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Abstract—The reliability of a quality-critical software 
component affects the security level that is achieved. There is 
currently no runtime security management approach that uses 
design time information. This paper presents an approach to 
exploiting design time reliability predictions in runtime 
security management. The Reliability and Availability 
Prediction (RAP) method is used to predict reliability at 
software design time. The predicted reliability values are 
stored in ontology form to support  runtime use.  The use case 
example illustrates the presented approach. The presented 
approach makes it possible to use design time reliability 
predictions at runtime for security measuring and adaptation. 
Hence, the reliability of security mechanisms is taken into 
account when security adaptation is triggered. 

Keywords - information security; quality; evaluation; metric; 
architecture 

I.  INTRODUCTION 
A variety of quality prediction and testing techniques are 

used at software design time. The results of these predictions 
are used to enhance architecture designs, select better 
component alternatives, and reveal implementation errors. 
The use of these prediction results ends when satisfactory 
quality is achieved for a component or system and the 
product is delivered. However, these prediction results could 
also be used in runtime situations. This is reasonable, 
especially in reliability and security management. Reliability 
is an important factor in achieving a required security level, 
as can clearly be seen from the security decomposition 
presented in [1]. Weak reliability of a security-related 
software component ruins the offered security. Hence, the 
reliability information of component is valuable for security-
related decision-making. This paper therefore presents an 
approach to bring the design-time reliability prediction 
results for runtime security measuring and adaptation 
purposes. To achieve this, ISMO (Information Security 
Measuring Ontology) [2] is extended in a way that allows 
prediction results to be stored at design time. 

In the literature, different security adaptation approaches 
exist. The adaptive SSL presented in [3] sets parameters for 
the SSL session based on the environment information. An 
Extensible Security Adaptation Framework [4] adds a 
middleware layer for security mechanisms. The application 
sets the required security policy and, based on the policy, the 
middleware layer selects security mechanisms. Context-

sensitive Adaptive Authentication [5] uses time and location 
information to calculate a confidence level for the 
authentication. In some situations, a low confidence level is 
sufficient while others require adaptation of the 
authentication method used. Our earlier work presents an 
approach that uses ontologies and risk-based measures for 
security adaptation [6]. These adaptation approaches are 
intended to work at runtime by observing the system’s 
resources and environment. Based on the observations, 
different security mechanisms or parameters are set. To our 
knowledge, none of the existing approaches uses design-time 
information for adaptation purposes. 

Figure 1. presents the broader context of the contribution 
of this paper. In the first phase, the Reliability and 
Availability Prediction (RAP) method [7] is used to predict 
future reliability from software designs. The prediction 
results are stored in ontology form in order to ensure 
exploitation at runtime. In this paper we will focus on this 
first phase. In the second phase, application security is 
measured at runtime. Reliability predictions are used as input 
information for security measuring. The third phase is 
security adaptation, which is triggered by the measuring 
phase. The adaptation also uses reliability predictions to 
select the most suitable security mechanism for different 
situations. After the adaptation, the execution returns to the 
measuring phase.  

 

 
Figure 1.  Broader scope 

The contribution of this paper makes it possible to use 
design-time reliability predictions for runtime security 
measuring and adaptation. Hence, a wider information set is 
available for triggering and making a decision on the 
adaptation. In other words, information for runtime use can 
be collected in different phases of the application lifecycle. 
Thus, the adaptation is not only based on the measurements 
made just before adaptation but also on knowledge of the 
whole life cycle of the component. 

The paper is organised as follows. After the introductory 
section, background information is presented. Next, Section 
3 is divided into three parts describing the design steps 
towards applications with security adaptation, design time 
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reliability predictions, and a way to transform prediction 
results into the ontology form. Section 4 illustrates the 
presented approach by means of a case example. A 
conclusion and future work ideas close the paper. 

II. BACKGROUND 
Reussner et al. define reliability as the probability of 

failure-free operation of a software system for a specified 
period of time in a specified environment [8]. ISO/IEC 
defines security as follows: The capability of the software 
product to protect information and data so that unauthorized 
persons or systems cannot read or modify them and 
authorized persons or systems are not denied access to them 
[9]. 

