
Dynamic Classification of Repetitive Jobs In Linux For Energy-Aware Scheduling: A
Feasibility Study

Shane Case, Kanad Ghose
SUNY Binghamton

Binghamton, NY, USA
{shane, ghose}@cs.binghamton.edu

Abstract—The workload offered to a typical server consists
of many repeated tasks. We present and evaluate a feasibility
study that shows how repetitive server workloads can be
exploited to enhance the server and CPU energy savings
realized by state-of-the-art linux power governors. To minimize
dramatic modifications to the web server and the core kernel
scheduler we exploit the forensic logging capabilities of the
Apache server to collect workload specific information and to
schedule requests. We use a daemon to collect the classification
statistics and control the dynamic voltage frequency scaling
(DVFS) setting of the kernel to batch schedule requests with
similar characteristics and thus amortize the energy and
performance overhead of making changes to the DVFS settings.
Our experimental results show that an energy savings of up
to ten percent can be realized for the server on the workloads
generated by the SPECweb2005 benchmarks.

Keywords-Energy Conservation; Power Savings; Process Man-
agement;Web Server; Performance Experiment; Scheduling;
Measurement, Power Measurements, Energy Reduction

I. INTRODUCTION

Data centers are an essential part of a modern nation’s
infrastructure. Historically, the US has led the rest of the
world in the development, deployment and widespread use
of data centers in supporting a plethora of services and
activities. A 2007 report places the energy expenditures
associated with US data centers in 2006 at upwards of 1.5%
of the total electricity expenditures of the nation [1]. These
figures are likely to grow significantly as data centers are
deployed widely to support a growing and wider variety of
cyberservices. The hardware devices used in a data center
continue to be more energy efficient but because of the
annual increase in utility costs (8% to 11% annually), the
cooling costs remain relatively stagnant [2]. This situation
is therefore a crisis in the making and has the potential of
impeding the growth rate of data centers and their increasing
use in everyday life for the betterment of humanity.

The primary technique used in Linux servers is a power-
performance governor that exercises the DVFS logic within
the processor. At a low level of core utilization, the CPU
clock frequency can be slowed down and the core supply
voltage is simultaneously reduced. Just reducing the clock
frequency does not result in a savings of the total energy
consumption of the CPU, as the application still needs the
same number of clock cycles to complete. Thus, the energy

expended per clock cycle is lowered by reducing the core
supply voltage. The DVFS mechanism in a modern processor
has a time overhead as well as energy overhead, as the CPUs
voltage and frequency cannot be changed instantaneously.

The technique presented in this paper examines the feasi-
bility of classifying repetitive server jobs into classes (two
such classes are used in the present study), with each
class requiring a specific DVFS setting. One would expect
such repetitive jobs to be abundant in a typical server
workload: the same scripts or transactions are often executed
repeatedly. For example, in a server supporting banking
transactions, the same scripts are executed on queries that
determine account balances, for queries that post a charge
to an account etc.

In the proposed technique, as new server jobs come in,
they are classified into one of the two possible classes
based on their observed execution characteristics. An already
classified job, identified using the address of the executable,
is batch scheduled on a core that is set at the matching
DVFS step, to amortize the overhead of changing the DVFS
settings. Appropriate timeout mechanisms are used to avoid
undue prolongation of the service times for jobs. Energy
savings of 5% to 10% over Linux on-demand governor are
realized in running the SPECweb benchmarks in a prototype
implementation running the Apache server that supports job
classification (in conjunction with a daemon) and passes
on the classification to the kernel. This 5% to 10% energy
savings at the level of an individual server translates to an
energy savings of 10% to 20% for an entire data center,
where the utility costs of operating the cooling equipment
equals the utility costs of operating the IT equipment [1] [3]
[4].

The rest of the paper describes related work in Section 2,
some background information on power governors and the
Apache web server in Section 3. In Section 4, we describe
the proposed scheme and some relevant implementation
details, Section 5 presents the experimental setup and the
measured results. Section 6 represents our conclusions.

