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Abstract—Embedding forecasting algorithms into routing
management systems can play an important role in guaranteeing
QoS in IP networks. In this paper, we propose an intelligent
routing framework, consisting of a situation aware multipath
routing algorithm and a routing management system involving
neural networks-based predictors with multi-task learning. The
solution is characterized by QoS-awareness, load balancing and
self-management. The main goal is to offer a proof-of-concept
by practical implementation of predictive QoS-aware multipath
routing in a real test environment. The proposed solution is
compared with the OSPF and ECMP routing protocols in
case of congested network links. The experimental results show
that traffic prediction enables proactive routing management
and improves the global performance of the network through
congestion control and avoidance.

Keywords–cross-layer QoS; multipath routing; neural networks;
self-management; traffic prediction

I. INTRODUCTION

Ensuring Quality of Service (QoS) over the Internet is

difficult, especially in the case of real-time multimedia ap-

plications where the retransmission of packets is not a viable

option. The occurrence of congestion can severely degrade

the quality of transmissions due to packet losses, increased

delay and jitter [1]. Embedding forecasting algorithms into

routing management systems can play an important role in

guaranteeing QoS in IP networks. Traffic prediction enables

proactive network management which improves the global

performance of the network through congestion control and

prevention.

Initially, it was believed that adaptive routing protocols,

such as OSPF (Open Shortest Path First) [2], can react to

congestion. Unfortunately, congested links often remain unde-

tected because of the way OSPF assesses link connectivity. If

a link flaps constantly due to congestion, but at least 1 out of

every 4 Hello messages is received, OSPF does not detect the

problem. If the congestion is severe and no Hello messages

are received from a neighbor, it is automatically considered

down because OSPF makes no distinction between hardware

failures and congestion. Thus, the involved router will not be

further used and all the traffic will be rerouted to a different

link which in turn can also become congested. The solution

adopted by OSPF does not resolve the underlying problem,

that of transmitting too much traffic on a single link.

In the present Internet, congestion control mechanisms rely

on queue management algorithms (dropping packets randomly

or based on their priority) or TCP (Transmission Control

Protocol) congestion avoidance (reducing the sending rate).

From the end-user perspective, these solutions are not optimal

because they mean lost packets or a reduced bitrate, both af-

fecting the quality of transmission, especially the QoE (Quality

of Experience) of multimedia content.

The main motivation for this paper is to resolve the above

mentioned limitations of legacy routing protocols and conges-

tion control mechanisms by applying the multipath routing

paradigm. We focus on the problems caused by congested

network links and our goal is to improve the overall network

performance by load balancing and prediction of network traf-

fic. We envision an intelligent routing framework, consisting

of the SAMP (Situation Aware Multipath) routing algorithm

[3] and a routing management system.

The routing strategy presented herein is characterized by

self-management and QoS-awareness, achieved via monitoring

link resources through cross-layering techniques. QoS-aware

routing means that not only shortest paths, but traffic-aware

shortest paths are computed for optimal network performance.

The traffic predictors integrated into the routing management

system enable proactive decision-making, as opposed to re-

acting to past events. Employing a prediction-based approach

helps to match network resources to the traffic demand [4].

Thanks to the early warning, a prediction-based approach will

be faster, in terms of congestion detection and elimination,

than reactive methods which detect congestion only after

it significantly influenced the operation of the network, as

demonstrated in [5].

The rest of this paper is organized as follows. Section

II briefly presents previous work regarding prediction used

in combination with routing systems. In Section III, neural

network traffic predictors with multi-task learning approaches

are described. Section IV presents the multipath routing

framework. In Section V, the practical testbed is described,

followed by the experimental results in Section VI. Section

VII concludes the paper and discusses future work.

II. RELATED WORK

In the literature, several works address the topic of network

parameter prediction techniques integrated into single-path [6],
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[7], [8] or multipath routing solutions [5], [9], [10].

The authors of [6] propose the PBS (Prediction Based

Routing) heuristic mechanism that predicts the availability of

links/routes and selects routes without taking into account

network state information. In [7], a neural networks-based

queuing delay prediction mechanism is integrated with a

MANET proactive routing protocol OLSR (Optimized Link

State Routing), increasing the packet delivery ratio and reduc-

ing the end-to-end delay. Masip-Bruin et al. [8] designed a

routing technique based on CBR (Constraint-Based Routing)

that combines the strength of prediction with an innovative

link-state cost. CBR is applied in circuit-switched networks

and it reduces the impact of routing inaccuracy on the blocking

probability.

