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Abstract—The objective of this paper is to find numerical
bounds on the performances of algorithms for the placements
of phasor measurement units (PMUs) in the power grid. Given
noisy measurements and knowledge of the state correlation
matrix, we use a linear minimum mean squared error estimator
as the state estimator to formulate the PMU placement problem
as an integer programming problem. Finding the optimal
placements of a fixed number of PMUs in a large network
is prohibitively complex, forcing us to look for suboptimal
algorithms and bounds on the optimal performance. In this
paper, we present a sequence of nested bounds using matrix
pencils and generalized eigenvalues, that upper bound the
optimal performance. Finally, we numerically compare the
performances of the suboptimal solutions with the upper
bounds using the IEEE 30- and 57-bus test systems, showing
that the proposed bounds provide a valid basis for determining
the quality of different suboptimal solutions.

Keywords–phasor measurement units; matrix pencils;
generalized eigenvalues.

I. Introduction

State estimation (SE) is a key function in modern energy
management systems, where various crucial control tasks
depend on the accurate snapshots of the system state [1].
Conventional state estimators rely on the redundant mea-
surements captured by supervisory control and data acqui-
sition (SCADA) systems [1], which can only take non-
synchronized measurements. These measurements are too
infrequent to capture the dynamics of the power grid [1].
With the advent of phasor technology, time synchronized
measurements can be obtained using phasor measurement
units (PMUs) [2]. These devices take advantage of the
global positioning system (GPS) technology to provide time-
stamped measurements of the bus voltage magnitudes and
phase angles [2].

Traditional SE using SCADA measurements is nonlinear,
and is solved using iterative algorithms [3]. The PMUs,
on the other hand, can directly measure the states at the
PMU-installed buses, and the states of all the connected
buses (if enough channels are available). In fact, given the
high measurement precision and reliability of the PMUs,
we can consider the PMU measurements to be low-noise

refinements of certain states (exactly those states that are
measured by the PMUs) [2]. Since the PMUs can refine
only a small subset of all state estimates, a common task
is to refine the remaining state estimates (corresponding
to the buses not carrying PMUs) using the sparse PMU
measurements.

To measure all the state variables, the PMUs need to be
installed at around one third of all the buses [4]. Since this
goal is unlikely to be achieved in the near future, researchers
look for the best solutions to deploy PMUs at a smaller
subset of the buses, such that the state estimation error is
minimized.

In this paper, we consider the optimization problem
where we have n bus locations (where we can deploy
PMUs) and m PMUs to place (m << n). We formulate
the optimization problem to minimize the mean squared
estimation error. Finding the optimal solution for the PMU
placement problem is very difficult. In fact, it has been
shown that the problem is NP-complete [4]. This means that
there is no known efficient method to solve this problem
with computational complexity that is polynomial in n. For
this reason, heuristic approaches (e.g., greedy algorithm [5],
gradient projection algorithm [6] etc.) are typically applied
to search for good suboptimal solutions. But the question is,
how can we guarantee that a heuristic solution is close to
the optimal one, when we have no computationally feasible
method of computing the optimal solution? The only way to
guarantee the quality of a heuristic solution is to compare
it to a provable and computationally feasible performance
bound. However, for the PMU placement problem, no tight
bounds are available either. Hence, in this paper, we propose
upper bounds on the optimal solution that allow us to bound
the difference between optimal and suboptimal solutions.
Thereby, we significantly extend our prior work in [7]
by presenting nested upper bounds with complete analysis
of the bounds using matrix pencils and their generalized
eigenvalues.

Related Work on PMU Placement: There has been
much work done on finding reasonable suboptimal solutions
to the PMU placement problem. In [5], the PMU placement
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problem is formulated as an optimal experimental design
problem. A greedy approach is proposed to solve this
problem suboptimally and a lower bound is obtained on
the performance of the greedy solution when the objective
function is submodular. An estimation-theoretic approach is
proposed in [6]; after posing the optimization problem as a
linear regression problem, a convex relaxation is developed
to find a suboptimal solution. Other research has considered
PMU placement for system observability and measurement
redundancy [8][9]. Dua et al. [9] considered the phasing
of PMU deployment in an integer linear programming
framework, while [8] proposed a binary particle swarm
optimization based algorithm. In [10], the authors present a
unified description of different algorithms proposed to solve
the PMU placement problem. However, for a large network,
in the absence of the optimal solution there is no benchmark
to compare the performances of these suboptimal algorithms.