II. RELATED WORK

There is a plethora of work that has examined data
center job scheduling strategies in general using simula-
tors, synthetic job characteristics or actual server workload

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

trace data. Most of this body of work, exemplified by
[5] focuses on scheduling jobs to servers. We address the
problem of scheduling jobs in an energy-efficient manner
within a server. However, very few server-local energy-aware
scheduling techniques have targeted Linux or have actually
described real implementations, validated with actual power
measurements, and these are the work that we focus on in
this section. In particular, these techniques do not explicitly
exploit the characteristics of repetitive workloads.

Another way of managing the energy consumption of jobs
allocated to a server is to limit the energy expended by the
virtual machines running on a physical host. For example,
the work of [6] describes an approach for allocating energy
budgets to virtual machines. Such VM energy budgets are
not easy to implement, as energy expended by a VM is
not easy to track and control; energy dissipation in many
related components are ignored in simplifications that are
used. Allocation of jobs is also studied in [7], but this
study focuses primarily on performance increases in a cluster
environment, not on energy savings for a single server.

In general, emerging solutions have a number of potential
limitations:

• The energy and performance overhead associated with
job rescheduling and VM management and server-local
scheduling overhead are ignored. The communication
infrastructures within a data center are heavily utilized
and are prone to congestion, resulting in significant
added energy dissipation if jobs are rescheduled.

• A simple rescheduling of the jobs may not make the
most energy-efficient use of the servers and racks -
the operating configurations of such servers have to be
continuously adapted to fit the characteristics of the
workload.

The work of [8] classifies workload for long-lived
connection-oriented services and shows, using trace data,
how the information collected can be exploited for server
provisioning and scheduling to save energy, minimizing the
loss in live sessions in the process. A similar study is
clearly needed to validate the repetitive nature of server
workloads, as exploited in the proposed technique, but that
study is beyond the scope of this paper. Another approach
for exploiting workload characteristics in server provisioning
and scheduling is presented in [9]. Global system monitoring
facilities, such as IBM’s Tivoli [10], [11] can collect energy-
performance characteristics of jobs, including repetitive jobs,
and can, in theory, use that information to schedule jobs
globally and locally within a server. However, any automated
scheduling facility that uses the collected information for
local scheduling is missing at this point. The proposed
technique not only collects the job’s classification data but
also integrates it with scheduling.

In [12], a framework called Koala for a model for
predicting the energy and performance characteristics of a

program for different DVFS settings and makes use of the
predictions for energy-aware job scheduling. Koala requires
a recalibration of the power model on any changes in
the physical host configuration. In contrast, we use higher
level job classification parameters to classify repetitive jobs
and thus our approach does not depend on host-specific
attributes. Koala can be extended to account for any DVFS
overhead, in terms of performance and energy, repetitive jobs
can in fact use the Koala framework as well.

A job classification scheme that characterizes map-reduce
type jobs into compute-bound and I/O bound is introduced
in [13], using a single instance of a map task and a single
instance of a reduce task for classifying the set of map and
reduce tasks that make up a single workload. However, re-
sults, experimental or otherwise nor any quantitative analysis
is presented to assess the benefits of the proposed scheduling
strategy.

In [14], the authors present a methodology for charac-
terizing and classifying known background workload for
Google’s back end server in terms of their CPU and memory
demand. The authors of [14] also describe very briefly
the use of this classification in background job scheduling.
The integration of the scheduling technique into an existing
framework and its benefits are unclear.

III. BACKGROUND

A. CPU Frequency Governor

In the Linux Kernel, the most commonly used CPU fre-
quency governor is the Ondemand governor. This governor
gradually increases or decreases the frequency according
to the current system load. The system load is measured
from the scheduler, not the ”loadavg” present in /proc.
System load is sampled at 1000 times the frequency latency
change value. Scaling is performed when the system load
exceeds 95 percent and the CPU frequency is changed to the
highest value. When system load decreases, the frequency
is gradually stepped down.

B. The Apache Web Server

The main focus of this study will be on the pre-forking
architecture of the Apache Web server [15]. Our main reason
for focusing on the Apache web server are as follows. First,
using the Apache web server’s request scheduling capabili-
ties and the ability to use its forensic logging mechanism to
capture request specific statistics, removes the need to design
any modified request scheduling and statistics collection
features. Second, our approach permits us to accomadate
independent changes made to both Apache and the core
kernel very easily.

