. For runtime security
measuring and adaptation purposes, the RAP method is used
to predict the probability of failure (pof) values for security
mechanism components, i.e., mechanisms designed in phase
3 of the previous subsection.

The state-based prediction method calculates reliability
for one independent software component by means of state
diagrams. In state diagrams, pof values are given for each
state to describe the failure probability in that particular state.
Moreover, transition probabilities between states are
described. Based on this information, the RAP tool
automatically adds a separated failure state and calculates the
component’s pof value using a state transition matrix p and a
probability vector p(n) as follows:

p=

pSS pSA pSB pSF
pAS pAA pAB pAF
pBS pBA pBB pBF
pFS pFA pFB pFF

 (1)

p(n+1) = p(n)*p (2)

In transition matrix p, pSA presents the probability of

transit from the start state S to state A. Similarly, pAF
presents a probability of transit from state A to the failure
state F. In the beginning, the probability vector takes the
form p(0) = [1, 0, 0, 0], which means that the probability of
being in the start state is 1 at time moment 0.

The state-based prediction produces independent pof
values for the components. These values are further used to
calculate the component’s pof values in different execution
paths. Execution paths are presented by means of sequence
diagrams in architectural models. The following equation is
used to calculate a component’s pof value in a particular
execution path:

pij = 1 - (1 - pi)Nij (3)

The previously calculated independent pof of the

component is substituted in pi, and Nij represents the number
of execution times of the component in that execution path.
Execution paths describe how the particular component is
called in different execution paths.

As mentioned in Section 2, the RAP tool is also able to
calculate pof values for each execution path, the component
belonging to the particular software system, and for the
whole software system. The equations for these calculations
are presented in [11]. However, our interest is in bringing the
previously presented component-related pof values for
runtime use.

C. Storing Prediction Results in a Runtime-Applicable Way
After the RAP predictions, the software architect has the

components’ independent pof values and the components’
pof values for the execution paths. Initially, the RAP tool
was only intended for use at design time. Thus, the RAP tool

96Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

stores these reliability values in the component diagram by
means of a UML profile. Hence, the values are available
during the implementation and testing phases. Figure 3.
shows the security mechanism part of the component
diagram after the RAP predictions. Now, the mechanism
alternatives designed earlier contain the predicted pof values.
This is not practical for runtime purposes however. Reading
the pof values from the UML profile requires a connection to
a UML tool, which cannot be offered at runtime.

Figure 3. Component diagram after reliability predictions

As mentioned in Section 2, the ISMO supports runtime
security measurements. The ISMO is therefore extended to
store the components’ reliability values. The following
information needs to be stored in the ISMO:

1. Software component name
2. Software component version number
3. Which security mechanism the component

implements
4. Reference to a place where the pof values are

stored
5. Information on the execution path used to

calculate path-specific pof values
The component name is intended to separate different

alternatives of the mechanisms and is the name taken directly
from the component diagram. It is natural to create an
instance in the ISMO with a component name. This is
because each software component is an individual element.

The version number separates different implementations
of the same component. For instance, a new component
version that contains bug fixes has a better pof value than the
old version. This information therefore has to be separated in
the ISMO. The version number is combined with the
component name, i.e., an instance name in the ISMO. This
naming convention also ensures that the ISMO does not
contain instances with the same name.

Information on the security mechanism that the
component implements is required because components use
different security mechanisms to meet the required security,
i.e., the mechanism alternatives in Figure 3. use different
security mechanisms. For example, two components can use

different authentication mechanisms to achieve user
authentication. Countermeasures are described as concepts,
i.e., classes, in the ISMO. Thus, it is reasonable to create the
instance from the software component under the right
countermeasure concept. Figure 4. presents instances created
from software components from different countermeasure
concepts.

Countermeasure

MechanismAlter
native1_ver1.0 MechanismAlternative2

PasswordAuthentication VoiceRecognition

IsIs

isInstanceOf isInstanceOf

MechanismAlter
native1_ver2.0

isInstanceOf

Figure 4. Component instances in the ISMO

The most important information is the components’ pof
values, and the above-described additions to the ISMO make
it possible to put this information into the ISMO. Figure 5.
shows a way of presenting pof values in the ISMO. A new
base measure called pof is added to the ISMO. This is able to
offer the component’s pof values for the runtime measuring.
In the ISMO, each measure is defined for attribute, i.e., path-
specific pof and independent pof. The attribute relates to
MeasurableConcept, i.e., Authentication Mechanism
Reliability (AMR). Previously, the ISMO contained only
measures related to the Authentication Identity Structure
(AIS). Both attributes are connected to the countermeasure
instance, i.e., MechanismAlternative_ver1.0 in this case,
with the hasMeasurableAttribute property. Other mechanism
instances also contain these attributes. However, for reasons
of clarity, these are not presented in the figure.

