
A Software-based Approach for Source-line Level Energy

Estimates and Hardware Usage Accounting on Android
Alexandre Cornet and Anandha Gopalan

Department of Computing, Imperial College London, London, SW7 2AZ, UK
Email: alex.cornet.ac@gmail.com, a.gopalan@imperial.ac.uk

Abstract—As users rely more on their mobile devices, energy
inefficient software is a real threat to user experience. Early
tools for developers focussed on expensive power measurement
hardware and software-based approaches were introduced to
relieve them of such requirements. These tools highlighted the
most energy-inefficient parts of the code, but the developer still
had to find and understand the exact causes of energy drain. Also,
there was no mapping of hardware energy activity to code and
no accounting for tail energy. To this end, this work focusses on
providing source-line level energy estimates and maps the drain
caused by Wi-Fi back to the code while accounting for tail-energy.

Keywords–Green-computing, Tail-energy, Energy profiling

I. MOTIVATION

Mobile technologies have become ever-present in our daily
lives and many people’s personal and professional interactions
now depend on their smartphone or tablet. The power con-
sumption of mobile devices obviously grew with the duration
of their usage and the complexity of hardware and software
they involve. By nature, these devices are used away from
power sources and battery has thus become a critical com-
ponent for the user experience. However, battery technology
hasn’t managed to keep up with these requirements and hence
energy efficiency has become a major concern of users who
are now looking for feedback to understand how applications
drain the battery of their devices [1]. Research even shows that
implementations perceived as energy greedy will receive lower
ratings from users [2]. The ability to build energy efficient
software consequently rewards developers with a competitive
advantage on the market. However, energy optimisation is
often counter intuitive to many developers and there is no real
guidance. For example, there is no clear correlation between
energy and time efficiency [3], and time optimisation is thus
not always useful to reduce the energy footprint of a software.
Also, some popular design principles, such as the decorator
pattern have bad energy efficiency [4].

Researchers have consequently developed tools to provide
guidance to developers by profiling the energy drain of their
code. These tools were initially tied to specific and expensive
power measurement platforms which inherently limited their
use. Software-based approaches were introduced so that energy
profiling techniques are accessible to the vast majority of
developers by placing no hardware requirements on them. The
first key contribution of this work is to provide source-line
level energy estimates to the developers, which is achieved by
extending Orka [5] [6].

To provide accurate and meaningful energy feedback,
however, energy profilers should also take into account the
drain caused by various hardware components. This means
being able to map the hardware energy usage back to the
code with the finest granularity possible. Moreover, mobile
devices exhibit several asynchronous power behaviours, the
most significant of which is tail-energy, which proves chal-
lenging for the development of energy profilers [7] [8]. A

component exhibits tail-power behaviour if it stays in a high
power for a constant time after processing a workflow and this
phenomenon can cause significant energy drain. Thus far, only
a few contributions, such as eprof [7] have focussed on tail-
energy by relying on hardware- or model-based approaches.
Therefore, no tool accounting for tail-energy was accessible to
the majority of developers. To allow for this, the second major
contribution of this work is for our solution to also provide tail-
energy accounting. We have focussed exclusively on Wi-Fi for
now and will in future include other hardware components.

The remainder of this paper is organised as follows: Section
II outlines related work, Sections III and IV detail the major
contributions. Section V provides an evaluation, and Section
VI concludes the paper and provides ideas for future work.

II. BACKGROUND RESEARCH

This section outlines other works related to this paper.

A. High level guidance
Software optimisation has tended to focus on time, but

according to [3], choosing an energy-efficient implementation
over a time-efficient implementation allowed more operations
to be performed on a mobile device. [9] reviewed a set of
coding practices and proved that reducing memory usage
has a low impact on reducing the energy usage of code.
Related conclusions were obtained in [10] as they proved
code obfuscation negatively impacts the energy efficiency of
the underlying software. In [7], they profiled and analysed
the energy footprint of six of the top-ten applications on the
Google Play Store. They found that most energy is spent in
I/O and that most of this energy is due to tail-behaviour. The
authors in [11] surveyed 55 applications in order to mine
energy greedy calls to the Android API. They obtained the
cost of 800 API calls and found that the Android API was
the most energy inefficient part of applications. These findings
are however, limited by the fact that part of the energy-greedy
I/O activities are handled in the Java API and therefore don’t
appear in this study. Finally, tail-behaviour was not considered.