The performing architecture consists of the Apache parent
process creating multiple processes called children to handle
the incoming requests on the web server. Upon startup,
the parent process will fork off a configurable number of
children that will handle tasks assigned to them by the parent

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

Figure 1. Software Components in the Proposed Technique

process. When an HTTP request is received, each element
of the requested document is a transaction from the view of
the web server. If the ForensicLog module is enabled, each
transaction will be double logged by the web server, once
upon reception of the request and once upon its completion.

IV. THE PROPOSED TECHNIQUE

In order to exploit the repetitive nature of transactions
serviced by the web server, two components are required.
The first component is a modified ForensicLog module that
is loaded into Apache web server at runtime, and the second
is a system daemon that will process the data gathered by
the logging mechanism.

The system daemon, or power manager must be an
extremely lightweight process while executing in order to
avoid skewing the statistics of the hardware that is being
monitored, and consuming overhead power. The overhead
of any type of busy waiting, such as spin locks or sleeping,
is not tolerable, as a process utilizing either of these will
consume more power in busy waiting. Busy waiting does
not render the CPU as idle, and will show up as CPU
usage, which can affect the decision of the power manager
to enter into a sleep state. Therefore, the synchronization
method used to communicate between Apache web server
and our power manager will be signals. The benefit of
signals is twofold, as signals are a lightweight inter-process
communication method, and adding signals to the Apache
interface will require very little code change. The bulk of the
code change will be required in the power manager itself,
by simply adding a signal mask to the power management
process. The power manager will then block until a signal
is received from Apache.

There will only be two signals required to achieve our
goal of communication. In this case the signals SIGUSR1
and SIGUSR2 will be used. SIGUSR1 will serve as the noti-
fication that a transaction has been received by Apache and
processing will begin. SIGUSR2 will serve as notification
that the transaction has been completed. The power manager
can also read an integer value that is passed along with the
signal which will serve to identify the current entry in the
shared memory segment that it will be profiling. On the
power manager side, SIGUSR1 will be the notification to
begin profiling and search our statistic table to see if the
occurring transaction has already been previously profiled.
If the transaction has already been profiled, profiling can be

terminated, squashing any statistics that have been gathered.
The power manager can then apply the appropriate power
profile, according to the transaction categorization in the
statistic table. If the transaction has not been previously
profiled, the counters have already begun before the search
was conducted, and can then be stopped when SIGUSR2 is
received. Once the statistics have been gathered, the numbers
must be analyzed and a category assigned to that transaction
before the transaction may be added to the statistic table.

A. Job Classification using the ForensicLog

When the web server initially receives a transaction,
an entry is made in the ForensicLog via the log before()
function in ForensicLog. It is at this point that we modify
the Log mechanism to not only continue its original logging
duties, but to classify the task. At the time of the log
entry, the parent Apache process has received the header
of the server request and delegated processing to the active
listening child. The log entry is made in the log file by
the child process that is processing the request. It is at this
point the ForensicLog is modified to monitor the current
PID, which is the active child.

The statistics that are monitored for the purpose of system
resource usage discovery are found in /proc/PID/schedstat,
where PID is the currently running child’s PIDİn these
statistics, the CPU time spent and the I/O wait time spent is
discovered about the currently running transaction. These
metrics are reported on a per PID basis by the kernel’s
CFS scheduler. It is these two metrics that are used to
profile a particular transaction. These metrics will be stored
in a shared memory segment for communication to the
classification daemon. This memory segment is locked using
a mutex while the child process is acquiring the data for
its transaction. When the metrics are gathered, the shared
memory segment is unlocked, and the classification daemon
is sent a SIGUSR1 signal containing the index of the
transaction of the signaling child process in the statistics
table (Fig. 2). The child process will then enter a sleep state
for a short period of time, via sigtimedwait(). The child sets
its maximum timeout value to 2 seconds. The reason for
this maximum timeout value is explained in the following
section. Experiments were performed on different values and
showed that the lower the timeout value, the lower the power
savings percentage.

