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Abstract—A method for determining the priority of patients
treatments calledtriage is used to direct rescue activities during
a Mass Casualty Incident (MCI). In present disaster medicine,
patients with the highest priority (with a red tag attached) are
transported to the hospital in random order, although their
expected probability of survival (Ps) may differ. Recently, an
electronic triage tag (E-triage) that is able to sense the patient’s
vital signs in real time has been developed. Moreover, based
on the sensed vital signs, the physician’s remarks about the
patient, and medical treatment statistics, each patient’s Ps can
be estimated. In this paper, utilizing E-triage and the latest
medical treatment statistics, we first formulate the problem of
determining a transportation order of patients that maximizes
the life-saving ratio, given the latest vital signs and temporal
variation in the survival probability of each patient, the time
for an ambulance to transport the patient to an appropriate
hospital, and other factors. Since this problem is NP-hard, we
propose a heuristic algorithm based on a greedy method that
transports patients in the increasing order of their expected
survival probability at the time they will arrive and be treated
at the hospital. To prevent the case that rescuing a patient ear-
lier results in the death of two or more patients, our proposed
algorithm also considers, for each low survival probability
patient, the two cases of rescuing the patient or not and derives
the transportation order that keeps the most patients alive.
Through simulations, we confirmed that the proposed method
can transport about a 25% larger number of patients to the
hospital before their expected survival probability gets lower
than a marginal probability than conventional methods.

Keywordsambulance scheduling; disaster management; dis-
aster medicine; electronic triage.

I. INTRODUCTION

patient to determine the priority of the medical treatment
among the patients in a short time. Patients with paper tags
are then carried to the hospital based on their categories.
However, attaching paper tags is a time consuming task
and prone to human errors. Moreover, inherently, paper
tags cannot reflect changes in a patient condition for the
worse. Paper-based triage, then, has the following critical
drawback: there is no priority among the patients of the
same category and the rescue commander cannot grasp the
patients’ conditions in detail, resulting in random order of
transportation of the same category patients. Therefore, in
an MCI, the transported patient is not always the one who
needs first aid most urgently.

Worldwide, many research efforts have examined ways
to improve the life-saving ratio and efficiency in an MCI.
There is a project “Advanced Wireless Communication Tech-
nology for Efficient Rescue Operations” that is developing
an electronic triage tag (E-triage) [1]. The E-triage is a
small embedded device that can sense the vital signs of
patients such as heart rate, respiration rate, and blood oxygen
level (SpO2) in realtime. Moreover, the E-triage can send
the sensed information to a medical server through built-in
ZigBee radio communication. E-triage can help reduce the
triage operation time, avoid human error, and quickly reflect
changes in the patient condition.

Some studies focused on estimation of the patient’'s sur-
vival probability from medical statistics have also been
applied to emergency medicine. ThHeauma and Injury
Severity Score (TRISShethodology estimates thgroba-

Recently, natural disasters, terrorist attacks, and largehility of survival (Ps)based on the patient’s vital condition

scale accidents have occurred all over the world. In a masand the site of trauma [2]. Ps has a closer relationship to the
casualty incidentNICI, hereafter), rescue teams are likely actual mortality rate and it is known that more than 75% of
to be confronted with too many patients, overwhelmingthe patients whose Ps is under 30% at the time of arrival
the medical resources, such as the number of rescueed the hospital will die. Utilizing E-triage and the survival
(responders, paramedics, and physicians), ambulances, aprbbability estimation method together, we believe that it is
the capacities of hospitals. The lack of adequate medicgbtossible to schedule a transportation order of patients that
resources makes it difficult to allocate necessary resourcesaximizes the overall life-saving ratio.

