
Incident Detection for Cloud Environments

Frank Doelitzscher, Christoph Reich, Martin Knahl
Cloud Research Lab

Furtwangen University
Furtwangen, Germany

{Frank.Doelitzscher, Christoph.Reich, Martin.Knahl}
@hs-furtwangen.de

Nathan Clarke
Centre for Security, Communications and Network Research

University of Plymouth
Plymouth PL4 8AA, United Kingdom

N.Clarke@plymouth.ac.uk

Abstract—Security and privacy concerns hinder a broad
adoption of cloud computing in industry. In this paper we
identify cloud specific security risks and introduce the cloud
incident detection system Security Audit as a Service (SAaaS).
SAaaS is built on autonomous distributed agents feeding a
complex event processing engine, informing about a cloud’s
security state. In addition to technical monitoring factors like
number of open network connections business process flows can
be modelled to detect customer overlapping security incidents.
In case of identified attacks actions can be defined to protect the
cloud service assets. As contribution of this paper we provide a
high-level design of the SAaaS architecture and a first prototype
of a virtual machine agent. We show how an incident detection
system for a cloud environment should be designed to address
cloud specific security problems.

Keywords-cloud computing; security; autonomous agents.

I. INTRODUCTION

Enterprise analysts and research identified cloud specific
security problems as the major research area in cloud
computing [1][2][3][4]. Since security is still a competitive
challenge for classic IT environments it is even more for
cloud environments due to its characteristics like shared re-
sources, multitenancy, access from everywhere, on-demand
availability and 3rd party hosting. Although existing rec-
ommendations (ITIL), standards (ISO 27001:2005 and laws
(e.g., Germanys Federal Data Protection Act) provide well-
established security and privacy rulesets for data center
providers, research [5][1] is showing they are not sufficient
for cloud environments. In classic IT infrastructures secu-
rity audits and penetration tests are used to document a
datacenter’s compliance to security best practices or laws.
But, the major shortcoming of a traditional security audit
is that it only provides a snapshot of an environments’
security state at a given time (time of the audit was per-
formed). This is adequate since classic IT infrastructures
don’t change that frequently. But because of the mentioned
cloud characteristics above it is not sufficient for auditing a
cloud environment. A cloud audit needs to consider the point
of time when the infrastructure changes and the ability to
decide if this change is considered as normal. Knowledge
of underlying business processes is needed, for example that

a new Virtual Machine (VM) gets created after a user’s
scalability threshold for its Webshop has been exceeded.

Therefore, we introduce an incident detection system for
cloud environments based on autonomous agents, which
collect data directly at the source, analyse and aggregate
information and distribute it considering the underlying
business process. To achieve this data interpretation gets
supported by a Security Service Level Agreements (SSLA)
policy modelling engine that allows to define monitoring
events which consider business process flows. The usage of
autonomous agents enables a behaviour anomaly detection
of cloud components while maintaining the cloud specific
flexibility. Our system respects the following cloud specific
attributes:

• high number of distributed systems
• Frequently changing infrastructure due to the scalability

advantages
• Multitenancy of users who are “owning” participating

systems with administrator rights.
In the remainder of this paper, we first describe re-

lated work (Section II). Section III introduces the Security
Audit as a Service (SAaaS) architecture which targets to
solve the mentioned problems above. Why the paradigm
of autonomous agents is valuable for incident detection
in cloud environments is discussed in Section IV and a
first SAaaS agent prototype gets presented. Subsequently
(Section V), we discuss cloud specific security issues, which
are addressed by the presented SAaaS architecture. Section
VI concludes the paper and informs about future work.

II. RELATED WORK

This section covers related research work. First, we show
current literature identifying cloud security issues. Follow-
ing, we are discussing other cloud security research projects
in contrast to SAaaS and the usage of autonomous agents
for systems security .