Upon either expiration of either the child’s sigtimedwait()
timeout value, or scheduling of the child by the classification
daemon, the child will then process its assigned transaction.
Upon completion of its transaction, the child will return to
the ForensicLog module to log the transaction completion
via the log after() function. This function is altered to
repeat what was done in the log begin() function, except
it will calculate its actual system resource metrics by using
the values logged at the beginning of the transaction as a
zero value. The CSD is again signalled, this time using a

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

SIGUSR2 value. The child process is then returned to the idle
wait queue by the internal Apache scheduling mechanism.

B. Classification and Scheduling Daemon (CSD)

The CSD serves as the scheduler for the Web Server by
scheduling child processes with a similar workload back
to back. Their purposes of scheduling the children are to
execute transactions of similar workload in batches, rather
than as the transactions are received. Upon startup of the
CSD, it will change the system power management policy
to be in its lowest active power state.

The CSD is signalled upon every transaction beginning
and ending. When a transaction is encountered that is not in
the statistics table, the transaction is immediately signalled to
complete. The signal that is received from the Apache child
is the same signal that is returned. An entry for the unknown
entry can then be established upon transaction completion.

The power manager will implement two work queues for
transactions that have already been profiled. The queue will
consist of PIDs to be signalled for transaction completion.
One queue will be for transactions that have been catego-
rized as CPU bound, and another queue will be for I/O bound
transactions. The method used to implement these queues
will require that a transaction be looked up in the statistics
table to find its categorization. When a transaction has been
found to be in the table, then that httpd worker child will be
placed in a blocked state. The PID of the child worker will
be entered into respective queue based on its classification
type. While the child transaction is blocked, the power state
of the system will still be at its lowest point. The queues
will be emptied when a user defined number of transactions
have entered a queue. In the worst case, a queue will not
exceed the interval for an extended period of time, this is
where the time-out value on the child waiting for a signal
to continue comes in.

The queues containing the PIDs of blocked child pro-
cesses are emptied when they reach a certain number of
PIDs contained in each queue. This value by default was set
at 3, this is a configurable number. Experiments performed
with different values as a queue empty value showed that
a smaller number would decrease the amount of power
savings.

A different power scheme is employed based on the queue
that is emptied. When the queue containing tasks primarily
performing I/O based tasks, the CPU frequency is set to
its lowest value. There is no loss in performance here, as
the processor is making requests to the I/O subsystem and
waiting for data to be returned. When the queue containing
primarily CPU bound transactions is emptied, the CPU
frequency is stepped up based on how many transactions
are in the queue. If after initially emptying the queue, the
queue becomes full again before the frequency is lowered,
the frequency is stepped up again. This frequency stepping
value is hardware dependent.

C. CPU Frequency Stepping

CPU frequency stepping is performed by the CSD using
ioctls. To enable this ability, a new CPU frequency governor
was created. The frequency governor is almost identical to
the existing userspace frequency governor. The governor
used by the CSD is implemented as a device driver that
has ioctl() ability. The ioctls passed by the CSD contain
the CPU number and a flag of 1 or 0, 1 being to increase
the frequency of the specified CPU, 0 being to decrease
the frequency. Individual CPUs cannot change their clock
frequency in the hardware in our web server. To exploit CPU
stepping, we migrated child processes to different CPUs by
setting their scheduler affinity in the kernel scheduler.

In addition to handling the scheduling of the Apache child
processes and the CPU frequency, the CSD will manage
the CPU(s) that a child process will execute on. When the
hardware that a Web Server is running on has multiple CPU
sockets, the sockets can be configured to handle a specific
task type. This hardware setup allows a CPU bound task
to be scheduled on one socket and an I/O bound task to
be scheduled on another socket. We will call this process
socket pinning. In this case, each socket, can have different
managed CPU frequencies.

V. RESULTS

We compare the results of our proposed Apache sched-
uler with an unmodified Apache Web Server. We use
SPECweb2005, which contains three workload Banking, E-
commerce, and Support, to compare the energy dissipation
of the base web server compared to a web server with our
modified scheduler. All of the SPECweb workloads consist
of executing PHP scripts to perform specific transactions
based on the workload. The data that is manipulated, whether
it be text or images, is generated randomly based upon the
number of concurrent connections. For our experiments, the
number of clients is the same across all workloads. We used
5 clients, each generating 150 concurrent connections to
place the web server under a load.