to each patient, resulting in Breventable Trauma Death In this paper, we propose a new method for scheduling
(PTD) in some cases. In such events, the rescuers ar@ near-optimal transportation order of the patients from
supposed to applyriage to patients, which is a paper tag an MCI, taking into account available medical resources
with four categories (red is the most serious) attached to eaciind estimating the temporal deterioration of their survival
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probability. The purpose of the proposed method is toperform a re-triage, schedule the transportation order of the
maximize the average survival probability of all patients atpatients, and decide the hospitals to which they will be
the time of arrival at the hospital as well as the number oftransported. Secondary triage aims to increase the life-saving
patients whose survival probability is more than a marginaratio by determining in a short time the transportation order
level a% (wherea is constant number, such as 30) while of patients taking into account the severity of their injuries.
satisfying several constraints such as the hospital capacitin an MCI, this operation must be finished within one minute
The transportation scheduling problem of patients scatterefbr each patient. However, the paper triage tag method has
over multiple disaster sites is NP-hard and the number ofhe following problems:
possible schedules exponentially increases as the number ofe Even when the patients’ conditions change, their triage
hospitals, ambulances, disaster sites, and patients increases. tags cannot reflect the change.
Therefore, it is difficult to derive an optimal solution in real- « Since there is no priority among patients with the same
time. In the proposed method, assuming that the vital signs  color tag, they are transported in random order.
of each patient and an estimation function of Ps’s temporal « Human errors cannot be avoided.
deterioration are available from a server, we calculate a « The responder’s feeling of oppression (on a possible
value called thenarginal treatment timghen each patient's wrong diagnosis) in deciding the color code for each
survival probability gets lower than a predefined marginal patient is heavy.
level a%, and generate a transportation list based on the 1) Electronic Triage Tag:Many studies have addressed
ascending order of the patients’ marginal treatment timecomputerization of the triage method. Gao et al. developed
However, this greedy method may produce cases wherghe AID-N electronic triage system with electronic triage
transporting a patient will cause two or more other patientstags using biomedical sensors [4] [5]. This system monitors
death (i.e., the hospital arrival time will be after their the vital signs of patients and delivers the patient’s informa-
marginal treatment time). To prevent such cases, we proposin to first responders. The Advanced Wireless Communi-
a more sophisticated algorithm that explores, for each patiejation Technology for Efficient Rescue Operations project
of top & order in the list calculated by the greedy algorithm, also studied computerization of the triage method [1] [6]
the two cases of rescuing the patient or not, and derives thig] [8]. This project developed an embedded sensor device
transportation order that keeps the most patients alive.  called theelectronic triage tag (E-triageyapable of sensing
Through computer simulations, we compared our pro-a patient's vital signs and wirelessly sending/receiving the
posed method with some existing approaches. As a resuléensed information with ZigBee. The vital signs monitored
we confirmed that the proposed method transported aboutlgy the E-triage are the heart rate, respiration rate, and blood
25% larger number of patients to the hospital before theilbxygen level (SpO2). Moreover, the E-triage performs a
marginal treatment time than those existing methods. semiautomatic triage using the patient’s vital signs based on
the START method and sends the collected information as
Il. RELATED WORK well as the triage result (color code) to the server located at
In this section, we briefly survey related work in the the rescue commander’s site. This project aimed to construct
following two categories: disaster medicine and patientan Emergency Medical Service (EMS) system that monitors,
transportation scheduling. aggregates, and visualizes patients’ information in real-time.
Suseki et al. proposed a system that collects vital signs from
patients equipped with E-triage in realtime and decides the
Unlike ordinary medical treatment where sufficient med-priority of treatment based on deviation of the patient’s vital
ical resources are provided for each patient, in an MClsigns from a predefined threshold [9].
rescuers must provide the best treatment for many patients 2) Estimation of Probability of Survival:The TRISS
with limited time and resources. In primary triage, the method, which combines Revised Trauma Score (RTS) and
responders attach paper tags to patients according to thejury Severity Score (ISS), is used to estimate the prob-
START method [3]. Four color codes are used to distinguishability of survival for patients [2]. RTS can be calculated
the severity of the patients’ injury. Patients with red tagsfrom vital signs such as the respiration rate and blood
have the highest priority and need an immediate treatmemiressure which can be measured. On the other hand, 1SS
for survival. For patients with yellow tags, a few hours delaycan be calculated based on the patient’s diagnosis given by
in treatment may not influence their survival probability. a physician.
Patients with green tags do not need a specific treatment. Recently, various trauma data have been registered in a
Patients with black tags are already dead or considered tvpauma database. Some studies have provided more accurate
have no chance of survival and are given null priority. models to calculate the patient’s probability of survival than
Rescuers transport patients to a first aid station withinthe TRISS method by using a trauma database. A model
the disaster site according to their color code and secondagalled the Harborview Assessment for Risk of Mortality
triage is performed there. In secondary triage, paramedicéHARM) was developed using 33,990 trauma data items

A. Application of ICT to Disaster Medicine
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registered in the Harborview Medical Center Trauma Regnumber of patients. We also conduct computer simulations
istry [10]. In addition, the Trauma Mortality Prediction to show the performance of the proposed method, supposing
Model (TMPM) was developed using trauma data froman instance of a large MCI.