Paper Organization: The paper is organized as follows:
Section II gives the measurement model used for our anal-
ysis. The optimization problem is formulated in Section III.
We review two suboptimal algorithms in Section IV. In
Section V, a family of upper bound on the optimal solution
is found and the results are verified numerically using IEEE
30- and 57-bus test systems in Section VI. Section VII
summarizes the results of this paper and suggests directions
of future work.

Notation: Upper and lower case letters denote random
variables and their realizations, respectively; underlined let-
ters stand for vectors; boldface upper case letters denote
matrices, and In denotes the n × n identity matrix; 〈A, B〉
denotes a matrix pencil formed by matrices A and B; (·)T and
E (·) stand for transposition and expectation, respectively.

II. Model

We consider voltage magnitudes and phase angles as state
variables that are initially estimated using nonlinear SE
from SCADA data, and then further refined using sparse
PMU measurements. For introduction and justification of
this approach, see [5]. We further explain this scenario
below.

Assume there are nb buses. Let Vk and ∆k denote the
voltage magnitude and angle of the kth bus, k = 1, . . . , nb.
Let V = [V1,V2, . . . ,Vnb ]T be the state vector representing
the bus voltage magnitudes and ∆ = [∆1,∆2, . . . ,∆nb ]T

be the state vector representing the corresponding phase
angles. To make the state estimation more efficient in terms
of storage and computational costs, we assume the volt-
age magnitudes and phases to be statistically independent
random vectors [1][11]. We further assume that all the
PMUs are identical and take statistically independent voltage
magnitude and phase measurements with variances σ2

v and
σ2
δ, respectively.
Let mv and mδ be the number of PMU voltage magnitude

measurements and the number of PMU phase angle mea-

surements, respectively, where mv ≤ nb and mδ ≤ nb. Let
Zv ∈ R

mv and Zδ ∈ R
mδ be the PMU voltage magnitude

measurement vector and PMU phase angle measurement
vector, respectively. Then the PMU measurement model is:

Zv = Cv(V + σvNv), (1)
Zδ = Cδ(∆ + σδNδ), (2)

where Nv and Nδ are random noise vectors with mean zero
and covariance matrix Inb . We assume that the random noise
vectors Nv and Nδ are statistically independent of the state
vectors. Cv and Cδ are matrices that represent the positions
of the PMU placements (see Example 1). These are binary
matrices with orthonormal rows, where each row has one
‘1’. The positions of ones in the matrix Cv and Cδ denote
the position of the sensors. In order to provide a reference
point for the phase angle measurements, we assume that a
PMU is always placed at the swing bus [2].

Example 1. Figure 1 shows a 4-bus system [3] and matrices
Cv and Cδ when two PMUs are placed on buses 1 and 3.

1 2

4 3

PMU

Cv =

[
1 0 0 0
0 0 1 0

]

Cδ =

[
1 0 0 0
0 0 1 0

]

Figure 1. PMU placement in a 4 bus system

Equations (1) and (2) represent separate models for PMU
voltage magnitude and PMU phase angle measurements. We
can combine (1) and (2) into a single model equation as[

Zv

Zδ

]
=

[
Cv 0
0 Cδ

] ([
V
∆

]
+

[
σvNv

σδNδ

])
. (3)

Next, we argue that we can capture the natures of models
(1)-(3) using a single state vector X ∈ Rn and a single
measurement vector Z ∈ Rm (m ≤ n) as

Z = C(X + σN), (4)
where N and X are statistically independent zero-mean
random vectors with covariance matrices In and ΣX , respec-
tively. The following two examples illustrate this concept.

Example 2. Under the following transformations, (1) and
(4) are equivalent.