A data forwarding algorithm over multipath is described in

[5]. The proposed solution is based on linear prediction and

particle swarm optimization and it improves the QoS of real-

time applications. Li et al. [9] proposed a Multipath Routing

Algorithm based on Traffic Prediction (MRATP) to be used

in Wireless Mesh Networks (WMN) in order to guarantee

end-to-end QoS. A method for multipath selection based on

prediction in wireless networks is introduced in [10] where

neural networks are used to infer the types of the links and the

paths are chosen based on predicted incremental throughput.

In the literature, a predictive approach is taken into consider-

ation either for single-path routing approaches or for multipath

routing over wireless networks. Based on this observation, we

chose to integrate a network parameter prediction algorithm

into a multipath routing solution over wired networks. In this

way, the routing metrics will depend on predicted traffic condi-

tions. Thereby, we intend to identify congestion in the network

faster than through simple monitoring. This is achieved by

predicting the available transfer rate on unidirectional network

links, as opposed to other solutions which predict: a) the rate

of packet losses [5], b) the delay in routing queues [7], c) the

type of wireless links and the incremental throughput [10] or

d) the bitrate of video flows [11], etc. Reaction to congestion is

manifested by rerouting traffic, unlike alternatives such as: a)

reduced video bitrate [1], b) advanced allocation of transfer

rate for future transmissions [4], [8], [11], c) controlled

dropping of packets [12], etc.

III. NEURAL NETWORKS-BASED PREDICTION

The prediction of network traffic is possible because it

presents a strong correlation between chronologically ordered

values. The most widely used traffic forecasting methods

involve Neural Networks (NN) [13], [14], [15], etc. NNs

are employed for modeling and predicting traffic because of

their strong self-learning and self-adaptive capabilities through

which they are able to learn complex patterns. NNs are

characterized by nonlinear mapping and generalization ability,

robustness, fault tolerance, parallel processing, etc.

A NN consists of several layers of interconnected nodes

(neurons): a) an input layer, b) one or more hidden layers

and c) an output layer. The most popular NN architecture

is feed-forward in which the information travels through the

network in the forward direction: from the input layer towards

the output layer. The NN model represents a nonparametric

and adaptive modeling approach, the architecture and the

parameters being determined solely by the observed data.

Using a NN as a predictor involves two phases: a) the

training phase and b) the prediction phase. In the training

phase, the training set is presented at the input layer and

the parameters of the NN are dynamically adjusted to achieve

the desired output. The prediction phase represents the testing

of the NN. A new input (not included in the training set)

is presented to the NN and the output, which represents the

predicted value, is calculated.

Usually, NN predictors have a single output node and

they focus on a single main task, i.e., predicting xt+1 based

on {x1, x2, . . . , xt}. Thereby, the predictor neglects infor-

mation hidden in other tasks (e.g. the relationship between

the historical data and xt+2, although both tasks belong to

the same dataset). The Multi-Task Learning (MTL) paradigm

is introduced to improve the generalization performance of

NNs. A main task is trained simultaneously with extra tasks,

sharing the hidden layer of the NN, as shown in Figure 1. By

learning multiple tasks simultaneously, the NN can achieve

better prediction accuracy. For time series forecasting through

the MTL concept, usually, two extra tasks are chosen, namely

the prediction of xt and xt+2, which are closely related to the

main task xt+1, as in [16] and [17].
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Fig. 1. NN predictor with multi-task learning

In our experiments, we selected a NN with only one hidden

layer because more layers would make the network more time-

and resource-consuming, but added complexity would not be

justified by the improvement of the prediction accuracy.

IV. MULTIPATH ROUTING FRAMEWORK

The main idea of the proposed multipath routing framework

is to separate the monitoring from the routing process itself:

the link monitoring and the communication between neigh-

boring nodes is realized by the routing management system,

while the multipath routing algorithm deals with the routing

decisions and the packet forwarding. Thus, the information

regarding the state of the network becomes reusable.