The most comprehensive survey about current literature
addressing cloud security issues is given by Vaquero et al.
in [3]. It categorises the most widely accepted cloud security
issues into three different domains of the Infrastructure as
a Service (IaaS) model: machine virtualization, network

100Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

virtualization and physical domain. It also proposes preven-
tion frameworks on several architectural levels to address
the identified issues. While Chen et al. state in [4] that
many IaaS-related cloud security problems are problems
of traditionally computing solved by presented technology
frameworks it also demands an architecture enabling “mu-
tual trust” for cloud user and cloud provider. Both papers
confirm and complete the cloud specific security issues
identified by our research.

Raj et al. [6] introduce a virtualization service imple-
mented as Xen VM extensions, which provides Role Based
Access Control (RBAC) based on a trust value of a VM.
This trust is based upon a VMs attributes like number
of open network connections. Access to different cloud
services like file access is given on a VMs’ trust value.
The presented implementation methods are following the
same idea as the SAaaS architecture: trust generation via
behavioural monitoring to build a “normal” cloud usage
profile. The implementation presented is mainly based on
Xen tools. Since SAaaS is build upon the CloudIA infras-
tructure which uses KVM corresponding tools need to be
identified/implemented.

Zamboni et al. present in [7] how traditional Intrusion
Detection Systems (IDS) can be enhanced by using au-
tonomous agents. They confirm the advantages of using
autonomous agents in regards to scalability and system over-
lapping security event detection. In contrast to our SAaaS
architecture their research is focusing on the detection of
intrusions into a relatively closed environment whereas our
work applies an open (cloud) environment where incidents
like abuse of resources needs to be detected. Mo et al.
introduce in [8] an IDS based on distributed agents using
the mobile technology. They show how mobile agents can
support anomaly detection thereby overcoming the flaws of
traditional intrusion detection in accuracy and performance.
The paradigm of cooperating distributed autonomous agents
and its corresponding advantages for IDS’ is shown by
Sengupta et al. in [9]. The presented advantages apply for
our SAaaS agents as well.

III. SECURITY AUDIT AS A SERVICE ARCHITECTURE

While distributed monitoring sensors are a well known
procedure in intrusion detection systems (IDS) for traditional
IT systems they do not cover the security needs of cloud
environments. They are not flexible enough to monitor
such a complex environment in a user manageable fashion.
Mostly because existing architectures are built around a
single monolithic entity which is not scalable enough to do
data collection and processing in an efficient and meaningful
way [10]. To mitigate this, we propose an autonomous
agent-based intrusion detection system for cloud computing:
Security Audit as a Service (SAaaS). The SAaaS architec-
ture aims to support the following scenarios.

A. SAaaS Target Scenarios

A) Monitoring and audit of cloud instances User
VMs run in a cloud infrastructure are equipped with an
SAaaS agent. The user defines Security Service Level
Agreements defining which behaviour of this VM in
considered “normal”, which VM components are to be
monitored and how to alert in case of system deviation
from the defined manner. The status gets conditioned in a
user friendly format in a webportal - the SAaaS security
dashboard. This continuous monitoring creates transparency
about the security status of a user’s cloud VMs hence
increasing the user’s trust into the cloud environment.

B.) Cloud infrastructure monitoring and audit The
security status of the entire cloud environment, especially
the cloud management system, access to customer data
and data paths are monitored. This way customer-spanning
monitoring is used by the cloud provider as well as a 3rd
party, like a security service provider to ensure the overall
cloud security status. Standardised interfaces enable security
audits of a cloud infrastructure which can lead to a cloud
security certification.