X = V − E(V), σ = σv,
Z = Zv − E(Zv), n = nb,
N = Nv, m = mv,
C = Cv.

Example 3. Under the following transformations, (3) and
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(4) are equivalent.

X =

[
V − E(V)

σv
σδ

(
∆ − E(∆)

)] , σ = σv,

Z =

 Zv − E(Zv)
σv
σδ

(
Zδ − E(Zδ)

) , n = 2nb,

N =

[
Nv
Nδ

]
, m = mv + mδ,

C =

[
Cv 0
0 Cδ

]
.

We assume that the network is observable using conven-
tional SCADA measurements and ΣX is the state covari-
ance matrix (estimated using the traditional nonlinear SE
approaches), X and N are statistically independent and C is
composed of m rows of the n × n identity matrix In.

III. Sensor placement problem

We desire to utilize the newly obtained low-noise PMU
measurement Z to make a refined estimate X̂(Z) of the entire
state vector X. To this end, we use the linear minimum mean
squared error estimator X̂(Z) given by [12]

X̂(Z) = E
(
X |Z

)
= E

(
X ZT

)
E

(
Z ZT

)−1
Z. (5)

The estimation error vector is defined as E = X − X̂(Z) and
the error covariance matrix is given by [12]

E
(
E ET

)
= ΣX − E

(
X ZT

)
E

(
Z ZT

)−1
E

(
Z XT

)
, (6)

where E
(
X ZT

)
= ΣXCT and E

(
Z ZT

)
= CΣXCT + σ2Im.

Our task is to find the matrix C∗ that minimizes the total
expected estimation error tr E

(
E ET

)
. We now define the

optimization problem as an integer programming problem
of choosing m rows of In that minimize tr E

(
E ET

)
.

Definition 1. Let C[m×n] denote the set of all m×n matrices
composed of m rows of In.

The optimization problem is then given by
C∗ = arg min

C∈C[m×n]
tr E

(
E ET

)
= arg min

C∈C[m×n]
E

(
ETE

)
. (7)

Since the first term in (6) (i.e., ΣX) does not depend on
the choice of matrix C, we can express the minimization
problem in (7) as an equivalent maximization problem using
the following definition.

Definition 2. Let the efficacy of a matrix C be defined as

J(C) ∆
= tr

{
E

(
X ZT

)
E

(
Z ZT

)−1
E

(
Z XT

)}
(8)

= tr
{[

C
(
ΣX + σ2I

)
CT

]−1
CΣ2

XCT
}
. (9)

[Note: the form in (9) is a generalized Rayleigh quotient.]

The optimization problem in (7) is then equivalent to
C∗ = arg max

C∈C[m×n]
J(C), (10)

which is an integer programming problem of choosing m
rows of the identity matrix In that maximize the efficacy.
The optimum solution to (10) requires an exhaustive search
by testing all

(
n
m

)
possible choices of m rows. Even for a

moderately sized n and m, this becomes computationally
infeasible. In fact, the sensor placement problem in the
power grid is NP-complete [4].

IV. Suboptimal solutions

Since the optimization in (10) is difficult to perform,
several algorithms that seek suboptimal but computationally
feasible solutions have been reported [5][6][7][10]. If C is a
suboptimal solution to (10), then it provides a lower bound
on the optimal efficacy J(C∗), i.e., J(C) ≤ J(C∗). Therefore,
the search for suboptimal solutions to closely approach (10)
is equivalent to constructing tight lower bounds on J(C∗).
A number of algorithms can be applied to find suboptimal
solutions. Here, for completeness, we review two such
algorithms requiring a much lower search complexity than
O

((
n
m

))
.

A. Expedient solution

This is a trivial approximate solution to consider [7]. Let
J(ek) be the efficacy of the k-th unit row vector, i.e., the
efficacy of the sensor placed at the k-th bus when m = 1.
Then using (9),

J(ek) =

n∑
i=1

(
ek ΣX eT

i

)2

ek ΣX eT
k + σ2

. (11)

We rank the vectors ek in descending order of their
efficacies J(ek). For any arbitrary m, we pick the m highest
ranked vectors ek and stack them to be the rows of the
approximate solution CE . Since this algorithm requires sort-
ing and picking m highest ranked vectors ek, it has search
complexity at most O(n log n).