A. Multipath Routing Algorithm

The multipath routing algorithm used in this paper is called

SAMP (Situation Aware Multipath). Practical implementation

of SAMP and simulation results are presented in detail in

our previous work [18]. To ensure efficient and high quality
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transmissions, SAMP relies on the information provided by the

routing management system regarding the network status. The

key features of this solution are load balancing and congestion

avoidance by fast rerouting.

1) Load balancing

To overcome the problem of inefficient link resource uti-

lization, load balancing is employed. In order to divide the

traffic among multiple routes, a split granularity at flow level

is used, avoiding the problem of out-of-order packet arrivals. A

flow is identified by the triplet: source IP address, destination

IP address and destination port. Because SAMP takes into

account the physical state of the network, the flows will be

routed along paths that ensure the application’s requirements

in terms of transfer rate and delay.

With the purpose of providing scalability and decreasing the

complexity of the solution, the network is divided into multiple

routing domains, each consisting of two types of routers:

• AR (Adaptive Router): located inside the domain and

performing situation aware routing (reacting in case of

congestion);

• AMR (Adaptive Multipath Router): located at the edge of

the domain. Besides the situation aware routing features,

it also achieves load balancing for the traffic coming from

outside the domain.

The traffic is divided into elastic end inelastic flows [20].

The elastic flows are handled by the main routing table because

they are not sensitive to delay- and throughput variations.

The inelastic flows (e.g. video, VoIP, etc.) are identified

and transmitted on multiple paths. This forwarding method

is carried out using the VRF (Virtual Routing Forwarding)

concept: depending on the path that is allocated to a flow, the

corresponding routing table is used.

The AMR dictates how a flow is routed in a domain. This

is possible because all the nodes have a global view of the

network, possessing the necessary information concerning the

behavior of all other routers in any situation. The proposed

solution does not impose any restrictions regarding the number

of multipath domains/nodes, but the complexity increases

along with the number of domains.

2) Congestion avoidance by fast rerouting

In case of congestion on one of the links, flows transmitted

along the affected link are gradually rerouted, one by one, until

the congestion disappears. The new selected path for a flow

will be the one that offers the highest available transfer rate and

has the lowest delay. Only multimedia flows are rerouted, the

rest of the traffic being considered background traffic. Because

all paths in the network are precomputed, the algorithm does

not dependent on the number of congested/failed links.

B. Routing Management System

The Routing Management System (RMS) is a highly dis-

tributed self-managing system, which is capable to dynami-

cally adapt to external events, minimizing the need for human

intervention. It consists of Local Management Entities (LME)

located on every node of the network (Figure 2). LMEs located

on different nodes communicate through XML messages,

discovering the network topology and exchanging network

status information that are stored in local databases.
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Fig. 2. Local Management Entity

LME performs real-time monitoring of the inbound links,

measuring the Available Transfer Rate (ATR) and the One

Way Delay (OWD) at the data link layer, as well as the

missing packets at the application layer. Dropped packets

can be considered an early indicator for congested links and

overloaded routers. These are monitored only for multimedia

streams, whose quality is the most likely to be influenced

by congestion. Thereby, the system employs a cross-layer

optimization strategy by making decisions at the network layer

based on information derived from lower- and upper layers.

A previous version of the proposed routing management

system is described in [21]. There are three main differences

from the previous implementation. First of all, the RMS is a

highly distributed system, as opposed to the previous solution

where the congestion detection mechanism and the network

status updates followed a centralized approach. Another dif-

ference lies in the monitoring of dropped packets. This enables

the identification of the most affected multimedia streams

which will have priority in the rerouting process. The third

and most significant difference is the integration of a network

traffic prediction module into LMEs. This represents a key

component for the adaptive congestion control scheme. It

forecasts the values of the ATR for inbound links for the next

time interval (1 second). LME can detect congestion on its

monitored links and it broadcasts this information through the

network. It indicates to the routing algorithm when to update

the routing tables. The system being highly distributed, routing

decisions are not taken synchronously on every node.

V. PERFORMANCE EVALUATION

The practical testbed illustrated in Figure 3 is used to

evaluate the performance of the proposed solution. This net-

work offers sufficient paths between the source and destination

nodes in order to employ multipath routing, but it is simple

enough to allow practical implementation. The testbed consists

of: a) six routers (R1, R2, R3, R4, R5, and R6), b) a

source node (S) and c) two destination nodes (D1 and D2).