High level guidance provides a first mean to produce more
energy-efficient software. However, these findings don’t allow
developers to know which specific parts of code consume the
most energy. Researchers therefore focussed on developing
energy profilers able to provide detailed feedback about the
energy footprint of applications.

B. Hardware-based profilers
Hardware-based energy profilers such as PowerScope [12]

and GreenMiner [13] involve the use of power measurement
platforms, i.e., mobile devices with embedded power sensors
monitoring the energy drain caused by running processes.
vLens, an energy-profiler combining program analysis and
statistical modelling to provide energy usage information at
the source line level was introduced in [8]. These approaches

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

however, are tied to expensive power measurement platforms,
involving an overhead for their users.

C. Model-based profilers
Model-based solutions build power models of mobile

devices, which are further reused away from measurement
platforms to profile the energy footprint of applications. eCalc
[14] assumes the availability of a CPU power profile containing
the energy drain associated with each CPU instruction in
order to provide drain caused by the CPU at the method
granularity. PowerBooter uses battery voltage sensors and the
knowledge of the battery behaviour to automate the power
model generation and PowerTutor further uses this model to
compute the energy costs [15]. TailEnder provides models fo-
cussing on the drain of I/O components, namely 3G and GSM.
eprof [7] focusses on mapping the drain caused by hardware
components while accounting for entities such as processes,
threads and routines. For each entity, eprof produces an energy
tuple (utilisation_draw, tail_mode_draw) and is
therefore one of the few contributions accounting for tail
energy and comparing it to utilisation drain. They also present
methods to generate these power models by correlating certain
behaviours with specific power states and identifying these
behaviours as trigger conditions on the finite state machine
[16]. Model-based techniques suffer one major drawback: the
underlying power models are specific to the profiler and are
therefore not widespread nor publicly available.

D. Software-based profilers
Software-based solutions were introduced to allow for

portable and widely accessible energy profilers. They do not
require any knowledge of the device behaviour or access
to specific hardware. Users usually provide their application
alongside a test scenario. Based on the findings in [11],
[2] introduced EcoDroid, an energy profiler that focuses on
ranking applications instead of providing energy estimates.
The Power Estimation Tool for Android Application (PETrA)
uses new tools of the Android Open Source project focussing
specifically on energy profiling [17]. PETrA simulates a typical
execution of the tested application on an actual device using
a user-provided script. The execution trace is recorded using
dmtracedump and the batterystats history is collected
using dumpsys. PETrA finally replays these files to compute
the battery drain during the execution of each method and
provides the user with the energy estimates at the method level.

Orka is one of the first software-based energy profilers [5].
It takes an Android application and a dynamically created ex-
ecution trace to provide energy usage estimations as feedback.
The energy cost of a routine is calculated using the energy
costs of the Android API calls (from [11]). We had access
to the source code of Orka and its design and assumptions
were compatible with our project goals. Hence, extending Orka
proved to be the most viable solution. The basic workflow of
Orka, shown in Figure 1, is divided into three parts: (i) appli-
cation is instrumented to log the API calls, (ii) instrumented
application is then run on the Android emulator using a user-
supplied monkeyrunner script, and (iii) execution traces are
analysed and results are presented to the user. The execution
analysis is done by using the logs and batterystats data
and is used to calculate the total cost of a routine which is
obtaining using: cost(routine) =

∑
API∈routine cost(API).

The batterystats file also gives the breakdown by com-
ponent of the hardware energy usage.