B. Typical SAaaS Use Case

To fullfill the presented scenarios we are proposing to use
an autonomous agent system to monitor cloud environments.
Before explaining the advantages of autonomous agents in
detail we briefly want to explain the whole SAaaS event
processing sequence. To support this consider the following
example. Given a typical web application system consisting
of a webserver, a load balancer and a database backend de-
ployed at three VMs in a cloud. All VMs are equipped with
SAaaS agents. The user’s administrator installs the three
VMs with the necessary software, e.g., Apache webserver,
Tomcat load balancer, MySQL database. After the functional
configuration the monitoring configuration gets designed in
form of Security Service Level Agreements (SSLAs). This
can be technical rules like allowed user logins, allowed
network protocols and connections between VMs, or that
the webserver configuration is finished and an alarm should
be raised if changes to its config files are detected. Further-
more SSLAs allow to design rules considering the system’s
business flow. For example: if a request (using the allowed
protocols) to the load balancer or database VM without a
preceding service request to the web application is detected
this is rated as an abnormal behaviour which does not occur
in a valid business process flow. Therefore, a monitoring
event should be generated. If an event gets generated it first
will be preprocessed by the SAaaS agent which is responsi-
ble for the monitoring target. This is important to reduce
the overall messages sent to the cloud event processing
system especially in large cloud computing environments.
The SAaaS agent filters out possible VM dependent events
like a started web application session from IP 1.2.3.4. A

101Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Figure 1. SAaaS event processing sequence

more abstracted event gets send to the cloud event processing
system (a complex event processing (CEP) engine) to detect
(possible) user overlapping security incidences. This could
be a message containing the number of not completed web
shop transactions by IP IP 1.2.3.4 to pre-detect a Denial
of Service attack. If the CEP engine detects an abnormal
behaviour actions can be executed like warning the cloud
provider’s Computer Emergency Response Team, adjusting
firewall settings or informing the cloud customer’s admin.

Figure 1 gives a high level overview how events are
generated, preprocessed, combined and forwarded within
the SAaaS architecture. It can be divided into three logical
layers: input, processing and output.

Input: The SAaaS architecture gets its monitoring in-
formation from distributed agents which are positioned at
key points of the cloud’s infrastructure to detect abnormal
activities in a cloud environment. Possible key points are:
running VMs of cloud users, the VM hosting systems,
data storage, network transition points like virtual switches,
hardware switches, firewalls, and especially the cloud man-
agement system. A VM agent integrates several monitor
and policy enforcing tools. Therefore, it loads necessary
VM agent plugins to interact with stand-alone tools like
process monitor, intrusion detection system or anti virus
scanner. It gets installed on a VM likewise on a cloud host. A
logging component is recording the chronological sequence
of occurrences building audit trails.

Processing: Each SAaaS agent receives security policies
from the SSLA policy modeller component. Through se-
curity policies each agent gets a rule set (its intelligence)
specifying actions in case of a specific occurrence (e.g.,
modification of a freezed config file). Thus every occurrence
gets first preprocessed by an agent which reduces commu-
nication between VM agent and Cloud Management Agent.
Self learning algorithms will be evaluated to improve an
agents’ intelligence. The Security Service Level
Agreements policy modeller consists of a policy

editor, a VM security configurator and a semantic correlation
modeller to enable cloud user to design Security Service
Level Agreements and security policies. An example for a
SSLA rule could be: “In case of a successfully detected
rootkit attack on a VM running on the same cloud as a
users VM, the user VM gets moved to a different host
to minish the risk of further damage.” whereas a security
policy could state: “In case a modification attempt of a
file within /etc/php5/ gets detected, deny it and send an
email to the cloud administrator.” Security policies get send
from the Security Audit Service to the corresponding agents.
Using the monitoring information of the distributes agents
in combination with the SSLAs a cloud behaviour
model is build up for every cloud user. SSLAs are also
used as input for the Cloud Management Agent to detect user
overlapping audit events. Forwarded higher level events are
processed by a complex event processing (CEP)
engine. It is also fed with the modelled business flows
from the Business Flow Modeller to aggregate in-
formation and detect behaviour anomalies. Countermeasures
can then be applied to early detect and prohibit security
or privacy breaches. The Report Generator conditions
events, corresponding security status as well as audit report
results in a human friendly presentation.