This algorithm provides a useful insight into problem (10).
From (11), it is clear that we want to place sensors at buses
where the measured state is maximally correlated to the
remaining states.

B. Greedy solution

A greedy algorithm obtains an approximate solution to
(10) by making a sequence of choices [13]. At each step
t, it assumes that t sensor locations are fixed, and makes a
greedy choice where to place the (t + 1)-st sensor. Let CG

denote the solution provided by the greedy algorithm. The
algorithm can be described by the following.

Greedy Algorithm [13]
1) Set t = 1 and Ct = e∗ such that e∗ = arg maxe∈C[1×n] J(e).

2) Find e∗ = arg max
e∈C[1×n]: CteT =0

J
([

Ct
e

])
.

3) Set Ct+1 =

[
Ct
e∗

]
.

4) Increment: t ← t+1.
5) if t = m set CG = Ct and stop, else go to 2.
Note that the greedy solution may not be optimal even for

m = 2, but it has search complexity O(mn), which is much
smaller than O

((
n
m

))
required to find the optimal solution C∗.
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V. Upper bounds on the optimal efficacy

In Section IV, we considered algorithms to obtain lower
bounds on the optimal efficacy J(C∗). However, it is hard
to evaluate how well these algorithms perform compared to
J(C∗) since the optimal solution is not available for compar-
ison. Therefore, we want to obtain numerically computable
upper bound, J̄, on the optimal efficacy J(C∗) such that

J(C∗) − J(C) ≤ J̄ − J(C).
We devote this section to finding a family of upper bounds
J̄k on J(C∗) by relaxing conditions on C.

A. Definitions

To develop a family of upper bounds on the optimal
efficacy, we generalize the reward function (efficacy), and
generalize the optimization problem and its constraints.
Instead of considering two matrices Σ2

X and ΣX + σ2I, in
this section we consider a general matrix pencil 〈A, B〉,
where A and B do not necessarily equal Σ2

X and ΣX + σ2I,
respectively. Next, instead of considering matrix C whose
entries take values in the set {0, 1}, in this section we
consider an unconstrained matrix F whose entries take
values in R. Finally, we introduce a modified optimization
problem (different from the one in Section III) that leads to
the upper bounds. The following definitions set the stage.

Definition. For two n × n matrices A and B, define the
efficacy of a matrix F, with respect to the pencil 〈A, B〉, as

J〈A,B〉(F) ∆
= tr

{(
FBFT

)−1
FAFT

}
, (12)

[should the inverse (FBFT )−1 exist].

Definition. For m ≤ n, let F [m×n] be the set of all m × n
matrices with rank m.

Definition. We define F∗
〈A,B〉 to be the argument that solves

the following optimization problem

F∗〈A,B〉
∆
= arg max

F∈F [m×n]
J〈A,B〉(F) (13)

= arg max
F∈F [m×n]

tr
{(

FBFT
)−1

FAFT
}
.

Definition. We define J∗
〈A,B〉 as the solution to the optimiza-

tion problem in (13).

J∗〈A,B〉
∆
= max

F∈F [m×n]
J〈A,B〉(F) = J〈A,B〉

(
F∗〈A,B〉

)
.

B. Canonic theorem

Definition. For a matrix pencil 〈A, B〉, if a number γ j and
a vector u j satisfy the equation

Au j = γ jBu j, (14)
then γ j is called the generalized eigenvalue and u j is called
the generalized eigenvector of the pencil 〈A, B〉.