702,229 patients who sustained 2,207,823 instances of 1,322

distinct AIS injury codes registered in the National Trauma IIl. PATIENTS TRANSPORTATIONSCHEDULING

Data Bank (NTDB) [11]. Japan Trauma Care and Research PROBLEM

(JTCR) makes up a report on trauma data registered in the This section describes assumptions for the target MCI and

Japan Trauma Data Bank (JTDB) every year and describeg i, jate the patients transportation scheduling problem.
the relationship between Ps and the actual mortality rate in

the report [12]. The above research results suggest that K assumptions
enough trauma data can be collected, it will enable more

accurate Ps estimation and thus a more accurate temporalVé assume that several on-site first aid stations and a
Ps deterioration function than TRISS. rescue command center are set up when an MCI happens.

In the command center, the patients’ transportation schedule
B. Patient Transportation Scheduling in MCI is planned and ambulances are dispatched to the rescue

In current disaster medicine, patient transportatiorSteS:- We also assume that E-triage tags have already been

scheduling just transports severe-condition patients (reéttached to all patients in the rescue sites. Thus, the rescue

tags) at random. The rescue commander collects informatioR®mmand center can grasp all patients’ vital signs and their

about patients and capacities of hospitals using a cell phonéPcation in real time. Moreover, the center can grasp the

a transceiver, and/or a memo, then schedules the patiemlgospitals’ information such as capacity, possible treatment

transportation order based on this collected informationtyP€S, location and so on, and know the transportation time

Thus, the transportation order is likely to be based on thdetween any pair of on-site first aid stations and hospitals.
order in which the information is received. However. the Based on the above information, the center makes a patients’

transportation order by this method may be far from optima|transportation schedule and dispatches ambulances to some

since it cannot adapt to changes in the patients’ condition8f the on-site first aid stations to transport patients as
and newly arriving casualties. We need a better schedulingcheduled. We assume that the temporal deterioration of
method to transport patients to hospitals. survival probability for each patienp at time ¢ can be

Jotshi et al. proposed a transportation scheduling methogStimated by a functiorPs(p, t) that is calculated based

considering the existence of errors in the collected informa®" the latest vital signs and the injury type of the patient.

tion about casualties [13]. In this method, the disaster area According to the sta;[istics in the Japanese Surgery of
is divided into clusters and some ambulances are allocateffauma Data Bank, 95% of patients eventually die if they
to these clusters depending on the following three factorstannot receive medical treatments before their survival pri-

the number of patients in the cluster, the distance fronPrity gets below 10%. The mortality rate is 80% with
the ambulance to the cluster, and the distance from th&urvival probability below 20%, and 75% with survival

cluster to the hospital. In this method, the ambulances arBrobability below 30%. This means that in order to increase
dispatched to clusters rather than to patients so that an err§t€ life-saving ratio, we need to transport patients to a
in the patient’s information does not result in a waste of the0Spital before their survival probability falls below a certain
transportation resource. However, since this method does ngireshold. We denote this threshold by

focus on the injury type and/or the condition of the patient,

it cannot identify patients who require earlier treatment forB' Problem Definition

survival than others. Our target problem is to derive a schedule that maximizes
o the number of patients who are transported from rescue sites
C. Contribution of the Proposed Method to hospitals before their survival probability gets lower than

We focus on the transportation scheduling problem afterv. Let P, S, H, and Am denote the set of patients, the set of
the secondary triage of the patients. Using the temporalescue sites (first-aid stations), the set of hospitals, and the
survival probability deterioration function, we define a prob- set of ambulances, respectively. liétp) = (p, s, h, at, ps)
lem that maximizes the number of patients transported talenote the transportation information of a patigne P
hospitals within their marginal treatment time (the time existing in the first aid statiom € S whereh € H is a
when each patient’s survival probability gets lower than ahospital to whiclp is transportedyt is the estimated hospital
predefined marginal level). Since this problem is NP-hard asirrival time, andps is p’s survival probability at timest. Let
we prove in Section IV-A, we propose a heuristic algorithmam.T'L denote the list of the transportation information of
that provides a semi-optimal solution in a short time, takingpatients who are transported by ambulamge. For each
into account the availability of the hospitals, the locationshospitalh € H, let h.cap denote the latest accommodation
of first-aid stations, the number of ambulances, and theapacity.
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number of patients transported to hospitah am.T'L. The