The RAP method evaluates the reliability of a designed 
software system and its components already at architecture 
design time [7, 10]. The RAP method reveals design flaws 
and critical components from the reliability viewpoint. The 
evaluation is based on architectural models, which means 
that the first evaluation results are available before any 
implementation effort is required. Hence, modifications can 
be performed easily. The RAP method uses state-based 
models, i.e., Markov models, to predict the reliability of 
components. The path-based models are used to predict the 
reliability of a single execution path and the whole software 
system. The RAP method produces the following reliability 
values, known as probability of failure (pof) values: 1) 
independent pof values for software components, 2) pof 
values for execution paths, 3) the component’s pof value in 
each execution path, 4) the components’ system-dependent 
pof values, and 5) the pof value for the whole software 
system. The RAP method supports the feedback loop from 
software testing [11]. The prediction results can therefore be 
replaced with more accurate values when measured 
reliability values are available from the software testing. 
Tool support for the RAP method, called the RAP tool, is 
also available. The RAP tool reads architectural models from 
UML diagrams, i.e., state, component, and sequence 
diagrams. In addition, the RAP tool uses usage profiles that 
describe system usage, i.e., how many times each execution 
path is called. The usage profiles make it possible to perform 
own predictions for different user groups, e.g., professional 
and normal users. In this work, the results from the RAP tool 
will be made available for runtime use. 

Evesti et al. present the ISMO ontology in [2]. The ISMO 
composes security ontology and general software measuring 
terminology. The ISMO thus offers a generic and extendable 
way to present security measures. These measures are 
connected to security threats and/or supporting mechanisms, 
depending on the measure. Measures are divided into base 
measures, derived measures, and analysis models. The base 
measure is the simplest measure and is used for more 
complex measures, i.e., derived measures and analysis 
models. The ISMO is instantiated as an example using 
authentication measures, especially Authentication Identity 
Structure (AIS) measures [1] for password-based 
authentication. The ISMO thus contains measures for 
password age and type, i.e., length and the number of 
different symbols. The software application uses different 

measures from those of the ISMO to measure its security 
level at runtime. In this work, the ISMO is extended to 
contain design time reliability predictions. 

Savola et al. present Basic Measurable Components 
(BMCs) for security attributes (e.g., authentication, 
confidentiality, etc.) in [1]. BMCs are derived by means of 
the decomposition approach. The idea of BMCs is to divide 
security attributes into smaller pieces that can be measured. 
For example, authentication is divided into five BMCs in [1] 
as follows: Authentication Identity Uniqueness (AIU), 
Authentication Identity Structure (AIS), Authentication 
Identity Integrity (AII), Authentication Mechanism 
Reliability (AMR), and Authentication Mechanism Integrity 
(AMI). 

III. RELIABILITY PREDICTIONS FOR SUPPORTING 
SECURITY MEASURING AND ADAPTATION 

This section is dived into three subsections. Firstly, high-
level design steps for the application with security adaptation 
features are described. Secondly, a design time reliability 
prediction is presented. Finally, a way to store the prediction 
results in ISMO in a way that supports runtime measuring is 
described. 

A. Designing an Application with Security Adaptation 
Features 
This subsection lists design steps that a software architect 

has to take when designing an application with security 
adaptation features. Figure 2. illustrates these design phases. 
The last three phases of the process are iterative. This is not 
depicted in the figure, however, for reasons of clarity. 

1) Required security attributes 
In the first phase, the software architect has a set of 

required security attributes for the application, for instance, 
S1 for communication confidentiality, S2 for user 
authentication, and S3 for data integrity requirements. S 
refers to a security requirement in general. 

2) Adaptable security attributes 
The software architect has to design adaptation features 

separately for each security attribute. From the above-listed 
required security attributes, the architect has to select which 
ones to implement in an adaptable manner, i.e., variation will 
take place at runtime [12]. In Figure 2. user authentication S2 
is selected for the adaptable security attribute. Other security 
attributes are thought of as static security requirements from 
the runtime viewpoint. In other words, the possible variation 
in these attributes is taken into account at design time. 

3) Mechanisms for adaptable security attributes 
The  adaptable  security  requirement  has  to  be  met  by  

security mechanisms that can be changed or that have 
parameters that can be modified at runtime. For example, in 
the adaptable user authentication case, the architect designs 
two alternative user authentication mechanisms for the 
application, e.g., password-based and voice-based 
authentications. Another alternative is to design one security 
mechanism and set different parameters for it at runtime. 