If A and B are n × n symmetric matrices, there exist
n generalized eigenvectors u1, u2, . . . , un, corresponding to
generalized eigenvalues γ1, γ2, . . . , γn. [Note: γ1, γ2, . . . , γn

need not be distinct.] We arrange the generalized eigenvalues
as the diagonal elements of a diagonal matrix D,

D ∆
=


γ1 0

. . .
0 γn

, (15)

and we arrange the generalized eigenvectors as the columns
of a matrix U,

U ∆
=

[
u1, . . . , un

]
. (16)

Theorem 1 (see [14]). Let A and B be symmetric and B
be positive definite, and let D and U denote the generalized
eigenvalue matrix and generalized eigenvector matrix as in
(15) and (16), respectively. If the eigenvalues are ordered as
γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0, then

J∗〈A,B〉 = tr
{[

Im 0
]

D
[
Im 0

]T
}

=

m∑
j=1

γ j, (17)

and F∗〈A,B〉 =
[
Im 0

]
UT =

[
u1, . . . , um

]T
. (18)

Remark 1 (see [7]). If A = Σ2
X and B = ΣX +σ2I, and λ1 ≥

· · · ≥ λn ≥ 0 are the eigenvalues of ΣX , then the generalized
eigenvalues of the pencil

〈
Σ2

X , ΣX + σ2I
〉

are γ j = λ2
j/(λ j +

σ2). Thus, using Theorem 1 we can write

J∗〈
Σ2

X ,ΣX+σ2I
〉 =

m∑
j=1

λ2
j

λ j + σ2 . (19)

To develop a family of upper bounds, we find it useful to
solve a series of modified efficacy maximization problems
for all k ≤ m. The next definition addresses the modified
efficacy maximization problem.

Definition. For any k ≤ m, we define F(k)∗
〈A,B〉 and J(k)∗

〈A,B〉 as the
solution pair of the following modified efficacy maximization

F(k)∗
〈A,B〉

∆
= arg max

F∈F [(m−k)×(n−k)]
J〈A,B〉

(Ik 0
0 F


)
, (20)

and J(k)∗
〈A,B〉

∆
= max

F∈F [(m−k)×(n−k)]
J〈A,B〉

(Ik 0
0 F


)

(21)

= J〈A,B〉

Ik 0
0 F(k)∗

〈A,B〉


 .

In order to solve the modified efficacy maximization
problem in (20) - (21), it is convenient to split the efficacy

J〈A,B〉

(Ik 0
0 F


)

into two terms such that
1) the first term does not depend on F, and
2) the second term equals the efficacy of F with respect

to a modified pencil of lower dimensions.
We formulate the split in the following lemma.

Lemma A. In the optimization problem (21), the efficacy
can be expressed as

J〈A,B〉

(Ik 0
0 F


)

= tk + J〈Ak ,Bk〉(F), (22)
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where the term tk and the modified pencil 〈Ak, Bk〉 satisfy

tk = tr
{

A
P−1

k 0
0 0


}

(23)

Ak =

P−1
k Qk

−In−k


T

A
P−1

k Qk

−In−k

 and Bk =Rk−QT
k P−1

k Qk (24)

Pk =

Ik

0


T

B
Ik

0

 and Qk =

Ik

0


T

B
 0
In−k

 and Rk =

 0
In−k


T

B
 0
In−k


(25)

Proof: For any F ∈ F [(m−k)×(n−k)], using (12) we have

J〈A,B〉

(Ik 0
0 F


)
= tr

{(Ik 0
0 F

B
Ik 0
0 F


T)−1Ik 0

0 F

A
Ik 0
0 F


T}
.

(26)
Using (25), we express B in terms of Pk, Qk and Rk as

B =

 Pk Qk

QT
k Rk

. (27)

Substituting B into (26) and using the partitioned matrix
inversion lemma [15], we write (26) as

J〈A,B〉

(Ik 0
0 F


)

= tr
{

A
P−1

k 0
0 0


}

+ tr
{P−1

k QkFT

−Im−k

 {F (
Rk −QT P−1

k Qk

)
FT

}−1
P−1

k QkFT

−Im−k


T

×

Ik 0
0 F

A
Ik 0
0 F


T}
.