Figure 1. Basic workflow of Orka

III. PROVIDING SOURCE-LINE LEVEL ENERGY ESTIMATES

The key extension to Orka is to account for API calls
occurring in subroutines and provide this at the source-line
level rather than the method-level as was the case previously.
To this end, Orka now maintains an in-memory version of the
call stack while it replays the logs and attributes any API calls
to all the routines in the call stack. Therefore, Orka tallies the
calls occurring during the execution of this routine, possibly in
a subroutine with the results displayed as a percentage of the
total routine cost. Taking control-flow into account, the cost of
a line of code is defined as the cost of a single execution of this
line multiplied by the average number of times it was executed
per call. Orka approximates the energy usage of a routine
with the cost of its calls to the Android API and assumes that
remaining parts of the code have a marginal energy footprint.
On top of tallying the number of API calls during a routine
execution, Orka uses the information provided by the smali
.line instruction to know where in the source code each of
these calls occurred. Since all the API calls happening during
the execution of a subroutine are now attributed to the parent
routine as well, for a given routine, all API calls happening
during the execution of a subroutine will be attributed to the
line from which the subroutine is invoked.

A. Implementation
1) Injector: The first step was to allow the instrumented

application to log (apiName, lineNumber) pairs. On
finding the smali .line statement, the injector now updates
a variable containing the source line number corresponding
to the current instruction. On finding an API invocation, this
information is then appended to the API’s name and passed
to the APILog function. At this point, Orka is able to know
where the API was called in a method’s body and to detect
when the API was called from a subroutine. In order to map
this cost to a specific line in the parent routine, we have to
allow the instrumented application to log messages indicating
subroutine invocations alongside the line from which the
subroutine was called. On finding an invoke statement, the
injector now checks whether the called routine is user-defined
and injects a call to a logging function if so. To enforce one
main requirement of the injector, namely to ensure minimum
code is injected, log messages shouldn’t be inserted before
the invocation non-injected routines, as this information won’t
be useful during the analysis. Therefore, the injector needs to
know which routines are injected prior to the injection and add
log messages only before calls to injected subroutines. To this
end, a preparatory phase was added to the injector work-flow:
injected files are now scanned prior to the injection in order
to build the set of injected methods.

2) Analyser and routine class: The routine class
calculates the cost of a routine as the total cost of all its API
calls. To implement fine-grained energy feedback, we instead
identify the cost of a routine as the sum cost of all its lines. The
cost of a line is defined as the cost of the API calls occurring on

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

method R e c L i s t . onCrea te , Average c o s t :
0 .0197754308 , C a l l s : 1 . 0

2.64% l−1
1.45% l192 c a l l i n g R e c L i s t .

I n i t i a l i z e R e p e a t B u t t o n
0.88% l227 c a l l i n g R e c L i s t .

I n i t i a l i z e T h e m e d B u t t o n s B a c k g r o u n d s
0.57% l229 c a l l i n g P r e f e r e n c e s .

g e t C u r r e n t l y P l a y i n g F i l e P a t h
29.04% l247 c a l l i n g R e c L i s t .

u p d a t e S o n g L i s t e x t e n d e d
21.80% l257 c a l l i n g a n d r o i d . os . Bundle .

g e t S t r i n g
21.80% l258 c a l l i n g a n d r o i d . os . Bundle .

g e t S t r i n g
21.80% l260 c a l l i n g a n d r o i d . os . Bundle .

g e t S t r i n g
Figure 2. Example of reconstructed source code with fine-grained guidance

that line. The routine class was thus extended to generate a
reconstructed source code including energy estimates from the
API data – typical output shown in Figure 2. To store the line
from which a subroutine is called, a second stack was added
alongside the call stack. On finding a subroutine invocation log,
the line number from which the subroutine is called is added to
the stack. On finding an exiting statement, the last line number
is popped from the stack. By merging these two stacks, we
obtain a stack of pairs (routineName, lineNumber)
indicating which line the API calls should be attributed to in
a given routine. Finally, the names of subroutines are stored
in a separate dictionary, the keys of which are line numbers.
In some specific cases, e.g., a class accessing a static variable
of another class, injected constructors are called implicitly. As
Orka is not yet able to detect such cases, subroutine invocation
statements are sometimes missing and there is no information
regarding the line number corresponding to the call. However,
by comparing the two stack sizes we are able to detect this and
a default value is added to the stack to indicate the absence of
any information.