4) Measurements for triggering adaptation 
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Software measures are designed for the application in 
parallel with the mechanism design phase. In particular, this 
means base measures that require measuring probes inside 
the application. Adaptation at runtime will be triggered based 
on derived measures and analysis models, which both 
depend on base measures. In other words, base measures are 
used to compose derived measures and analysis models. 
Hence, the software architect has to implement these base 
measures for the application. 

5) Architecture design 
The architect designs the architecture for the system. 

From the security adaptation viewpoint, it is important that 
variation points are designed with care. For adaptable user 
authentication, this means that an authentication feature can 
be called without knowing the currently used authentication 
mechanism. 

 

 
Figure 2.  Steps towards adaptable application 

B. Design Time Predictions 
This subsection describes how the software architect 

predicts the reliability of components from the architectural 
designs. The architect uses the RAP method to perform these 
predictions. Based on the steps listed in the previous 
subsection, the architect has design documents for the 
application. Firstly, the component diagram describes the 
structure of the application. Secondly, the internal behaviour 
of components is described by means of state diagrams. 
Finally, sequence diagrams describe the mutual behaviour of 

components, i.e., how the component calls other 
components.  

The RAP method contains state-based and path-based 
reliability prediction methods. For runtime security 
measuring and adaptation purposes, the RAP method is used 
to predict the probability of failure (pof) values for security 
mechanism components, i.e., mechanisms designed in phase 
3 of the previous subsection. 

The state-based prediction method calculates reliability 
for one independent software component by means of state 
diagrams. In state diagrams, pof values are given for each 
state to describe the failure probability in that particular state. 
Moreover, transition probabilities between states are 
described. Based on this information, the RAP tool 
automatically adds a separated failure state and calculates the 
component’s pof value using a state transition matrix p and a 
probability vector p(n) as follows: 

 

p=

pSS pSA pSB pSF
pAS pAA pAB pAF
pBS pBA pBB pBF
pFS pFA pFB pFF

 (1) 

 
p(n+1) = p(n)*p   (2) 

 
In transition matrix p, pSA presents  the  probability  of  

transit from the start state S to state A. Similarly, pAF 
presents a probability of transit from state A to the failure 
state F. In the beginning, the probability vector takes the 
form p(0) = [1, 0, 0, 0], which means that the probability of 
being in the start state is 1 at time moment 0. 

The state-based prediction produces independent pof 
values for the components. These values are further used to 
calculate the component’s pof values in different execution 
paths. Execution paths are presented by means of sequence 
diagrams in architectural models. The following equation is 
used to calculate a component’s pof value in a particular 
execution path: 

 
pij = 1 - (1 - pi)Nij  (3) 

 
The previously calculated independent pof of the 

component is substituted in pi, and Nij represents the number 
of execution times of the component in that execution path. 
Execution paths describe how the particular component is 
called in different execution paths. 

As mentioned in Section 2, the RAP tool is also able to 
calculate pof values for each execution path, the component 
belonging to the particular software system, and for the 
whole software system. The equations for these calculations 
are presented in [11]. However, our interest is in bringing the 
previously presented component-related pof values for 
runtime use. 

C. Storing Prediction Results in a Runtime-Applicable Way 
After the RAP predictions, the software architect has the 

components’ independent pof values and the components’ 
pof values for the execution paths. Initially, the RAP tool 
was only intended for use at design time. Thus, the RAP tool 
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stores these reliability values in the component diagram by 
means of a UML profile. Hence, the values are available 
during the implementation and testing phases. Figure 3. 
shows the security mechanism part of the component 
diagram after the RAP predictions. Now, the mechanism 
alternatives designed earlier contain the predicted pof values. 
This is not practical for runtime purposes however. Reading 
the pof values from the UML profile requires a connection to 
a UML tool, which cannot be offered at runtime. 

 

 
Figure 3.  Component diagram after reliability predictions 

As mentioned in Section 2, the ISMO supports runtime 
security measurements. The ISMO is therefore extended to 
store the components’ reliability values. The following 
information needs to be stored in the ISMO: 

1. Software component name 
2. Software component version number 
3. Which security mechanism the component 

implements 
4. Reference to a place where the pof values are 

stored 
5. Information on the execution path used to 

calculate path-specific pof values 
The component name is intended to separate different 

alternatives of the mechanisms and is the name taken directly 
from the component diagram. It is natural to create an 
instance in the ISMO with a component name. This is 
because each software component is an individual element. 