Presentation: As a single interaction point to cloud
users the Security Dashboard provides usage profiles,
trends, anomalies and cloud instances’ security status (e.g.,
patch level). Information are organised in different granular
hierarchies depending on the information detail necessary.
At the highest level a simple three colour indicator informs
about a users cloud services overall status.

Communication between the distributed agents and the
Security Dashboard is handled by an Event Service.
Events will use a standardised message format which is not
defined yet. Our first prototype implements the Intrusion
Detection Message Exchange Format (IDMEF). Events are
also stored in an Event Archive.

IV. ANOMALY DETECTION USING AUTONOMOUS
AGENTS

In this section, we are showing the advantages of using
distributed autonomous agents for incident detection in a
cloud environment. Therefore, we first give a definition what
can be considered as an autonomous agent.

A. Agent Definition

An agent can be defined as [11]:
“... a software entity which functions continuously and
autonomously in a particular environment ... able to carry
out activities in a flexible and intelligent manner that is
responsive to changes in the environment ... Ideally, an agent
that functions continuously ... would be able to learn from
its experience. In addition, we expect an agent that inhabits

102Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

an environment with other agents and processes to be able
to communicate and cooperate with them ...”

Since the agents in the SAaaS architecture are running
independently, not necessarily connected to a certain central
instance, are self-defending and self-acting, we term them
autonomous. Agents can receive data from other instances,
e.g., the policy module and send information to other
instances like other agents or SAaaS’ event processing
system. The “central” event processing system gets itself
implemented as an agent which can be scaled and distributed
over multiple VMs.

B. How agents can improve incident detection

Incident detection in cloud environments is a non trivial
task due to its characteristics as discussed in Section I.
Therefore, it is important to have a high number of sensors
capturing simple events. Preprocessed and combined
complex events can be generated reducing the possibility of
“event storms”. Combined with knowledge about business
process flows it will be possible to detect security incidents
like discussed in Section V, while keeping the network load
low.

The usage of autonomous agents delivers this possibility
because agents are independent units that can be added,
removed or reconfigurated during runtime without altering
other components. Thus, the amount of monitoring entities
(e.g., network connections of a VM, running processes,
storage access, etc.) of a cloud instance can be changed
without restarting the incident detection system. Simultane-
ously using agents can save computing resources since the
underlying business process flow can be taken into account.
Imagine a business process of a web application P1 where
user Bob adds a new user to a user database by filling
out a web form. By pressing the “Save” button a legal
request R gets executed as part of business process P1. An
agent A monitoring database access can get moved at the
beginning of R to the request-executing VM V1, monitoring
the data access during process time and gets deleted from
V1 after P is finished. Furthermore agents can be updated to
new versions (depending their interface remains unchanged)
without restarting the whole incident detection system or
other SAaaS agents running at a VM.

While single agents can monitor simple events (e.g., user
login on VM) and share them with other agents complex
events can be detected. Given the scenario of a successful
unauthorised login of an attacker at a virtual machine
VM2, misusing a webserver’s directory to deposit malicious
content for instance a trojan. Agent A1 monitors the user
login, agent A2 detects the change of a directory content
and agent A3 detects a download of a not known file (the
trojan). Instead of sending those three simple messages to a
central event processing unit a VM agent can collect them
conditioning one higher level event message that VM2 was

hijacked. This can result in a predefined action by the Cloud
Management Agent, e.g., moving a hijacked VM into a
quarantine environment, alerting the user and simultaneously
starting a fresh instance of VM2 based on its VM image.

By ordering agents in a hierarchical structure and prepro-
cessing of detected events reduces network load originated
from the incidents detection system. Furthermore this makes
the system more scalable by reducing data sent to upper sys-
tem layers. This is introduced and used in [12]. Combining
events from system deployed agents (e.g., VM agent, host
agent) and infrastructure monitoring agents (network agent,
firewall agent) incident detection is not limited to either host
or network based sensors which is especially important for
the characteristics of cloud environments.