Table | number of patients to be transported to hospitahust not
SYMBOLS USED IN PROBLEM FORMULATION exceed the accommodation capadityap, this constraint is
Symbol | Meaning Symbol | Meaning denoted as follows.
P set of patients p patient
S set of rescue sites s on-site first aid station
H set of hospitals R hospital Vh € H, count(Am,h) < h.cap Q)
Am set of ambulances am ambulance h ) val i
list of transportation fransportation The transpc_)rted patlgnts survival probability must be no
TL information tl(p) 'nf?_rm?t'on for less thann, this constraint is denoted as follows.
patientp
h.cap accommodation at estimated arrival time
’ capacity of hospitah at hospital
survival _ probabiliity Yam € Am,Vtl € am.TL,tl.ps > « (2)
at the hospital arrival . .
e time P Our goal is to maximize the number of transported

patients while satisfying constraints (1) and (2). We also
want to increase the average survival probability of the

Ot irstaidsation transported patients. Thus, we define the objective function
patient | “4vel l — by the following equation (3).
P, 60 R ; Hospital 1
58 A u 7 Capacit 50
SZ 70 i — e . Za’meAm ZtlEam TL tlpS
pa 2 s [QTE Maximize : 5 | . TL]
4 am.
\/: 4n £, [ Capacity | 90 ameAm 3)
On-site first -
aid station 5 + am.TL
4 T (o ) X;‘ | |
NS i = ameam

subject to (1) and (2)

On-site first
aid station 3

IV. AMBULANCE SCHEDULING ALGORITHM

) ) __A. Problem complexity
Figure 1. A Network Model for the Problem of Patients Transportation

We prove that the transportation scheduling problem de-
fined in Section Il is NP-hard by reducing the shortest
Hamilton path problem known as a NP-hard problem to this

. _.problem.
_ W(_e summarize the symbols used for the problem defini- tha shortest Hamilton path problem is a problem to
tion in Table I. derive the shortest path that traverses each vertex in the

The patient transportation process from rescue sites t@iven graph exactly once. L&k = (V, E, cost) denote a
hospitals can be represented by a network as shown in Figuiggirected graph with weights, wheté E and cost are the
1. Our target problem is deciding an optimal transportationgg; of vertices, the set of edges, and the weight function
schedule consisting of the transportation informattéip) ..t - g — R.
of each patienp. Below, we transform a grapl¥ to an instance of the

In a disaster area, many people are injured and transportgehnsportation scheduling problem. We ugé and E’ as
to several on-site first aid statios After a patient receives yariables representing the set of vertices and the set of edges,
first aid, the patient will be transported to an appropriaterespectively. Initially, these sets are empty.
hospital selected from several hospital candidates To In the graphG = (V, E), for each edgdu,v) € E, we
transport patients, several ambulancks shuttle between 3ke two edgegu, w) and (w,v) by introducing a new
on-site first aid stations and hospitals. We assume that gertex . which is not an element o UV, and put these

function T't(s,h)(s € S,h € H) can de.rive the time o_f an two edges inE’ andw in V’. Then, we construct a new
ambulance to move from on-site first aid statioto hospital  graphG’ = (V U V", E/, cost') where we define a new cost

h. For example, when an ambulanee: located at hospital  f,nction cost’ as follows.
hy transports a patient from on-site first aid statior to a

hospitalh., the hospital arrival timet can be calculated by W(u,v) € E Jw € V' cost(u,v)

at =t+Tt(s, h1)+Tt(s, he). According to the assumptions ] ) (4)
in 11I-A, the survival probability of patientp at time at = cost'(u, w) + cost'(w,v)

can be derived by the estimation functiés(p, at). Based

on the above conditions, the transporting schedtie for YueV H cost'(u,w) | =0 (5)
all patients can be derived. Lebunt(Am, h) denote the (u,w)EE!
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Figure 2. Transforming a graph to instance of transportation scheduling

problem
Figure 3. Example of temporal variation of survival probability

) _Algorithm 1 Baseline algorithm
The above equation (4) shows that the sum of the weights Input: Ordered patient lisPL, set of hospitals, set of
of two new edges i’ is equal to the weight of the original ambulancesim ' ’