IV. PROVIDING HARDWARE USAGE ACCOUNTING

In order to account for tail-energy, we use Wi-Fi, a
frequently used component. For a given routine, the drain
associated to each energy state (active, tail, idle) of the Wi-Fi
antenna can be easily computed by multiplying the time spent
in this state by the corresponding power drain provided by the
power state machine. Therefore, focussing on the time spent
in each state rather than the corresponding energy drain would
work fine. For each routine, Orka should ultimately be able to
provide an estimate of the drain caused by Wi-Fi alongside an
energy tuple. The main aim is to correlate the Wi-Fi energy
activity with routine calls, therefore Orka needs to know when
routine invocations start and end, and have access to the power
drain caused by Wi-Fi at any time. The start-time and end-time
of any routine call could be easily obtained by leveraging the
logcat enter and exit statements and by using an output
mode of logcat including the timestamps of log messages.

A. Monitoring the power consumption of Wi-Fi
Just like eprof , Orka needs access to the power con-

sumption of Wi-Fi with the highest sampling period possible.
However, to enforce the software-based nature of Orka, power-
measurement platforms and complex energy models need to be
replaced with information provided by the operating system.

Figure 3. Typical power state machine of a Wi-Fi antenna [19]

As the power behaviour of Wi-Fi antennas can be accurately
described by a power state machine, Orka could access the
power consumption caused by Wi-Fi at any time by monitoring
in which energy state the antenna is.

1) Wi-Fi power state machine: The power behaviour of
most hardware components, including Wi-Fi, can be accurately
described using a power state machine. As shown in Figure 3,
Wi-Fi antennas exhibit three power states: active, tail, and idle.
By definition, the bandwidth in idle and tail mode, as well as
the drain in idle mode are always zero. The bandwidth and
drain in active mode, the tail-time and the tail drain differ from
one antenna to another. As Orka only focusses on energy and
not workload, the bandwidth in active mode is not relevant to
this work. To this end, the power drain in active mode for a
specific device can be obtained using the power profile. From
Android 5.0, devices come with a power profile providing the
energy drain caused by each hardware component in its various
energy states. While this includes the drain in active mode
for the various components, we found that the power profile
doesn’t include the drain caused by a component in tail mode
and hence is not useful to accurately compute the energy due
to tail-behaviour. However, we found in the literature that the
drain in tail-mode can be approximated by half the drain in
active mode [18] and Orka uses this approximation. Finally,
we investigated whether we could get the the exact value of the
tail-time for any Wi-Fi antenna. Unfortunately, techniques such
as the one in [19] involve power-measurement platforms. We
hence approximated this value with the one shown in Figure 3.
Due to these approximations, Orka has access to a complete
state machine describing the power behaviour of the Wi-Fi
antenna. To monitor the power drain caused by Wi-Fi, Orka
only needs to know in which power state the antenna is.

2) Monitoring the energy-state: Based on [17], we looked
at using the energy tools from the Android Open Source
Project. The batterystats history contains a timeline of
energy related events since the last charge or reset, but it
doesn’t record switches to the tail state. Hence, we had to
use a new approach – monitor events which trigger these
switches, namely network traffic events. The Dalvik Debug
Monitor Server (DDMS) provides tools to monitor the network
traffic in real time for a given application [20]. Using this,
we found that network statistics at the application level are
stored in proc/net/xt_qtaguid/stats [21]. This file
contains one line per (app_uid, tag) pair, describing the
associated network traffic, as shown in Figure 4. A Python

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

i d x i f a c e u i d t a g i n t c n t s e t r x b y t e s
r x p a c k e t s t x b y t e s t x p a c k e t s

2 wlan0 0 0 200888 1096 79636 888
3 wlan0 0 1 0 0 0 0

Figure 4. Extract of proc/net/xt_qtaguid/stats

procedure was used to parse this file and return a pair
(rx_bytes, tx_bytes), aggregating all the incoming
and outgoing traffic induced by a given application. The
command adb shell cat was used to fetch this file and
was able to update the statistics once every 45ms. Network
traffic caused by an application with a sampling period of about
50ms could therefore be potentially monitored using an actual
device as there is no Wi-Fi emulation on AVDs.