Furthermore using autonomous agents has advantages in
case of a system failure. Agents can monitor the existence of
co-located agents. If an agent stops for whatever reasons this
stays not undetected. Concepts of asymmetric cryptography
or Trusted Platform Module (TPM) technology can be used
to guarantee the integrity of a (re-)started agent. If an agent
stops the damage is restricted to this single agent or a small
subset of connected agents which are requiring information
from this agent.

C. SAaaS Agent prototype

For the SAaaS architecture we evaluated existing agent
frameworks with the following requirements:

• Agents can be deployed, moved, updated during run-
time

• Agent performance
• Open Source software platform
• Documentation & community support
Since our cloud environment at HFU’s Cloud Research

Lab CloudIA [13] is build around the cloud management
system Open Nebula another requirement was the agent
programming language: Java. As a result we choose the
Java Agent DEvelopment Platform (JADE), which enables
the implementation of multi-agent systems and complies to
FIPA (IEEE Computer Society standards organisation for
agent-based technology and its interoperability with other
technologies) specifications. Furthermore it already provides
a user interface which alleviates agents creation, deployment
and testing.

Figure 2 illustrates a basic agent architecture we already
assumed in the SAaaS Use Case presentation in Section
III-B. It shows three SAaaS VM agents. Agents life in an
agent platform which provides them with basic services such
as message delivery. A platform is composed of one or more
Containers. Containers can be executed on different hosts
thus achieving a distributed platform. Each container can
contain zero or more agents [14]. To provide monitoring
functionality a VM agent interacts through agent plugins
with stand-alone tools like process monitor, intrusion de-
tection system or anti virus scanner, as depicted in Figure

103Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Figure 2. Basic SAaaS agent design

2. To harness the potential of cloud computing an agent
can be deployed to a VM on-demand according to the
SSLA policies a user defines. Different agents based on
modelled business processes are stored within an agent
repository. To be able to move a JADE agent to a running
cloud instance the Inter Platform Mobility Service (IPMS)
by Cucurull et al. [15] was integrated. This supports the
presented advantage of deploying agents on-demand if a
designed business process flow was started (as described in
Section IV-B). Though this implementation is up to future
work.

As a first prototype, a two layered agent platform was
developed, consisting of a VM agent running inside a
VM, a Cloud Management Agent running as a service
at a dedicated VM feeding information to a Security
Dashboard. Since all cloud VMs in CloudIA are Linux
based, only Open Source Linux tools were considered during
our research. Two notification mechanisms were imple-
mented: a) the tool sends agent compatible events directly
to the agent plugin; b) the tool writes events in a proprietary
format into a logfile which gets parsed by an agent plugin.
As for mechanism a) the filesystem changes monitoring tool
inotify was used, whereas for mechanism b) fail2ban [15],
an intrusion prevention framework was chosen.

For demo purposes a simple web frontend was written
which offers to launch several attack scenarios on a VM
agent equipped VM in CloudIA. Before/After tests were
performed to validate, that an attack was detected and
(depending on the plugin’s configuration) prohibited. A
prototype version of the Security Dashboard, showing a
signal light indicator informed about occurring events. When
started it shows a green light. After launching an attack,
the Security Dashboard indicator light changes its colour to
yellow or red as defined in a severity matrix given the type
of detected attack.

D. Agent Performance Test

It is essential for the SAaaS architecture that the agents are
very efficient not causing a high offset of resource consump-

tion. JADE agent performance is very low as demonstrated
by E.Cortese et al. in [16]. They show that CPU overhead is
very low. Average round trip time of a message between to
agents (request message, answer message) with a message
content of seven characters takes only 13,4 ms. Jurasovic et
al. [17] show that even with increasing message size the
round trip time does not increase significantly. Also the
message overhead by the agent communication does not
increase significantly with increasing message size. Details
about the used test lab are given in the mentioned literature.