edge inE. The equation (5) shows that the cost of at least
one edge that connects to each vernteix V' must be O. L TL < [ . ‘
An example of transformation is shown in Figure, 2. 2 f0F i =0ii< i+ 10 <|PL|do
In &/, we regard thatV’ and V' correspond to the set he < near Hospital(H, pi-pos)
of patients and the set of hospitals, respectively. In the ame < f aStAmbUche(Am’p P08, he)
figure, patients ar& = {a, b, c,d} and hospitals ar&”’ = 5. ate ¢ amenowtime + Tt(am.pos,p;.pos) +
{R1, ha, hs, hy, hs, he}. We also regard that the cost for each Tt(pi-pos, he.pos)
edge inE’ corresponds to the moving time of an ambulance AN Ps(pi, ate)
between the patient's location and the hospital. Moreover, if ps > o then
let us assume that the expected survival probability of each® tl « {ame, pi, pi-pos, he, ate, ps}
T L.append(tl)

patient monotonically decreases and equation (2) alwaysg: .
holds. 10: amc.nowtime < at.

am.pos < h..pos
: he.cap < he.cap — 1
13:  end if

hw

From Figure. 2, it is obvious that solving the transporta- llf
tion scheduling problem for grapi’ is equivalent to solving
the shortest Hamilton path problem in gragh Therefore,

. . ; g end for
the shortest Hamilton path problem is a special case 015_ return TL
the transportation scheduling problem and thus the latter™
problem is NP-hard.

B. Heuristic algorithms remains higher than the threshotd Thus, we use the
Since the transportation scheduling problem is NP-hard, iexpected survival probability estimation functidps(p, t)

is difficult to derive the optimal solution in a practical time. and compute the time called marginal treatment timdor

Therefore, in this section, we propose heuristic algorithmsach patienp such thatPs(p,t) = a. Then, we build the

that derive a semi-optimal solution in a short time. First,patients list?L where the patients are sorted in increasing

we give a greedy algorithm called thmaseline algorithm order of their marginal treatment time. Patients with the

that transports patients in increasing order of their expecte@arlier order need earlier transportation. For example, if there

survival probabilities when arriving at the correspondingare three patients:, p,, and p3 whose expected survival

hospitals. Then, we give a more sophisticated algorithnprobability estimation functions are given in Figure. 3 and

called theDepth-k Brute-Forth Search (DKBFS) algorithm o = 30%, the patients transportation lisPL will be

that investigates for each patient of the ordered list decide{p1,p2, ps).

by the baseline algorithm, both cases of transporting the Given the patients transportation liBtZ, the set of hos-

patient to the hospital or skipping the patient to explore thepitals H, the set of ambulancedm, and other information

possibility of saving more patients with the later order. such as the ambulance travel time between each patient’s
1) Baseline algorithm:To increase the patients’ survival on-site first aid station and each hospital, we compute the

probability, each patient must be transported to an appropriambulance scheduling list'L indicating in what order,

ate hospital while the patient’s expected survival probabilitywhen, and where each ambulance transports patients. We
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show the baseline algorithm in Algorithm 1.

The baseline algorithm processes patients in the specifie Sum of Ps  —Calculation Time
order by PL and assigns for each patient the ambulance ., €00
which can transport the patient to the nearest hospital witl
a capacity (Algorithm 1, line 3) in the shortest time (line 4).
Then, the algorithm computes the time at which the patien
reaches the hospital (line 5) and the patient’s expecte
survival probability at that time (line 6).

Since the baseline algorithm sequentially processes ps
tients in the order specified iR L, it cannot avoid the case
where two or more patients cannot be transported to th
hospital before their marginal treatment time by transporting
a patient with earlier order. In the following subsection, we 01234056 7 8 91011121314 15 16 17 18 19 20
propose an extended version of the algorithm that can avoi Value of k
the above case and maximize the number of patients who are
transported to the hospitals before their marginal treatment
time. Figure 4. Computation time for different values lof

2) DkBFS (Depthk Brute-Forth Search) algorithmWe
want to explore the possibility of “making two or more
patients survive by giving up one patient.” Thus, we consider

for each patientp; in PL the two cases wher@; IS hasients), p, andps, and the number of rescued patients
transported and not. If we consider two cases for eaclyith at leasta survival probability) as well as the average
patient's transportation i L, that is,2" patterns overall, we o hected survival probability are derived. This process is
can find the optimal transportation scheduling list. However,app”ed to other patterns, and the pattern with the highest
deriving the optimal list for a large value afis not feasible. value for the objective function (3) is selected and added
Hence, we design the ABFS algorithm so that it searches , e transportation scheduling li§tL. Then, the same