All nodes in the network are Linux-based computers with

Fedora operating system. On each machine, several software

applications written in C++ are running:

• multipath routing application (SAMP);

• Local Management Entity (LME);
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• NNs based traffic predictors.
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Fig. 3. Practical testbed

Providing good video quality is a major problem in con-

gested networks since video traffic is both massive and in-

tolerant to packet loss or latency. We demonstrate the im-

provements brought by the described predictive QoS-aware

multipath routing framework by sending video streams from

the source node S to the destinations D1 and D2 when two

of the network links are affected by congestion. During the

experiments, three different MPEG-4 video flows, each having

an average bitrate of 1 Mbps, are sent by a VLC client over

RTP/UDP: 1) Stream #1 from S to D1, 2) Stream #2 from S

to D1, and 3) Stream #3 from S to D2.

The test scenario has a duration of 5 minutes. We generate

background traffic in the network using the iperf network

testing tool. Congestion is introduced on links R2–R3 and R2–

R6 after 1 minute and after 2 minutes, respectively. As a result,

packet losses can appear because the ATR drops below the

required rate to transmit the streams and the OWD increases.

Experiments are performed in order to compare the follow-

ing intra-domain routing approaches: Case 1) OSPF (Open

Shortest Path First) – the most widely used routing protocol in

large networks; Case 2) ECMP (Equal-Cost Multi-Path) [22]

– the only multipath solution supported by current IP routers,

and Case 3) SAMP using NNs-based traffic prediction.

The performance of the different routing solutions is mea-

sured in terms of their ability to reduce the negative effects

of congested links. We take into consideration the following

objective Video Quality (VQ) metrics of the received streams:

• Number of lost packets: determined by examining the se-

quence number in the RTP (Real-time Transport Protocol)

header;

• Magnitude of loss: the number of packets that are dropped

at each loss event, i.e., how many packets are missing

between two consecutive received packets (a magnitude

of 0 means the packet arrived successfully);

• Discontinuity counter: the frequency of detected discon-

tinuities (i.e. packet drops);

• Success Ratio (SR): the number of packets received

successfully divided by the total number of packets sent.

VI. EXPERIMENTAL RESULTS

Case 1 (OSPF)

In order to evaluate the OSPF protocol on Linux-based

machines, the Quagga Routing Software Suite [23] is used

which is an advanced routing software package that provides

a suite of TCP/IP based routing protocols.

For the tested network topology, OSPF determines the

same path between the source and the destination nodes for

all three streams, namely R1–R2–R3. After 1 minute, we

introduce congestion between R2 and R3, but OSPF does

not modify the routing tables because it does not take into

consideration the physical state of the links. As an effect, we

observe packet losses at the destination nodes and a very poor

quality of experience. At 2 minutes from the beginning of the

experiment, congestion is introduced on link R2–R6, but this

is also not detected by the OSPF protocol.

The VQ parameters of interest for the received video

streams in case of OSPF routing are shown in Table I. As we

can observe, each of the streams is characterized by significant

losses. A total number of 32485 packets are missing at the

destinations D1 and D2 out of 64977 packets sent by the source

node S, i.e., 49.99% of the transmitted packets were dropped

due to congestion.

Figure 4 presents the magnitude of loss events for each

video stream. In the first minute of the experiment, the

magnitude of loss is 0, indicating that all packets are received

at the destination nodes. It can be observed that losses appear

constantly after the link R2–R3 gets congested.

Fig. 4. Case 1 (OSPF) – Magnitude of loss

In Figure 5, the Success Ratio (SR) of the different trans-

missions is shown over the experiment duration. The SR cor-

responding to all streams starts to fall steadily after congestion

is introduced on link R2–R3, reaching a minimum of 51.41%

for Stream #1, 49.62% for Stream #2 and 48.89% for Stream

#3 at the end of the experiment. The global final SR is 50.01%.