The version number separates different implementations 
of the same component. For instance, a new component 
version that contains bug fixes has a better pof value than the 
old version. This information therefore has to be separated in 
the ISMO. The version number is combined with the 
component name, i.e., an instance name in the ISMO. This 
naming convention also ensures that the ISMO does not 
contain instances with the same name.  

Information on the security mechanism that the 
component implements is required because components use 
different security mechanisms to meet the required security, 
i.e., the mechanism alternatives in Figure 3. use different 
security mechanisms. For example, two components can use 

different authentication mechanisms to achieve user 
authentication. Countermeasures are described as concepts, 
i.e., classes, in the ISMO. Thus, it is reasonable to create the 
instance from the software component under the right 
countermeasure concept. Figure 4. presents instances created 
from software components from different countermeasure 
concepts. 

 
Countermeasure

MechanismAlter
native1_ver1.0 MechanismAlternative2

PasswordAuthentication VoiceRecognition

IsIs

isInstanceOf isInstanceOf

MechanismAlter
native1_ver2.0

isInstanceOf

 
Figure 4.  Component instances in the ISMO 

The most important information is the components’ pof 
values, and the above-described additions to the ISMO make 
it possible to put this information into the ISMO. Figure 5. 
shows a way of presenting pof values in the ISMO. A new 
base measure called pof is added to the ISMO. This is able to 
offer the component’s pof values for the runtime measuring. 
In the ISMO, each measure is defined for attribute, i.e., path-
specific pof and independent pof. The attribute relates to 
MeasurableConcept, i.e., Authentication Mechanism 
Reliability (AMR). Previously, the ISMO contained only 
measures related to the Authentication Identity Structure 
(AIS). Both attributes are connected to the countermeasure 
instance, i.e., MechanismAlternative_ver1.0 in this case, 
with the hasMeasurableAttribute property. Other mechanism 
instances also contain these attributes. However, for reasons 
of clarity, these are not presented in the figure. 

 

MeasurableConcept : BMC 
AuthenticationMechanism

Reliability (AMR)

Attribute : independent pof

relatesToCountermeasure

relates

definedFor

BaseMeasure : pof

MeasurementMethod : get 
component’s stored pof value

uses

hasMeasurable
Attribute

MechanismAlternative1_ver1.0

Attribute : path specific pof

hasMeasurable
Attribute

relates

definedFor

 
Figure 5.  Update for the ISMO 

Both attributes use the same pof base measure. The 
purpose of this base measure is to use MeasurementMethod, 
which retrieves the components’ pof values. The 
measurement method is a concrete measuring probe that is 
able to retrieve pof values. Hence, it has to know the format 
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that is used to store pof values. The following structure is 
used: componentName, componentPof, the component’s pof 
in execution path 1, the component’s pof in execution path 2, 
etc. This structure therefore offers information on the 
execution path used to calculate path-specific pof values. It is 
possible to store pof values in a separated file or structure 
inside the application code. The separated file offers more 
flexibility, however, i.e., pof values can be updated without 
knowing the program code. The architect decides where the 
pof values are stored and creates an appropriate measurement 
method. 

The reason why pof values are not stored directly in the 
attributes is twofold. Firstly, the measurement part of the 
ISMO – inherited from the Software Measurement Ontology 
(SMO) [13] – defines that attributes only define things that 
can be measured. Secondly, storing pof values outside the 
ISMO makes the ontology and pof values manageable. An 
application with security adaptation can contain several 
security mechanism components and each component can 
belong to several execution paths. Storing all these values 
into the ISMO will increase its size and complicate the 
updating of pof values. 

IV. USE CASE EXAMPLE 
This section gives a use case example of the presented 

approach. The purpose of the example is to show how the 
reliability of the security mechanism component is predicted. 
The results are stored in a runtime-applicable way in the 
ISMO. 

The software architect designs a software application 
with security adaptation features. Communication 
confidentiality and user authentication are required securities 
for the application, c.f. Figure 2. From these security 
requirements, it is decided to implement user authentication 
in an adaptable manner. Hence, the architect designs 
alternative mechanisms for achieving user authentication, for 
example, password-based and fingerprint authentication. At 
the same time, base measures for measuring the user 
authentication are designed for the application. One of these 
base measures is pof. The value of the pof base measure is 
retrieved using a measurement method. It is notable, that the 
base measures and related measurement method 
implementations are reusable. Hence, the same base measure 
is also applicable to other security mechanisms. 