Using (23)-(24), we simplify the above equation as

J〈A,B〉

(Ik 0
0 F


)

= tk + tr
{(

FBkFT
)−1

FAkFT
}

= tk + J〈Ak ,Bk〉(F).
Lemma A now lets us express the solution of the the

modified optimization problem (20)-(21) equivalently as the
solution of a regular efficacy maximization (i.e., using The-
orem 1), but for a modified matrix pencil. Hence, Lemma A
yields the following corollary of Theorem 1.

Corollary 1.1. F(k)∗
〈A,B〉 = F∗

〈Ak ,Bk〉
and J(k)∗

〈A,B〉 = tk + J∗
〈Ak ,Bk〉

.

Proof: In (22), tk does not depend on F. Therefore, the
equalities hold.

Remark 2. J(0)∗
〈A,B〉 = J∗

〈A,B〉 and J(m)∗
〈A,B〉 = tm.

C. Nested bounds

Now, using the results of Section V-B, we are ready to
develop upper bounds to the original optimization problem
(10) defined in Section III. These nested upper bounds are
obtained under the assumption that the optimal solution to
(10) is calculable for some k ≤ m. The nested upper bounds
J̄k are defined as follows.

Definition.

J̄k
∆
= max

C∈C[k×n]

 max
F∈F [(m−k)×n]

FCT =0

J〈
Σ2

X ,ΣX+σ2I
〉 ([C

F

]) (28)

From Remark 2, we clearly see that J̄0 ≥ J(C∗). We next
show that J̄k ≥ J(C∗) for any k ≤ m.

Theorem 2. For any k ≤ m, we have J̄k ≥ J (C∗) .

Proof: J(C∗) = max
C∈C[m×n]

J(C)

= max
C1∈C

[k×n]
max

C2∈C
[(m−k)×n]

C2CT
1 =0

J
([

C1
C2

])

≤ max
C1∈C

[k×n]
max

F∈F [(m−k)×n]

FCT
1 =0

J
([

C1
F

])
= J̄k, (29)

where the inequality follows from C[(m−k)×n] ⊂ F [(m−k)×n].

Remark 3. For k=0, we have J̄0 = J∗〈
Σ2

X ,ΣX+σ2I
〉 =

m∑
j=1

λ2
j

λ j+σ2 .

Remark 4. When k = m, we have J̄m = J(C∗).

We now show that the upper bounds are nested.

Theorem 3. For any k ≤ m − 1, we have J̄k ≥ J̄k+1.

Proof: J̄k+1 = max
C∈C[(k+1)×n]

max
F∈F [(m−k−1)×n]

FCT =0

J
(CF

)

= max
C1∈C

[k×n]
max

e∈C[1×n]

C1eT =0

max
F∈F [(m−k−1)×n]

F[CT
1 eT ]=0

J



C1
e
F




≤ max
C1∈C

[k×n]
max

f∈F [1×n]

C1 f T =0

max
F∈F [(m−k−1)×n]

F
[
CT

1 f T
]
=0

J



C1
f

F




= max
C1∈C

[k×n]
max

F1∈F
[(m−k)×n]

F1CT
1 =0

J
(C1

F1


)

= J̄k,

where the inequality follows from C[1×n] ⊂ F [1×n].

Corollary 3.1.
m∑

j=1

λ2
j

λ j+σ2 = J̄0 ≥ J̄1 ≥ · · · ≥ J̄m = J(C∗).

Proof: Combine Remark 3-4 and Theorem 3.
We next want to utilize Theorem 1 (more specifically,

Corollary 1.1) to efficiently compute the upper bounds J̄k.
To that end, we define the matrix pencil

〈
A(C), B(C)

〉
as a

permutation of the matrix pencil
〈
Σ2

X , ΣX + σ2I
〉
.

Definition. Let C̄ denote the complement of C, with con-
straints C̄ ∈ C[(n−m)×n] and C̄CT = 0.

Definition. We define

A(C) =

[
C
C̄

]
Σ2

X

[
C
C̄

]T

and B(C) =

[
C
C̄

] (
ΣX + σ2I

) [C
C̄

]T

. (30)

We now reformulate the upper bounds J̄k so that it easily
relates back to Corollary 1.1.