Case 2 (ECMP)

In our experiments, the ECMP routing approach is used

in conjunction with the OSPF routing protocol in Quagga.
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Fig. 5. Case 1 (OSPF) – Success ratio over experiment duration

This represents the only available multipath solution for Linux

which allows load balancing by per-flow routing. In Linux, a

flow is defined by the source IP address and the destination

IP address. This means that, in our experiment, ECMP will

identify only two flows which will be routed on different paths:

1) Stream #1 and Stream #2 between S and D1, and 2) Stream

#3 sent from S to D2.

A major limitation of ECMP is that it only uses paths having

equal costs. Initially, in our network topology the costs of all

links were by default 10. Because there exist no multiple paths

between the source and destination networks with the same

cost, to be able to use ECMP, the cost of link R2–R3 is set

to 20. Thereby, ECMP identifies two paths with the same cost

(40): 1) R1–R2–R3: used for the first flow (Stream #1 and #2)

and 2) R1–R2–R6–R3: used for the second flow (Stream #3).

The parameters of the received video streams in case of

ECMP routing are shown in Table I. As we can observe, the

percentage of lost packets for Streams #1 and #2 is more

pronounced, than for Stream #3. This can be explained by

the fact that they are routed on different paths: the first two

are affected by congestion for a period of 4 minutes, while the

third only experiences congestion in the last 3 minutes. Out

of the total number of 64977 packets sent by S, only 44860

reached the destination nodes, i.e., 30.96% were dropped.

Figure 6 illustrates the magnitude of loss for the video

streams. In the case of Stream #1 and #2, losses appear

constantly after the first minute, while packets of Stream #3

are dropped only after 2 minutes, leading to a lower frequency

and average magnitude of loss events.

Figure 7 shows the SR of the different transmissions over

the experiment duration. The success ratio corresponding to

Stream #1 and Stream #2 starts to fall steadily after congestion

is introduced on link R2–R3, reaching at the end of the exper-

Fig. 6. Case 2 (ECMP) – Magnitude of loss

iment a minimum value of 68.86% and 65.26%, respectively.

The SR corresponding to Stream #3 decreases after link R2–

R6 is also congested, its final value being 73.08%. The global

final SR is 69.04%.

Fig. 7. Case 2 (ECMP) – Success ratio over experiment duration

Case 3 (SAMP with prediction)

The NN predictors integrated into the LMEs are imple-

mented using Flood, an open source NNs C++ library [24]. A

different NN is utilized to predict the ATR on every inbound

link monitored by a LME. In order to reduce the overall

complexity, the NNs have a small topology: 4–5–3, i.e., 4

input nodes, 5 hidden neurons and 3 output neurons. As a

training algorithm, the Quasi-Newton method is used. The

training lasted for 100 epochs and the learning rate was set

to 0.01. The NNs are trained offline (i.e. before starting the

TABLE I
PARAMETERS OF THE RECEIVED VIDEO STREAMS

Case 1 – OSPF Case 2 – ECMP Case 3 – SAMP with prediction
Stream #1 Stream #2 Stream#3 Stream #1 Stream #2 Stream#3 Stream #1 Stream #2 Stream#3

Sent packets 22567 21376 21034 22567 21376 21034 22567 21376 21034

Received packets 11602 10606 10284 15539 13950 15371 22356 21238 21034

Lost packets 10965 10770 10750 7028 7426 5663 211 138 0

% of lost packets 48.59% 50.38% 51.11% 31.14% 34.74% 26.92% 0.94% 0.65% 0%
Avg. magnitude of loss 0.945 1.015 1.045 0.452 0.532 0.369 0.009 0.006 0

Max. magnitude of loss 23 22 29 11 13 9 7 6 0

Discontinuity counter 4395 4386 4290 4283 4453 3355 139 81 0
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experiments) with a special dataset of length 200, to detect

congestions.

Until there is no congestion in the network, as illustrated in

Figure 8, the proposed multipath solution sends each stream

on a different path: 1) Stream #1 on R1–R2–R3; 2) Stream #2

on R1–R2–R6–R3, and 3) Stream #3 on R1–R4–R5–R6–R3.

p q r s
p q r s

p t u v w xy x z { t v | } x ~ z � y � z � t yy x z { t v | � �p q r s� r �
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Fig. 8. Case 3 (SAMP) – No congestion

After 1 minute, we introduce congestion on link R2–R3

by starting several UDP streams between the two nodes.