After these design steps, there will be a component 
diagram, state diagrams of components, and sequence 
diagrams. Both authentication mechanisms are implemented 
as one independent software component called 
passwordAuthentication and fingerprintAuthentication.  

Figure  6.  presents  a  state  diagram  for  the  password  
authentication component. In this case, each transition 
probability is 1, i.e., only one leaving transition from each 
state. The architect sets the pof values for each state 
heuristically, and these pof values then affect the transition 
probabilities. In other words, the state’s pof value reduces 
the occurrence probability of the right state transition 
respectively. Based on values from Figure 6. the RAP tool 
automatically adds the failure state and builds the transition 
matrix p as described in Section 3. From the transition 

matrix, the RAP tool calculates the pof value for the 
passwordAuthentication component. In this case, the pof 
value for the passwordAuthentication component is 
0.000482. Similarly, pof values are given for states in the 
fingerpringAuthentication component, and the pof value of 
the component is calculated. 

 

 
Figure 6.  State diagram for the passwordAuthentication component 

To exemplify path-specific pof values, the sequence 
diagram in Figure 7. is used. The RAP tool uses this 
sequence diagram, previously calculated pof value, and 
equation 3 to calculate the path-specific pof value. Hence, a 
pof value of 0.000482 is attained for the 
passwordAuthentication component in this specific 
execution path. In this case, the independent and path-
specific pof values are the same because the 
passwordAuthentication component is only called once in 
this sequence diagram, c.f. equation 3. 

 

 
Figure 7.  Sample execution path for password authentication 

The architect stores this information in the ISMO in the 
form defined in the previous section and illustrated in Figure 
8. In the figure, grey is used to describe information added in 
this  case  example.  The  component  name  is  now  
passwordAuthentication and the version number is 1.0. 
Hence, the instance named passwordAuthentication_ver1.0 
is created under the password authentication concept in the 
ISMO. Similarly, the instance for the 
fingerprintAuthentication component is created. Both of 
these instances contain previously mentioned attributes. 
Attributes for the fingerprintAuthentication are not presented 
in the figure, however, for reasons of clarity. Calculated pof 
values are stored in the specific file called pofs. This file is 
presented in dark grey in Figure 8. because it is a separate 
part from the ISMO. MeasurementMethod contains a link to 
that file and is able to read pof values from the file. In this 
case, the file contains pof values for the 
passwordAuthentication and fingerpringAuthentication 
components. 
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Figure 8.  The content of ISMO after design time predictions 

V. CONCLUSION AND FUTURE WORK 
There is a clear connection between software reliability 

and security. An unreliable software component that 
performs security-related actions can ruin the security of the 
whole application. In this work, an approach was introduced 
to bring the results from design-time reliability predictions 
for runtime security measuring and adaptation purposes. 
Hence, the reliability of the security mechanisms can be 
taken into account when security adaptation is triggered. The 
work presented steps on how to produce an application with 
security adaptation features. Thereafter, reliability was 
predicted from design documents. Finally, these prediction 
results were stored in the ISMO, which makes it possible to 
use the prediction results at runtime. Storing the 
components’ pof values in the ISMO required some 
extensions to the ontology. Firstly, the way to present 
individual security mechanism components in the ISMO was 
added. Secondly, the attributes for pof values were added 
and finally, a new base measure for pof values was 
introduced in the ISMO. 

To our knowledge, there is no security measuring and 
adaptation approach that also uses design time information. 
Thus, the introduced approach is the first step towards 
enabling the use of the design time reliability predictions for 
runtime security measuring and adaptation. Reliability values 
are stored in a way that supports fast and easy updating. This 
is important when bug fixes for the security components are 
made. Furthermore, the real use of a component may 

produce different reliability to that initially predicted and it is 
then important to update the pof values. The presented 
approach is not restricted to one particular security 
mechanism or attribute. Hence, the software architect can 
make the decision of which attributes will be implemented in 
an adaptable manner on a case-by-case basis. 

In the future, it is important to develop security measures 
that use the components’ pof values in runtime security 
measuring. Current pof values of components can be used to 
compare different security components. Moreover, 
combining the reliability information and security level 
supported by the component offers valuable information for 
adaptation purposes. This means that the ISMO will be 
enhanced by new analysis models. The RAP tool also needs 
new features for storing information automatically to the 
ISMO. 
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