B. Implementation
Using these findings, two pieces of software were imple-

mented in order to correlate the routine calls with the Wi-
Fi energy activity; (i) a Python script to log the switches
between the various energy states of the Wi-Fi antenna, and
(ii) an analyser to process this data and generate results
interpretable by the user. A test application was also written
to evaluate the quality of the results generated.

1) Monitoring the Wi-Fi energy state: The pseudo-code in
Figure 5 fetches the most recent network data and compares
it to a previous one. Any change in this data indicates that
network traffic was induced by the application and the antenna
switched to active mode. Otherwise, no traffic occurred and if
the antenna was in active mode, it switches to tail mode and
resets a counter indicating the time when tail mode started. If
the antenna was in tail mode, this counter is used to compute
the time spent in that mode and switch to idle mode if needed.
If the antenna was already in idle mode, it remains so. We
ensure that, despite the loss of precision due to the sampling
period, the duration of tail mode is never longer than the tail
time specified by the transition condition in the state machine.

In order to correlate the routine calls and the energy
consumption of the Wi-Fi antenna, Orka needs to merge-sort
these two files and replay the resulting log file. To accurately
sort the timestamps, the clocks used in both logs need to be
synchronised. Many networking protocols able to synchronise
clocks are available, but most of them are quite complex to
use. As Orka has to deal with the Android clock, which is
used in the logcat dump, this clock should also be used
to timestamp the switches between the energy states. To this
end, the host machine opens the connection with the device
and send two commands: the first one to get the epoch time and
the second to fetch the file containing the network statistics.

The logs generated by the networkMonitor module
(Figure 6) will be referred to as netstats logs or traces.
Comparing these results with those produced by DDMS, we
found that the antenna was successfully logged in active or
tail mode when traffic was reported by DDMS. Moreover, the
sampling period of Orka is twice as small as the one of DDMS,
as the smallest sampling period offered by this tool is 100ms.

2) Analysing the traffic and execution traces: Once the
simulation terminates, Orka needs to process this new data
to compute the estimates modelling the tail-behaviour induced
by each injected routine. To achieve this, the routine class
is extended to include a dictionary, which stores the time spent
by the Wi-Fi antenna in each energy state while the routine
was executed. For e.g., a routine executed for 10s without using
Wi-Fi will be modelled as: {'ACTIVE': 0.0, 'TAIL':

Input: Active ADB connection to an actual device
Output: Logs of the energy states of the Wi-Fi antenna

1 Get first network statistics S0 at current time t0;
2 state← IDLE;
3 while True do
4 Get network statistics S1 at current time t1;
5 if S0 6= S1 then
6 state← ACTIVE;
7 else if state = ACTIVE then
8 state← TAIL;
9 tailstart ← t0;

10 end
11 if state = TAIL and t1 − tailstart ≥ tailtime then
12 Log (t0, state);
13 t0 ← tailstart + tailtime;
14 state← IDLE;
15 end
16 Log (t0, state);
17 t0 ← t1;
18 S0 ← S1;
19 end

Figure 5. Network monitor
1503657227.287407 ACTIVE
1503657227.323574 TAIL
1503657227.359771 TAIL
1503657227.394717 TAIL
1503657227.428777 ACTIVE
1503657227.467203 TAIL
1503657227.518874 ACTIVE
1503657227.589833 ACTIVE
1503657227.644556 TAIL
1503657227.681700 TAIL
1503657227.716493 TAIL
1503657227.753575 TAIL
1503657227.789498 TAIL
1503657227.829724 TAIL
1503657227.864556 IDLE
1503657227.882524 IDLE