Thereby, the ATR on the affected link will decrease. By

examining values of the ATR, the local management entity

located on R3 will predict the appearance of congestion 1

second before it would be detected through simple monitoring.

LME will trigger an alarm, indicating to the routing algorithm

to recalculate the routes. The new best path followed by the

affected Stream #1 is: R1–R2–R6–R3, as shown in Figure 9.

The selection is based on the current state of the network links,

choosing the path with the highest ATR and the lowest OWD.

p q r s
p q r s
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Fig. 9. Case 3 (SAMP) – Congestion on link R2--R3

The quality of the streaming is affected just for a very short

period of time, mainly as a result of router reconfigurations.

These are not carried out synchronously due to the distributed

nature of the routing management system. At this moment,

only 121 packets corresponding to Stream #1 are lost. Note

that packets are also considered lost when they arrive out-

of-order, because rearranging them at the destination is not

feasible in case of video transmissions.

After an additional minute, congestion is introduced be-

tween nodes R2 and R6. LME on R6 detects lost packets

and predicts the congestion. As a result, the multipath routing

application will reroute the affected streams to the path used by

Stream #3, namely R1–R4–R5–R6–R3, as presented in Figure

10. During this situation, 90 packets corresponding to Stream

#1 and 138 packets from Stream #2 will be considered lost at

the destination. The percentage of lost packets at the end of

the experiments is 0.54% of the total number of packets sent.

p q r s
p q r s
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Fig. 10. Case 3 (SAMP) – Congestion on link R2--R3 and R2--R6

The VQ metrics of the received video streams when us-

ing the proposed predictive multipath routing framework are

shown in Table I. Figure 11 illustrates the magnitude of loss

events for the received videos. In case of Stream #1 there

are two short time-intervals and for Stream #2 there is one

short period in which losses occur. These correspond to the

appearance of congestion and the rerouting.

Fig. 11. Case 3 (SAMP) – Magnitude of loss

In Figure 12, the SR over the experiment duration can be

observed. The SR for Stream #1 presents two local minimums:

1) 97.56% when R2–R3 is congested and 2) 97.76% when

R2–R6 is congested; but after that, it recovers, increasing to

the final value of 99.06%. For Stream #2 the SR drops for
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a short time to 98.21% when R2–R6 is congested, but it

increases by the end of the experiment to 99.35%. The SR

for Stream #3 has a constant value of 100% because it is not

affected by congestion. The value of the global final success

ratio is 99.46%.

Fig. 12. Case 3 (SAMP) – Success ratio over experiment duration

Over the duration of the experiment, the prediction accuracy

of the ATR is very high, in terms of NMSE (Normalized Mean

Square Error) and E (Efficiency coefficient). Note that for a

perfect prediction: NMSE = 0 and E = 100%. In case of link

R2–R3, we obtain NMSE = 0.00091 and E = 99.91%, while

for link R2–R6 we get NMSE = 0.0011 and E = 99.89%.

In order to evaluate the beneficial effect of traffic forecast-

ing, we performed the same test without predictors. In this

case, the congestions is detected at a later moment, leading

to a larger percentage of lost packets: 3.51%, 1.69%, and

0% for Stream #1, #2, and #3, respectively. In conclusion,

if no prediction is used, the total loss (1.78%) is more than

three times higher then in the case of embedding NNs-based

predictors into the multipath routing framework (Table II).

TABLE II
PERCENTAGE OF LOST PACKETS

OSPF ECMP
SAMP SAMP

no prediction with prediction

Lost packets [%] 49.99 30.96 1.78 0.54

VII. CONCLUSION AND FUTURE WORK

This paper presented a multipath routing framework able

to improve the global performance of the network, in case

of congestion, by applying a predictive congestion control

scheme. The goal was to offer a proof-of-concept by practical

implementation in a real test environment. In our test scenario,

the total lost percentage was: 1) 49.99% with OSPF, 2) 30.96%

when employing ECMP, and 3) 0.54% when implementing

our proposed solution. This approach significantly improves

the link utilization and reduces the loss rate. We cannot

demonstrate it at the moment, but we foresee that similar

results would be obtained in a larger network topology. As

future work, we intend to verify the results through simulation.
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