In our first prototype, we wanted to see how fast an agent
can be deployed to a new platform. All tests were done
at the university’s research cloud infrastructure CloudIA.
Hardware of machines hosting the VMs was: 8x CPU: In-
tel(R) Xeon(R) CPU E5504 @ 2.00GHz 64-bit architecture,
12 GB of memory and 1 Gigabit Ethernet. Each VM was
assigned with 512 MB RAM, 274 MB Swap, 1 CPU and
4GB HDD local storage. Over all test runs we confirmed that
the average time for an agent move is below 1,5 seconds.
This proves the applicability of the JADE agent platform to
support the presented SAaaS use case.

V. DISCUSSION - CLOUD SPECIFIC SECURITY ISSUES
ADDRESSED BY SAAAS

The German Federal Office for Information Security
publishes the IT baseline protection catalogues enabling
enterprises to achieve an appropriate security level for all
types of information. The catalogues were extended by a
special module covering virtualization in 2010. In a com-
prehensive study on all IT baseline protection catalogues as
well as current scientific literature available [1][18][2][3][4],
we made a comparison between classic IT-Housing, IT-
Outsourcing and cloud computing. The following cloud
specific security issues were identified as solvable by the
SAaaS system:

Abuse of cloud resources Cloud computing advantages
are also used by hackers, enabling them to have a big amount
of computing power for a relatively decent price, startable
in no time. Cloud infrastructure gets used to crack WPA,
and PGP keys as well as to host malware, trojans, software
exploits used by phishing attacks or to build botnets like
the Zeus botnet. The problem of malicious insiders also
exists in classical IT-Outsourcing but gets amplified in cloud
computing through the lack of transparency into provider
process and procedure. This issue affects authorisation,
integrity, non-repudiation and privacy. Strong monitoring
of user activities on all cloud infrastructure components is
necessary to increase transparency. The presented SAaaS
scenario A) Monitoring and audit of cloud instances ad-
dresses this problem.

Missing security monitoring in cloud infrastructure
Security incidents in cloud environments occur and (nor-
mally) get fixed by the cloud provider. But to our best
knowledge no cloud provider so far provides a system

104Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

which informs user promptly if the cloud infrastructure gets
attacked, enabling them to evaluate the risk of keeping their
cloud services productive during the attack. Thereby the
customer must not necessarily be a victim of the attack,
but still might be informed to decide about the continuity of
his running cloud service. Furthermore no cloud provider so
far shares information about possible security issues caused
by software running directly on cloud host machines. In an
event of a possible 0-day exploit in software running on
cloud hosts (e.g., hypervisor, OS kernel) cloud customer
blindly depend on a working patch management of the
cloud provider. The presented SAaaS scenario B) Cloud
infrastructure monitoring and audit addresses this problem.

Defective isolation of shared resources In cloud comput-
ing isolation in depth is not easily achievable due to usage of
rather complex virtualization technology like VMware, Xen
or KVM. Persistent storage is shared between customers
as well. Cloud provider advertise implemented reliability
measures to pretend data loss like replicating data up to six
times. In contrast customer have no possibility to prove if all
these copies get securely erased in case they quit with the
provider and this storage gets newly assigned to a different
customer. While the presented SAaaS architecture does not
directly increase isolation in depth it adds to the detection
of security breaches helping to contain its damage by the
presented actions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Security Audit as a
Service architecture to mitigate the shortcoming traditional
audit systems suffer to audit cloud computing environments.
We showed the advantages of using autonomous agents
as a source for sensor information. We explained how
incident detection in clouds can be done by adding business
process information to technical monitored events to perform
anomaly detection in clouds.

As for future work, we identified the following tasks:
a) comprehensive research in anomaly detection algorithms,
b) comprehensive research in complex event processing, c)
development of the SSLA policy modeller, d) development
of SAaaS agents.

ACKNOWLEDGMENT

This research is supported by the German Federal Min-
istry of Education and Research (BMBF) through the re-
search grant number 01BY1116.