MeasurableConcept : BMC
AuthenticationMechanism

Reliability (AMR)

Attribute : independent pof

relatesToCountermeasure

relates

definedFor

BaseMeasure : pof

MeasurementMethod : get
component’s stored pof value

uses

hasMeasurable
Attribute

MechanismAlternative1_ver1.0

Attribute : path specific pof

hasMeasurable
Attribute

relates

definedFor

Figure 5. Update for the ISMO

Both attributes use the same pof base measure. The
purpose of this base measure is to use MeasurementMethod,
which retrieves the components’ pof values. The
measurement method is a concrete measuring probe that is
able to retrieve pof values. Hence, it has to know the format

97Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

that is used to store pof values. The following structure is
used: componentName, componentPof, the component’s pof
in execution path 1, the component’s pof in execution path 2,
etc. This structure therefore offers information on the
execution path used to calculate path-specific pof values. It is
possible to store pof values in a separated file or structure
inside the application code. The separated file offers more
flexibility, however, i.e., pof values can be updated without
knowing the program code. The architect decides where the
pof values are stored and creates an appropriate measurement
method.

The reason why pof values are not stored directly in the
attributes is twofold. Firstly, the measurement part of the
ISMO – inherited from the Software Measurement Ontology
(SMO) [13] – defines that attributes only define things that
can be measured. Secondly, storing pof values outside the
ISMO makes the ontology and pof values manageable. An
application with security adaptation can contain several
security mechanism components and each component can
belong to several execution paths. Storing all these values
into the ISMO will increase its size and complicate the
updating of pof values.

IV. USE CASE EXAMPLE
This section gives a use case example of the presented

approach. The purpose of the example is to show how the
reliability of the security mechanism component is predicted.
The results are stored in a runtime-applicable way in the
ISMO.

The software architect designs a software application
with security adaptation features. Communication
confidentiality and user authentication are required securities
for the application, c.f. Figure 2. From these security
requirements, it is decided to implement user authentication
in an adaptable manner. Hence, the architect designs
alternative mechanisms for achieving user authentication, for
example, password-based and fingerprint authentication. At
the same time, base measures for measuring the user
authentication are designed for the application. One of these
base measures is pof. The value of the pof base measure is
retrieved using a measurement method. It is notable, that the
base measures and related measurement method
implementations are reusable. Hence, the same base measure
is also applicable to other security mechanisms.

After these design steps, there will be a component
diagram, state diagrams of components, and sequence
diagrams. Both authentication mechanisms are implemented
as one independent software component called
passwordAuthentication and fingerprintAuthentication.

Figure 6. presents a state diagram for the password
authentication component. In this case, each transition
probability is 1, i.e., only one leaving transition from each
state. The architect sets the pof values for each state
heuristically, and these pof values then affect the transition
probabilities. In other words, the state’s pof value reduces
the occurrence probability of the right state transition
respectively. Based on values from Figure 6. the RAP tool
automatically adds the failure state and builds the transition
matrix p as described in Section 3. From the transition

matrix, the RAP tool calculates the pof value for the
passwordAuthentication component. In this case, the pof
value for the passwordAuthentication component is
0.000482. Similarly, pof values are given for states in the
fingerpringAuthentication component, and the pof value of
the component is calculated.

Figure 6. State diagram for the passwordAuthentication component

To exemplify path-specific pof values, the sequence
diagram in Figure 7. is used. The RAP tool uses this
sequence diagram, previously calculated pof value, and
equation 3 to calculate the path-specific pof value. Hence, a
pof value of 0.000482 is attained for the
passwordAuthentication component in this specific
execution path. In this case, the independent and path-
specific pof values are the same because the
passwordAuthentication component is only called once in
this sequence diagram, c.f. equation 3.

Figure 7. Sample execution path for password authentication

The architect stores this information in the ISMO in the
form defined in the previous section and illustrated in Figure
8. In the figure, grey is used to describe information added in
this case example. The component name is now
passwordAuthentication and the version number is 1.0.
Hence, the instance named passwordAuthentication_ver1.0
is created under the password authentication concept in the
ISMO. Similarly, the instance for the
fingerprintAuthentication component is created. Both of
these instances contain previously mentioned attributes.
Attributes for the fingerprintAuthentication are not presented
in the figure, however, for reasons of clarity. Calculated pof
values are stored in the specific file called pofs. This file is
presented in dark grey in Figure 8. because it is a separate
part from the ISMO. MeasurementMethod contains a link to
that file and is able to read pof values from the file. In this
case, the file contains pof values for the
passwordAuthentication and fingerpringAuthentication
components.

98Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Figure 8. The content of ISMO after design time predictions

V. CONCLUSION AND FUTURE WORK
There is a clear connection between software reliability

and security. An unreliable software component that
performs security-related actions can ruin the security of the
whole application. In this work, an approach was introduced
to bring the results from design-time reliability predictions
for runtime security measuring and adaptation purposes.
Hence, the reliability of the security mechanisms can be
taken into account when security adaptation is triggered. The
work presented steps on how to produce an application with
security adaptation features. Thereafter, reliability was
predicted from design documents. Finally, these prediction
results were stored in the ISMO, which makes it possible to
use the prediction results at runtime. Storing the
components’ pof values in the ISMO required some
extensions to the ontology. Firstly, the way to present
individual security mechanism components in the ISMO was
added. Secondly, the attributes for pof values were added
and finally, a new base measure for pof values was
introduced in the ISMO.

To our knowledge, there is no security measuring and
adaptation approach that also uses design time information.
Thus, the introduced approach is the first step towards
enabling the use of the design time reliability predictions for
runtime security measuring and adaptation. Reliability values
are stored in a way that supports fast and easy updating. This
is important when bug fixes for the security components are
made. Furthermore, the real use of a component may

produce different reliability to that initially predicted and it is
then important to update the pof values. The presented
approach is not restricted to one particular security
mechanism or attribute. Hence, the software architect can
make the decision of which attributes will be implemented in
an adaptable manner on a case-by-case basis.

In the future, it is important to develop security measures
that use the components’ pof values in runtime security
measuring. Current pof values of components can be used to
compare different security components. Moreover,
combining the reliability information and security level
supported by the component offers valuable information for
adaptation purposes. This means that the ISMO will be
enhanced by new analysis models. The RAP tool also needs
new features for storing information automatically to the
ISMO.

ACKNOWLEDGMENT
This work is being carried out in the ARTEMIS SOFIA

project funded by Tekes, VTT, and the European
Commission.

REFERENCES
[1] R. Savola and H. Abie. "Development of measurable security for a

distributed messaging system", International Journal on Advances in
Security, 2(4), pp. 358-380, 2010.

[2] A. Evesti, R. Savola, E. Ovaska, and J. Kuusijärvi, "The Design,
Instantiation, and Usage of Information Security Measuring
Ontology", MOPAS'2011, pp. 1-9, 17th April, 2011. 2011.

[3] C. J. Lamprecht and A. P. A. van Moorsel, "Runtime Security
Adaptation Using Adaptive SSL", Dependable Computing, 2008.
PRDC '08. 14th IEEE Pacific Rim International Symposium, pp. 305-
312, 2008.

[4] A. Klenk, H. Niedermayer, M. Masekowsky, and G. Carle, "An
architecture for autonomic security adaptation", Ann Telecommun,
61(9-10), pp. 1066-1082. 2006.

[5] R. Hulsebosch, M. Bargh, G. Lenzini, P. Ebben, and S. Iacob.
"Context sensitive adaptive authentication", Smart Sensing and
Context, pp. 93-109, 2007.

[6] A. Evesti and E. Ovaska, "Ontology-Based Security Adaptation at
Run-Time", 4th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 204-212, 2010.

[7] A. Immonen, "A method for predicting reliability and availability at
the architecture level", in Software Product Lines T. Käkölä and J.
Dueñas, Eds., 2006.

[8] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, "Reliability
prediction for component-based software architectures", J. Syst.
Software, 66(3), pp. 241-252. 2003.

[9] ISO/IEC 9126-1:2001. Software Engineering – Product Quality –
Part 1: Quality Model. 2001.

[10] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho,
"Knowledge based quality-driven architecture design and evaluation",
Information and Software Technology, 52(6), pp. 577-601. 2010.

[11] M. Palviainen, A. Evesti, and E. Ovaska, "The reliability estimation,
prediction and measuring of component-based software", J. Syst.
Software, 84(6), pp. 1054-1070. 2011.

[12] E. Niemela, A. Evesti, and P. Savolainen, "Modeling quality attribute
variability", ENASE – Proc. Int. Conf. Eval. Novel Approaches
Software Eng., pp. 169-176, 2008.

[13] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement", Information and Software Technology, 48(8), pp. 631-
644. 2006.

99Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