A. SPECweb Workloads

1) Banking: The banking workload of the SPECweb2005
benchmark is designed to simulate an online banking web-
site. This workload primarily uses SSL connections to
perform tasks. The makeup of the requests made on the
server consist of images of checks and data to be entered
into a bank ledger.

2) Ecommerce: The ecommerce workload is designed to
simulate an online storefront, specifically a customizable
computer system storefront. The workload will consist of
a mix of SSL and non-SSL connections, due to the nature
of the workload. Clients will benchmark the web server
based on three phases, browsing the website, customizing
a product, and ordering a product.

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE I
OVERALL SERVER ENERGY CONSUMPTIONS, TRANSACTIONS COMPLETED, AND ENERGY PER TRANSACTION

Power Management Technique Parameter Banking Ecommerce Support
Performance Energy (J) 200285 193460 187830

Total Transactions 40961 25285 26447
Energy(J) per Transaction 4.889651132 7.651176587 7.102128786

Ondemand Energy (J) 189637 190813 187713
Total Transactions 40855 25471 26845
Energy (J) per Transaction 4.641708481 7.491382356 6.992475321

Proposed Technique Energy (J) 180515 184252 186730
Total Transactions 40840 25261 26474
Energy (J) per Transaction 4.420053869 7.293931357 7.053335348

TABLE II
CPU CORE ENERGY CONSUMPTIONS, TRANSACTIONS COMPLETED, AND ENERGY PER TRANSACTION

Power Management Technique Parameter Banking Ecommerce Support
Performance Energy (J) 60218.6 57146.3 50328.8

Total Transactions 40961 25285 26447
Energy(J) per Transaction 1.470144772 2.260087008 1.903006

Ondemand Energy (J) 56176 55402.2 50917
Total Transactions 40855 25471 26845
Energy (J) per Transaction 1.375009179 2.175108947 1.896703

Proposed Technique Energy (J) 52822.3 49218.7 49771.8
Total Transactions 40840 25261 26474
Energy (J) per Transaction 1.29339618 1.948406635 1.880026

3) Support: The support workload is designed to sim-
ulate an online vendor’s support website, whether it be a
computer system vendor or a software package vendor. The
workload will consist of searching and browsing a website
for available downloads. The client will then download a file
from the web server.

B. Experimental Setup

The hardware in our experiments consists of dual quad
core Xeon E5520 CPUs with a max clock frequency of
2.27 GHz and 12GB RAMṪhe power supply is an 850W,
80 plus certified unit, with four 12V rails. The network
interface card is an Intel 82574L gigabit Ethernet card using
the e1000e driver. For CPU core energy measurements, we
used two Fluke Y8100 current probes to collect and log
data using a National Instruments Data Acquisition Unit.
The overall server power consumption was measured using
a Summit Technologies PS2500 Data Logging AC power
meter measuring the AC power consumption for the server.

C. Overall Energy Consumption Characteristics

Table I shows the overall energy consumption, the number
of transactions completed, energy consumed per completed
transaction, averaged across multiple runs for a 30 minute
duration for the Banking, E-commerce, and Support compo-
nents of the SPECweb2005 benchmark. It is seen from Table
I that the number of transactions processed for each of these
benchmark components is roughly same across all of the
techniques used (the performance governor, the ondemand
governor, and the proposed technique). The energy per
completed transaction is therefore a good indicator of the
energy savings achieved by the proposed scheme. For the

banking benchmark the energy per completed transaction
in the proposed scheme is 4.42 Joules vs. 4.64 Joules using
the ondemand governor and 4.90 Joules for the performance
governor. Our scheme thus realizes roughly 9.8% energy
savings on a per transaction basis compared to the perfor-
mance governor and a 4.74% savings over the ondemand
governor. The energy savings per transactions for the ecom-
merce benchmark is somewhat lower and there is hardly any
energy savings on a per transaction basis for the support
benchmark component. The reasons for the lower energy
savings, particularly for support stem from the fact that
these two components have a significantly higher fraction
of I/O compared to both of the other components and both
governors appear to be doing a good job in managing the
DVFS settings for the I/O intensive benchmarks.