REFERENCES
[1] Cloud Security Alliance, “Security Guidance for Critical

Areas of Focus in Cloud Computing v2.1,” 12 2009.
[2] European Network and Information Security Agency, “Cloud

Computing Security Risk Assessment,” Tech. Rep., 11 2009.
[3] L. Vaquero, L. Rodero-Merino, and D. Morn, “Locking the

sky: a survey on iaas cloud security,” Computing, vol. 91, pp.
93–118.

[4] Y. Chen, V. Paxson, and R. H. Katz, “What’s New About
Cloud Computing Security?” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2010-5, 01
2010.

[5] F. Doelitzscher, C. Reich, and A. Sulistio, “Designing cloud
services adhering to government privacy laws,” in Proceed-
ings of 10th IEEE International Conference on Computer and
Information Technology (CIT 2010), 2010, pp. 930–935.

[6] H. Raj and K. Schwan, “Extending virtualization services
with trust guarantees via behavioral monitoring,” in Proceed-
ings of the 1st EuroSys Workshop on Virtualization Technol-
ogy for Dependable Systems, ser. VDTS ’09. New York,
NY, USA: ACM, 2009, pp. 24–29.

[7] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff,
E. Spafford, and D. Zamboni, “An architecture for intrusion
detection using autonomous agents,” in Computer Security
Applications Conference, 1998, Proceedings., 14th Annual,
dec 1998, pp. 13 –24.

[8] Y. Mo, Y. Ma, and L. Xu, “Design and implementation of
intrusion detection based on mobile agents,” in IT in Medicine
and Education, 2008. ITME 2008. IEEE International Sym-
posium on, dec. 2008, pp. 278 –281.

[9] J. Sen, I. Sengupta, and P. Chowdhury, “An architecture of
a distributed intrusion detection system using cooperating
agents,” in Computing Informatics, 2006. ICOCI ’06. Inter-
national Conference on, june 2006, pp. 1 –6.

[10] E. H. Spafford and D. Zamboni, “Intrusion detection using
autonomous agents,” Computer Networks, vol. 34, no. 4, pp.
547 – 570, 2000, recent Advances in Intrusion Detection
Systems.

[11] J. M. Bradshaw, An introduction to software agents. Cam-
bridge, MA, USA: MIT Press, 1997, pp. 3–46.

[12] S. Staniford-chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagl, K. Levitt, C. Wee, R. Yip, and D. Zerkle,
“Grids - a graph based intrusion detection system for large
networks,” in In Proceedings of the 19th National Information
Systems Security Conference, 1996, pp. 361–370.

[13] A. Sulistio, C. Reich, and F. Doelitzscher, “Cloud Infrastruc-
ture & Applications - CloudIA,” in Proceedings of the 1st In-
ternational Conference on Cloud Computing (CloudCom’09),
Beijing, China, 2009.

[14] D. Grimshaw, “JADE Administration Tutorial,”
http://jade.tilab.com/doc/tutorials/JADEAdmin, 06.09.2011.

[15] J. Cucurull, R. Mart, G. Navarro-Arribas, S. Robles,
B. Overeinder, and J. Borrell, “Agent mobility architecture
based on ieee-fipa standards,” Computer Communications,
vol. 32, no. 4, pp. 712 – 729, 2009.

[16] E. Cortese, F. Quarta, G. Vitaglione, T. I. Lab, C. Direzionale,
J. Message, and T. System, “Scalability and performance of
jade message transport system,” 2002.

[17] K. Jurasovic, G. Jezic, and M. Kusek, “A perfor-
mance analysis of multi-agent systems.” ITSSA, vol. 1,
no. 4, pp. 335–342, 2006, http://dblp.uni-trier.de/db/ jour-
nals/itssa/itssa1.html#JurasovicJK06, 06.09.2011.

[18] Cloud Security Alliance, “Top Threats to Cloud Computing
V1.0,” 2010, https://cloudsecurityalliance.org/topthreats.html,
06.09.2011.

105Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