Figure 6. Extract of a typical netstats output

0.0, 'IDLE': 10.0}. The logcat data is used to keep
track of the call stack and the netstats data to update the
energy state of the Wi-Fi antenna. The main function parses
these two traces and performs a merge sort so as to process
the logs chronologically. For each new entry, the time elapsed
in the current state since the last entry is added to all the
methods in the call stack and the Wi-Fi state and the call
stack are then appropriately updated. Once the logs have been
fully processed, the results, which include the tuples storing
the time spent in each energy state for all the injected routines,
are written to disk. Figure 7 shows an example extract.

Building on these new modules, Orka is now able to corre-
late the network activity with the routine calls and attribute the
energy usage to them, while taking tail-energy into account.

V. EVALUATION

In order to get an insight of the accuracy of the results
generated by the implementation, the decision was made to test
it against an application designed specifically for this purpose.

1) High-level expectations: As outlined by [7], the power
behaviour of the Wi-Fi mostly depends on the total network
traffic and on the density of this traffic. In the case when the
traffic is particularly dense, the energy drain should be roughly
proportional to the total traffic since the antenna will remain

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

M a i n A c t i v i t y .< i n i t > { 'ACTIVE ' : 0 . 0 , ' IDLE ' :
0 .01100015640258789 , ' TAIL ' : 0 . 0}

M a i n A c t i v i t y $ 1 . onCheckedChanged { 'ACTIVE ' : 0 . 0 ,
' IDLE ' : 0 .03099989891052246 , ' TAIL ' : 0 . 0}

M a i n A c t i v i t y $ 2 . o n C l i c k { 'ACTIVE ' : 0 . 0 , ' IDLE ' :
0 .01699995994567871 , ' TAIL ' : 0 . 0}

M a i n A c t i v i t y . o n C r e a t e { 'ACTIVE ' : 0 . 0 , ' IDLE ' :
0 .13199996948242188 , ' TAIL ' : 0 . 0}

M a i n A c t i v i t y $ S e n d G e t . run { 'ACTIVE ' :
1 .5723857879638672 , ' IDLE ' :
0 .8458666801452637 , ' TAIL ' :
1 .626746654510498}

Figure 7. Extract of a typical output of the networkAnalyser

0 500 1000 1500 2000 2500 3000 3500 4000
Time between each request

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of
 ti
m
e
sp
en

t i
n
ea

ch
 m

od
e

Active
Tail
Idle

Figure 8. For the method SendGet.run()

in active mode and won’t exhibit any tail-energy behaviour.
However, in the situation when the antenna has to process a
small work-flow (sparse traffic) as soon as it enters its idle
state, the antenna will spend most of its time in the tail mode.
Based on this, we built a test application which allows to
generate traffic of various densities and to check whether the
results generated by Orka are fitting with these principles.

2) Designing a test application: An Android applica-
tion was created using Android Studio to simply send a
HTTP GET request every T milliseconds to a constant target
URL. T was initially set to 1000ms and the target URL to
http://www.google.com. A simple GUI was added later
to let the user specify the target URL and the parameter T.

3) Running the tests: Orka was then run on this test ap-
plication using the target URL http://www.google.com
for various values of T between 100ms and 4000ms in steps
of 100ms. To this end, monkeyrunner scripts were then
generated in order to automatically set the right value of T
and let Orka monitor the traffic during 20 seconds. The results
generated for T = 1000ms are presented in Figure 7.

4) Analysing the results: At first glance, it was found that
only the method SendGet.run(), which fires the HTTP
request was attributed significant network usage, i.e. time in
active and tail mode. All other methods were only attributed
time in idle mode. This shows that Orka was able to detect
which method was producing network traffic, and therefore to
map the hardware energy usage back to the code. Based on
this, it is relevant to compare the energy-state tuples of the
method SendGet.run() for all values of T and to check
whether the expectations described in Section V-1 were met.