Corollary 3.2. J̄k = max
C∈C[k×n]

J(k)∗
〈A(C),B(C)〉

.

Proof: Let F ∈ F [(m−k)×(n−k)] and let F1 = FC̄, for any
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C ∈ C[k×n]. Then, from (12) and (30), it follows that

J〈A(C),B(C)〉

(Ik 0
0 F


)

= J〈
Σ2

X ,ΣX+σ2I
〉 ([C

F1

])
. (31)

Since rank(F1) = rank(F) = m − k, and F1CT = 0, using
(28), (21) and (31) we can write

J̄k = max
C∈C[k×n]

max
F1∈F

[(m−k)×n]

F1CT =0

J〈
Σ2

X ,ΣX+σ2I
〉 ([C

F1

])
= max

C∈C[k×n]
max

F∈F [(m−k)×(n−k)]
J〈A(C),B(C)〉

(Ik 0
0 F


)

= max
C∈C[k×n]

J(k)∗
〈A(C),B(C)〉

.

For any k ≤ m, the computation of the upper bound
J̄k requires searching over all

(
n
k

)
matrices C ∈ C[k×n].

Therefore, computation of J̄k has search complexity O
((

n
k

))
.

VI. Numerical performance bounds

We performed evaluations on standard IEEE test
cases [16][17] to evaluate the performances of the approxi-
mate solutions and the family of upper bounds J̄k (for k = 0
to 5). We construct the sample correlation matrix ΣX by
running traditional SE algorithms 1000 times, where each
state estimate is extracted from a single scan of SCADA
measurements. We used the MATPOWER package [18]
as the traditional state estimator, which assumes that the
physical network model, based on bus-section/switching
device representation, is exact [19]. In the state estimation
process, the standard deviations of voltage magnitudes, bus
power injections, and line power flow measurements used
are 0.01, 0.015, and 0.02, respectively, according to the
default setups in [18]. For simplicity, we consider only
the voltage magnitudes of the buses as the state variables.
Furthermore, we assume that a PMU is always placed at
the reference bus [2], and therefore, the reference bus is not
considered in our sensor placement algorithms.

A. IEEE 30-bus system

First, we consider the standard IEEE 30-bus test sys-
tem [16]. The simulation results are shown in Figure 2,
where the upper bounds (developed in Section V) are
compared to efficacy of the expedient solution J(CE) and
the efficacy of the greedy solution J(CG). Due to the large
number of buses, the exhaustive search for the optimal
solution J(C∗) is prohibitively complex. We observe that the
expedient algorithm and the greedy algorithm perform very
close to each other. The upper bound J(F∗) = J̄0 is not tight,
but the nested bounds J̄k become tighter as k increases.

B. IEEE 57-bus system

Next, we consider the IEEE 57-bus system [17] and the
simulations results are shown in Figure 3. Again, the size of
the system prevents us from calculating the optimal efficacy
J(C∗). Similar to the IEEE 30-bus system, the expedient
solution and the greedy solutions are indistinguishable. The
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Figure 2. IEEE 30-bus test system: efficacies of approximate solutions
and the family of upper bounds J̄k
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Figure 3. IEEE 57-bus test system: efficacies of approximate solutions
and the family of upper bounds J̄k

nested bounds J̄k also get tighter as k is increased, confirm-
ing that the expedient and the greedy solutions are very close
to (if not) the optimal solution in this scenario.

VII. Conclusion and FutureWork

In this paper, we considered the optimal placement of
m PMUs among n bus locations and formulated the opti-
mization problem as an integer programming problem. To
understand the performance of the (sub)optimal solutions,
we presented a series of nested upper bounds (using general-
ized eigenvectors and matrix manipulations) that give tighter
upper bounds at increasing complexity. These bounds were
then numerically evaluated for the IEEE 30- and 57- bus
test systems. Some further directions for this research may
be finding tighter theoretical bounds when the covariance
matrix, ΣX has some structure (e.g., diagonally block dom-
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inant), or when there are additional constraints (e.g., PMUs
are not allowed at certain bus locations).
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