2" transportation patterns for the firktpatients inPL and process is applied to the next three patients (in this example,
applies the baseline algorithm to the remainingk patients only two are remaining).
for each pattern. _ o 3) Deciding the best value fok: To know the best

We say that a patient iscuedif the patient's expected 56 fork, we measured the total sum of expected survival
survival probability at the time when the patient reaches g, ,papilities for 100 patients and the computation time by
hospital is no less thaa. . changing the value of: between 0 and 20. We used the

We show the details of the algorithm below. same experimental configuration as in Section V-A. We show
(1) Compute the number of rescued patients for all casethe result computed by the average of 20 runs in Figure. 4.

where each of firsk patients inPL is transported and Here, note that the case bf= 0 corresponds to the baseline

not transported. The baseline algorithm is applied toalgorithm.

(k + 1)-th and later patients. Figure. 4 suggests that the total sum of expected survival
(2) Select the pattern that has the largest number of rescugstobability increases a% increases. In this example, the

patients and put the rescued patients and their order igalue almost converged whenis over 5. The computation

the pattern into the transportation scheduling 1idt. time is reasonable whilé& is less than 13, but rapidly
(3) Remove the first patients fromPL and repeat the increases as: increases beyond 13 since the algorithm

steps from (1) whilePL is not empty. Finish ifPL  complexity isO(2%).

becomes empty.

For example, wherPL = [pg,p1,p2,p3,pa,ps] @andk =
3, the DkBFS considers all possible patterns of transporting We conducted simulation experiments to confirm perfor-
each of three patienfs), p; andp, or not. The patterns are: mance of the proposed method. We compared our method
{po}, {1}, {p2}; {po, P1}, {P0, P2}, {P1, P2}, {P0, P1, P2} with several conventional methods and show the results in

In the case of{py}, the algorithm transport, even the following Section V-B.
if equation (2) does not hold but transports neithep;
nor p,. The baseline algorithm is applied to the remainingA. Simulation Configuration

1 . . 4 . We consider a large-scale disaster in the simulation ex-

We consider this case becaysg cannot reach the hospital whilg’s . t Th i f the di t lected
expected survival probability is over, but more patients followed byg _pe”men . € assumptions o € aisaster area are collecte
might be rescued due to ambulance movement. in Table Il.
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V. PERFORMANCEEVALUATION
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Table Il Table IV
THE STATUS OFTHE ASSUMEDDISASTERAREA SIMULATION RESULTS FORPATIENTS WITH RAPIDLY DECREASINGPS
FUNCTIONS
DkBFS BA | Jotshi- | Jotshi- | Greedy
# On-Site # . G R
First Aid | Patients # | bﬁ Transportatio # Rescued| Max | 95 95 78 63 73
Stations | (red) | FOSPfals | Ambulances) - Time Patients | Avg 85 82 | 63 54 51
(1-way) (Ps>230) [Min | 74 | 70 | 43 44 37
20 100 8 24 o~ Max | 47 a4 | 47 71 81
8min Avg. Ps [ Avg a3 a1 a1 61 64
(rescued) [ Min 40 38 42 54 53
Max 41 39 35 37 39
Table 1l Avg. Ps [ A 37 [ 33 | 28 33 33
SIMULATION RESULTS FORPATIENTS WITH TYPICAL PS FUNCTIONS Vg. 'S Yg
(all) Min 32 29 19 29 28
DkBFS | BA Jotshi- | Jotshi- | Greedy
G R
# Rescued| Max 98 98 82 68 95 1) Number of Rescued Patientst Table Ill, the proposed
Sa;'egg "\“A‘(g gg 28 gg i? ii method (O:BFS) showed the best performance among all
(Ps= 30) Mg( 77 y = 75 77 methods. The greedy method transports the current most-
Avg. Ps [ Avg 43 41 46 60 57 serious (lowest Ps) patient first. So, if there is no changes
(rescued) "\\Aﬂin 32 4312 gg i(l) 32 in patient conditions, it achieves a good result (95 rescued
ax .
Avg. Ps [Avg 0 37 0 = %6 pat!ents, for thg best case). However, for the cases that
(al Min 36 32 19 33 31 patients’ conditions change, the results become worse (the

average and minimum numbers of rescued patients are 64
and 44, respectively). The results of Jotshi-G are similar