Figure 8 shows the fraction of the time spent in each mode

0 500 1000 1500 2000 2500 3000 3500 4000
Time between each request

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of
 ti
m
e
sp
en

t i
n
ea

ch
 m

od
e

Active
Tail
Idle

Figure 9. At the application level

0 500 1000 1500 2000 2500 3000 3500 4000
Time between each request

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio
n
of
 ti
m
e
sp
en
t i
n
ea
ch
 m
od
e

Active
Tail

Figure 10. For SendGet.run(), ignoring idle mode

depending on the time T between each request. It seems that
these ratios are constant with respect to the time between each
request but include a significant amount of noise. This result
may seem surprising at first, as one would expect the fraction
of time spent in idle mode to increase with T, while the fraction
of time spent in tail mode to decrease with T. This can be
explained by the fact that to compute the energy tuple of a
routine, the analyser only focusses on Wi-Fi activity during
the execution of this routine. Nevertheless, by definition, tail
energy continues beyond the execution of the routine and Orka
is therefore not accounting for part of the tail energy and of
time spent in idle mode. In order to improve the accuracy
of the results at the method level, Orka needs to implement
more complex accounting policies, such as the last-trigger
accounting policy, where the routine which last triggered a
hardware component will be attributed the energy consumption
that follows until another routine accesses this component.

To understand the Wi-Fi activity not attributed to any rou-
tine by Orka, we looked at the energy tuples at the application
level. Figure 9 shows the fraction of the time spent in each
mode depending on T at the application level. As expected, the
fraction of time spent in idle mode increases as the traffic gets
less dense but this graph doesn’t allow us to draw conclusions
about the active and tail modes, although it seems that the
fraction of time spent in active and tail modes are similar.

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

0 500 1000 1500 2000 2500 3000 3500 4000
Time between each request

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio
n
of
 ti
m
e
sp
en
t i
n
ea
ch
 m
od
e

Active
Tail

Figure 11. At the application level, ignoring idle mode

Figures 10 and 11 show Figures 8 and 9 redrawn, but with
a focus on time spent only in active and tail modes. As we can
see, at the method level, as the fraction of time spent in idle
mode was small as compared to the time spent in the other
modes, Figures 8 and 10 are very similar. However, Figures
9 and 11 show these results at the application level and there
Orka attributes more time in tail mode as the traffic gets less
dense and hence meets the high-level expectations described
in Section V-1. Moreover, it seems that the fraction of the time
spent in tail mode quickly reaches its maximum of about 60%,
for values of T higher than 500ms. Finally, according to these
results, the Wi-Fi antenna spends at least 40% of the time in
tail mode, even for a dense traffic. This would suggest that at
least 20% of the drain caused by Wi-Fi is due to tail-behaviour.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a software-based approach
to providing fine-grained energy feedback (at the source-line
level) to developers, enabling them to investigate energy bugs
effortlessly. This work is also able to map the energy drain
caused by the Wi-Fi antenna back to the code and to partially
account for the tail-energy. One of the limitations of Orka
is its heavy reliance on the cost of Android APIs found by
[11], which should be updated to have the energy estimate
of newer APIs to ensure accurate feedback. Orka operates on
the main assumption that the cost of the routines making no
calls to the Android API is marginal. However, a routine may
not make any calls to the Android API, but instead invoke
a subroutine which includes these. To this end, the injector
should build a call graph of the user-defined routines, the
leaves and nodes of which would be respectively the API calls
and the routines. Moreover, the energy estimates generated
by monitoring the energy-activity of the hardware should be
included in the energy estimates provided by Orka at the
method-level. Finally, this paper focussed exclusively on Wi-Fi
and should include all other hardware components.

REFERENCES

[1] M. V. Heikkinen, J. K. Nurminen, T. Smura, and H. Hämmäinen,
“Energy efficiency of mobile handsets: Measuring user attitudes and
behavior,” Telematics and Informatics, vol. 29, no. 4, 2012, pp. 387–
399.