D. CPU Energy Consumptions Characteristics

Table II shows the energy consumption characteristics
for the CPU cores for the three benchmark components of
the SPECweb2005 benchmarks for each of the three power
management schemes studied. The core power consumptions
and the server power consumptions pretty much track each
other but the percentage of energy savings realized by our
scheme over the two governors are higher when one just
looks at the CPU core energy consumption. This is simply
because of energy consumptions elsewhere in the server and
energy conversion inefficiencies within the power supply
and voltage regulators on the motherboard. These other
components dissipate energy none proportionately with the
CPU cores.

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

Figure 2. Reduction in Energy Consumption (a) AC Total Server Power (b) DC CPU Core Power (c) DC CPU Power Ondemand for SPECWeb2005
Banking (d) DC CPU Power for Proposed Technique for SPECWeb2005 Banking

E. Total Server Energy Consumption

In Fig. 2(a), the total energy consumption of the entire
server is displayed. We expect these results to look similar
to the results from the CPU Core Power experiments. There
is some overhead involved with total box power however,
in that the total box power is taking into account the power
consumed by all components of the server plus any power
lost in the power supply alone.

The left most bar is the performance governor, which
is keeping the CPU frequency at it’s highest setting, and
therefore should consume the most power in each of the
test cases. The banking benchmark displays a good mix of
both I/O and CPU bound transactions, this is verified by
the Ondemand governor being about midway between the
performance governor and the scheduler scheme at 94.69%
power of the performance governor. The CSD must keep
both sockets active due to the types of transactions being
performed being almost equally distributed between CPU
bound and I/O bound.

The next workload, e-commerce, has a workload that
executes more CPU bound transactions. The nature of the
workload involves searching the product lines by the client
process, and switching between SSL and non-SSL connec-
tions for checkout, which generates CPU bound transactions.
This is shown as the amount of power savings between the
performance governor and the ondemand governor is less
than half the power savings shown between the ondemand
governor and the scheduler. Since the amount of transactions

that are CPU bound is greater than I/O bound, the scheduler
is setting a majority of the child processes CPU affinity
values to one socket, leaving the remaining socket idle. In
this case, batch processing can be exploited by maximizing
the efficiency of the processor when it is placed in the high
frequency, and leaving the CPU in a lower frequency for a
longer period than the ondemand governor does.

The last workload, support, is mostly I/O bound transac-
tions. In this workload, the clients are primarily download-
ing files from the web server and this is reflected in the
total power, and in the power savings. When the workload
executes I/O bound transactions, the CPU will spend most
of its time waiting for I/O operations to complete. As the
CPU spends most of it’s time in a waiting state, the load on
the CPU is minimal and therefore the power consumed is
minimal. The difference between the performance governor
and the ondemand governor is almost non existent at 0.06%.
The scheduler will still see a small power savings due to
socket pinning in this case, as the CPU bound socket will
be left idle during I/O bound transactions, and since the
frequency of the I/O bound socket is kept to a minimum,
we observe a small amount of power savings.

F. CPU Core Power

Fig. 2(b) shows the percentage of CPU core energy
savings realized by our scheme against the performance
governor (base case) and the ondemand governor. The
percentage of energy savings realized by our scheme against
the two governors is higher compared to the percentage

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

savings realized on the total server energy consumption.
This is again because other components within the server
do not dissipate energy proportional to the CPU energy
consumption. It is also worth noting that for the support
benchmark the ondemand governor actually leads to more
energy energy consumption compared to the performance
governor as the performance governor does a better job at
handling I/O intensive workloads.

In Fig. 2(c) and (d) the power consumption of the CPU is
examined on a per socket basis for the banking workload
using the ondemand governor in (c) and the proposed
technique in (d). When the ondemand governor is used
the power consumption can range from 10 W to 50 W,
compared to the proposed technique’s range of 6 W to 34
W. This shows that batch scheduling transactions is effective
at balancing CPU usage and idle time, lowering the range
of power dissiptaion of the CPU.