In the disaster area, there are a total of 20 on-site first aitb the greedy method, but it showed a better performance
stations, and at each station there are 5 seriously-injuredhan Jotshi-R since Jotshi-G considers patients’ current Ps.
(red tag) patients. There are 8 hospitals located in thélowever, like the greedy method, Jotshi-G does not consider
area where each hospital has 3 ambulances. Each patien¢Banges in patients’ conditions. For this reason, the differ-
initial survival probability is decided at random between ence from the proposed method is large. The performance of
70% and 90%. We suppose that there are four types of P&e baseline algorithm (BA) is similar to thekBFS method,
estimation functions that make Ps of a patient with 100%ut it does not optimize the schedule, causing a gap from
initial Ps gradually fall to 0% in 55, 65, 75, and 90 minutes, the DkBFS method.
respectively. These 4 types of Ps estimation functions are 2) Average Survival ProbabilityAverage survival prob-
equally distributed among 100 patients (25% for each). The&bility of rescued patients (rescued) of Jotshi-R and the
conventional methods for comparison are shown below. Greedy method is higher than the proposed methods but the
Greedy methodtransports the current lowest survival prob- average survival probability (all) of the proposed methods
ability patient first. is higher. These existing methods transported some patients
Jotshi's method[13]: considers only the moving time be- with higher survival probability, but patients who need
tween first aid stations and hospitals, and is denoted bgarlier treatment were transported later. As a result, with
Jotshi-R Jotshi-R is close to the actual rescue transportathese methods, many patients with higher current Ps (priority
tion activity. However, this method does not decide patienshould be low) are transported earlier, but the patients with
transportation order and thus transports patients in randomewer Ps (priority should be high) are transported late and do
order. For fairness in comparison, we prepared a modifiedot arrive before the marginal treatment time. On the other
version calledJotshi-Gmethod, which transports the current hand, since our proposed methods can transport patients
lowest Ps patient first in each on-site first aid station. taking into account expected Ps at the hospital arrival time,
Baseline algorithm this method was described in Section the number of rescued patients is higher than other methods.
IV-B1. 3) Additional ExperimentsWe also conducted additional

Based on the results of preliminary experiments, we sesimulation experiments in two cases where patients’ Ps
the value ofk to 10, and the value of to 30%. more rapidly and more slowly decreases, respectively. For

We simulated 1000 times and calculated average, minithis purpose, we changed the distribution of the four Ps
mum, and maximum numbers of rescued patients (patientstimation functions used in Section V-B2 so that 40, 30,
who arrived the hospital with Ps over) and their survival 20, and 10% of patients have the Ps functions that make
probability. 100% initial Ps fall to 0% in 55, 65, 75, and 90 minutes,
respectively, for rapid decrease case. For the slow decrease
case, we used the reverse distribution: 10, 20, 30, and 40%.
We show the results in Tables IV and V.

B. Results and Discussion
The simulation results are shown in Table IlI.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-119-9 162



eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Table V
SIMULATION RESULTS FORPATIENTS WITH SLOWLY DECREASINGPS
FUNCTIONS
DkBFS | BA Jotshi- | Jotshi- | Greedy
G R

# Rescued| Max 100 100 90 77 100
Patients Avg 97 96 76 65 89
(Ps> 30) Min 89 86 46 52 44
Max 48 48 50 70 73
Avg. Ps Avg 43 42 a7 60 46
(rescued) [ Min 40 39 44 53 41
Max 48 48 43 44 49
Avg. Ps Avg 42 41 36 39 41
(all) Min 38 34 22 34 36

Table IV shows that when more patients’ Ps rapidly

(2]

(3]

(4]

decreases, our proposed methods kept similar performances

to the previous experiment (in Table 1l1), whereas the results

of other methods got worse.

Table V suggests that when more patients’ Ps slowly

decreases, the proposed methods rescued all patients in the
best case and larger number of patients for average and
worst cases than other methods. Other methods rescued moig]

patients than previous cases in Tables Il and IV, and the

difference from our methods got smaller.

The above results suggest us that the proposed methods

can more effectively schedule patients transportation in the

cases where many patients need early treatment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated the transportation scheduling
problem for patients in an MCI assuming utilization of E-

[7]

triage and proved that the problem is NP-hard. To efficiently 8]

solve the problem, we proposed a heuristic algorithm that

explores a search space represented by a binary tree within

depthk and finds a near-optimal transportation schedule that
achieves the maximal life-saving ratio. Through computer
simulations, we confirmed that our method outperforms
other existing methods in terms of the average survival
probability and the expected number of patients surviving.