[2] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android apps,”
in Proceedings of the 4th International Workshop on Green and
Sustainable Software, 2015, pp. 8–14.

[3] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Choosing
the “best” sorting algorithm for optimal energy consumption.” in
ICSOFT (2), 2009, pp. 199–206.

[4] C. Sahin et al., “Initial explorations on design pattern energy usage,” in
Proceedings of the 1st International Workshop on Green and Sustain-
able Software (GREENS), 2012, pp. 55–61.

[5] B. Westfield and A. Gopalan, “Orka: A New Technique to Profile
the Energy Usage of Android Applications,” in Proceedings of the
5th International Conference on Smart Cities and Green ICT System,
SMARTGREENS, 2016, pp. 213–224.

[6] “Orka source code,” https://github.com/acornet/orka, retrieved: May
6th, 2018.

[7] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
in Proceedings of the 7th ACM european conference on Computer
Systems, 2012, pp. 29–42.

[8] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source line
level energy information for android applications,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2013, pp.
78–89.

[9] D. Li and W. G. Halfond, “An investigation into energy-saving pro-
gramming practices for android smartphone app development,” in Pro-
ceedings of the 3rd International Workshop on Green and Sustainable
Software, 2014, pp. 46–53.

[10] C. Sahin et al., “How does code obfuscation impact energy usage?”
Journal of Software: Evolution and Process, 2016.

[11] M. Linares-Vásquez et al., “Mining energy-greedy api usage patterns in
android apps: an empirical study,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 2–11.

[12] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the
energy usage of mobile applications,” in Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and Applications, 1999, pp.
2–10.

[13] A. Hindle et al., “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories,
2014, pp. 12–21.

[14] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in Proceedings
of the 1st International Workshop on Green and Sustainable Software
(GREENS), 2012, pp. 1–7.

[15] L. Zhang et al., “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,”
in Proceedings of the IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2010, pp. 105–114.

[16] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,”
in Proceedings of the 6th conference on Computer systems, 2011, pp.
153–168.

[17] D. Di Nucci et al., “Software-based energy profiling of android apps:
Simple, efficient and reliable?” in Proceedings of the 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2017, 2017, pp. 103–114.

[18] “Optimizing Downloads for Efficient Network Access,”
https://developer.android.com/training/efficient-downloads/efficient-
network-access.html, retrieved: March 31st, 2018.

[19] N. Ding et al., “Characterizing and modeling the impact of wireless
signal strength on smartphone battery drain,” in Proceedings of the
ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems, New York, NY, USA, 2013, pp. 29–40.

[20] “DDMS Network traffic tool,” https://developer.android.com/studio/
profile/ddms.html#network, retrieved: March 31st, 2018.

[21] “Stackoverflow - How does Android tracks data usage per
application?” https://stackoverflow.com/questions/31455533/how-does-
android-tracks-data-usage-per-application, retrieved: March 31st, 2017.

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-635-4

ENERGY 2018 : The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

https://github.com/acornet/orka
https://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developer.android.com/training/efficient-downloads/efficient-network-access.html
https://developer.android.com/studio/profile/ddms.html#network
https://developer.android.com/studio/profile/ddms.html#network
https://stackoverflow.com/questions/31455533/how-does-android-tracks-data-usage-per-application
https://stackoverflow.com/questions/31455533/how-does-android-tracks-data-usage-per-application

	Motivation
	Background Research
	High level guidance
	Hardware-based profilers
	Model-based profilers
	Software-based profilers

	Providing source-line level energy estimates
	Implementation
	Injector
	Analyser and routine class

	Providing hardware usage accounting
	Monitoring the power consumption of Wi-Fi
	Wi-Fi power state machine
	Monitoring the energy-state

	Implementation
	Monitoring the Wi-Fi energy state
	Analysing the traffic and execution traces

	Evaluation
	High-level expectations
	Designing a test application
	Running the tests
	Analysing the results

	Conclusions and future work
	References