VI. CONCLUSION

The ondemand and performance governors used in the
Linux kernel for managing the DVFS settings have been
refined over the years and do a very good job at reducing the
power consumptions of servers. The goal of this effort was to
exploit the repetitive characteristics of server workloads and
exploit these characteristics in managing the DVFS settings
of the processing cores, going beyond what is realized by
the state of the art governors. Our experimental results
clearly demonstrate that the proposed techniques realize
additional energy savings beyond what is realized by the
governors, up to about 10% for the Banking component of
the SPECweb2005 benchmark. The energy savings realized
over the governors over the other two specweb benchmark
components are somewhat lower because the existing gov-
ernors do a very good job at managing the DVFS settings
for long periods of I/O where the CPU remains fairly idle.

The approach described in this paper minimized the need
for modifications to the Apache server and the core kernel
scheduler by using classification information collected by
the Apache server and returning it to its job scheduling
component and by using a separate daemon to collect the
classification information and exercise the DVFS interface
in the core kernel. Our ongoing work will implement the
classification and scheduling components entirely within the
core kernel, to realize a higher level of energy savings.

REFERENCES

[1] ”US Environmental Protection Agency Energy Star Program,
Final Report Congress on Server and Data Center Energy
Efficiency”, Public Law 109-431, August 2007.

[2] J. G. Koomey, ”Estimating Total Power Consumption By
Servers in the U.S. and the World”, Analytics Press. Feb.
2007.

[3] L. A. Barroso and U. Holzle, ”The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale
Machines”, Morgan-Claypool Publishers, 2009 (ISBN No.
9781598295566).

[4] J. Hamilton, ”Where Does the Power Go In A Data Center?”,
keynote presentation at SIGMETRICS/Performance 2009.

[5] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, ”Energy-
Efficient, Thermal-Aware Task Scheduling for Homoge-
neous, High Performance Computing Data Centers: A Cyber-
Physical Approach”, in IEEE Trans. On Parallel and Dis-
tributed Systems, vol. 19, no. 11), pp. 1458-1472, 2008.

[6] R. Nathuji and K. Schwan, ”VPM Tokens: Virtual Machine-
Aware Power Budgeting in Datacenters”, in Proc. of the
ACM/IEEE International Symposium on High Performance
Distributed Computing (HPDC), pp. 119-128, 2008.

[7] Z. Liu, ”Load Balancing and Task Partitioning Strategy for
Mixed Nature of Tasks”, 2011 International Conference on
Computer and Software Modeling, pp. 48-52, 2011

[8] Chen et al, ”Energy-aware server provisioning and load dis-
patching for connection-intensive internet services”, in Proc.
5th USENIX Symposium on Networked Systems Design and
Implementation, pp. 337-350, 2008.

[9] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini, ”Statistical profiling-based techniques for effective
power provisioning in data centers”, in Proc. EuroSys ’09, pp.
317-330, 2009.

[10] IBM Corporation, ”IBM Tivoli Usage Accounting Manager
V7.1 Handbook”, IBM Redbook, March 2008.

[11] IBM Corporation, ”Value Proposition for IBM Systems Di-
rector: Challenges of Operational Management for Enterprise
Server Installations”, IBM ITG Group, Mangement Brief (34
pages), Nov. 2008.

[12] D.C. Snowdon, E. Le Sueur, S. Petters, and G. Heiser, ”Koala:
a platform for OS-level power management”, Proceedings of
the 4th ACM European conference on Computer systems, pp.
289-302, 2009.

[13] P. Visalakshi and T.U. Karthik, ”MapReduce Scheduler Using
Classifiers for Heterogeneous Workloads”, IJCSNS Interna-
tional Journal of Computer Science and Network Security,
VOL.11 No.4, pp.68-73, April 2011,.

[14] A. K. Mishra, J. Hellerstein, W. Cirne, and C. Das, ”To-
wards Characterizing Cloud Backend Workloads: Insights
from Google Compute Clusters”, ACM SIGMETRICS Per-
formance Evaluation Review on Industrial Research (SIG-
METRICS PER, 2010), Volume 37 Issue 4, pp. 34-41, March
2010

[15] B. Grone, A. Knopfel, R. Kugel, and O. Schmidt, ”The
Apache Modeling Project”, available at http://www.fmc-
modeling.org/projects/apache 2008

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-259-2

ENERGY 2013 : The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