9]

In the proposed method, we assumed that temporal dé10]

terioration of survival probability for each patient can be
estimated from the type of trauma diagnosed by a physician

and vital signs sensed by the E-triage tag. We believe that
an accurate estimation method will be realized in the neafl1]

future as studies about collection and analysis of patients’

trauma data progress.

As part of our future work, we will conduct computer

simulations for performance evaluation of the proposedi]

method when patients are dynamically added and/or the

conditions of patients change during transportation.

REFERENCES

[1] “Advanced Wireless Communication Technology for Ef-
http://www-higashi.ist.osaka-

ficient Rescue Operations,”

(13]

u.ac.jp/research/e-triage.html. URL last accessed December

9, 2010.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-119-9

Champion, H.R., Copes, W.S., and Sacco, W.J.,: “The Major
Trauma Outcome Study: Establishing National Norms for
Trauma Care,J. of Trauma Vol. 30, pp. 1356—1365 (1990).

Benson, M., Koenig, KL., and Shultz, CH.: “Disaster triage:
START, then SAVE-a new method of dynamic triage for
victims of a catastrophic earthquakeéltehospital Disaster
Med \Vol. 11, No. 2, pp. 117-124 (1996).

Gao, T., Massey, T., Selavo, L., Crawford, D., Chen, B.,
Lorincz, K., Shnayder, V., Hauenstein, L., Dabiri, F., Jeng,
J., Chanmugam, A., White, D., Sarrafzadeh, M., and Welsh,
M.,: “The Advanced Health and Disaster Aid Network: A
Light-weight Wireless Medical System for TriagelEEE
Transactions on Biomedical Circuits and Systeld. 1, No.

3, pp. 203-216 (2007).

Gao, T., Pesto, C., Selavo, L., Chen, Y., Ko, G., Lim, H.,
Terzis A., Watt, A., Jeng J., Chen, B., Lorincz, K., and
Welsh, M.: “Wireless Medical Sensor Networks in Emergency
Response: Implementation and Pilot ResulBfc. of 2008
IEEE Conf. on Tech. for Homeland Securiggp. 187-192
(2008).

Kusuda, J., Kiyama, N., Utiyama, A., Hiromori, A., Umedu,
T., Yamaguchi, H., and Higashino, T.,: “Design and Devel-
opment of Electronic Triage System Using Wireless Sensor
Networks,”IEICE technical reportVol. 109(204), pp. 33-38
(2009).

Kiyama, N., Kusuda, J., Utiyama, A., Hiromori, A., Umedu,
T., Yamaguchi, H., and Higashino, T.,: “The development
of electronic triage system for emergency life saving in
disasters,Proceedings of the IPSJ Dicomo 2Q09p. 1837—
1848 (2009).

Abe, H., Yamamoto, T., and Nishigaki, M.,: “Information con-
vey to electronic triage tag using intra-body communication:
the implementation,Proceedings of the IPSJ Dicomo 2009
pp. 1849-1854 (2009).

Suseki, K., Sugiyama, A., Nagahashi, K., and Okada, K.,: “A
Proposal of the Automatic Triage System Providing Treat-
ment Priority,”J. of IPSJ Vol. 51, No. 1, pp. 2-13 (2010).

West, TA., Rivara, FP., Cummings, P., Jurkovich, GJ., and
Maier, RV.,: “Harborview assessment for risk of mortality:
an improved measure of injury severity on the basis of ICD-
9-CM,” J. of Trauma Vol. 49, pp. 530-541 (2000).

Osler, T., Glance, L., Buzas, JS, Mukamel, D., Wagner, J.,
and Dick, A.,: “A Trauma Mortality Prediction Model Based
on the Anatomic Injury Scale,Ann. of Surg Vol. 247, pp.
1041-1048 (2008).

“Japan Trauma Care and Research,” http://jtcr-jatec.org. URL
last accessed December 5, 2010.

Jotshi, A., Gong, Q., and Batta, R.: “Dispatching and rout-
ing of emergency vehicles in disaster mitigation using data
fusion,” Socio-Economic Planning Sciencé®l. 43, No. 1,

pp. 1-24 (2009).

163



