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Abstract— The paper describes a resource allocation problem 

in a smartgrid application formulated and solved as a binary 

integer programming model. For handling power outages from 

the main distribution circuit, the intelligent agents in the smart 

grid have to utilize and negotiate with DER (distributed energy 

resource) agents that act on behalf of the local generators in 

the grid, to negotiate power supply purchases to satisfy 

shortages. We develop a model that can assign these DERs 

optimally to available multiple regional utility areas or units 

(RUAs) that are experiencing power shortages. This is a 

resource assignment problem. The DERs in our model depict 

the behavior of power generated through windturbine, solar 

powered generation or other renewable power generation units 

and the region or area refers to a centralized distribution unit. 

The integer programming approach is called a capacity based 

Iterative Binary Integer Linear Programming (C-IBILP). All 

simulation results are carried out using the optimization tool 

box in MATLAB. Computation results exhibits very good 

performance for problem instances tested and validates 

the assumptions made. 
 
Keywords— C-IBILP; DER; RUA; BB. 

I. INTRODUCTION 

Dynamic real-time power systems often operate in 

continuously changing environments such as adverse 

weather conditions, sudden transformer failures, 

malfunctioning of a sub-system of a transmission or 

distribution network. These disruptions along with the 
complexity of our power network systems, cause the energy 

demand and loads of a power system to fluctuate, 

potentially resulting in widespread outages and huge price 

spikes. Data from the North American Electric Reliability 

Council (NERC) and analyses from the Electric Power 

Research Institute (EPRI) indicate that average outages from 

1984 to the present time have affected nearly 700,000 

customers per event annually [1]. Smaller outages occur 

much more frequently and affect tens to hundreds of 

thousands of customers every few weeks or months, while 

larger outages occur every two to nine years and affect 
millions. Although preventing these outages remain 

challenging, such  changes (increases or decreases) in 

demand by consumers can often be offset by distributed 

energy resources (DERs), which are renewable resources 

like solar and wind based power to satisfy the shortages or 

reduce the outage levels. In our work, we consider the use of 

such DER-based standby mechanisms and formulate to 

support their issue. We apply an Iterative Binary Integer 

Linear Programming (IBILP) technique [2] to optimally 
assign DERs to a region based on criteria such as power 

levels, demands and preferences. A resource allocation for 

complex power system is robust with respect to variations in 

demand and fluctuations in power levels. The amount of 

additional power that DERs can generate and be effectively 

utilized in power network is a measure of robustness. 

Hence, we argue that a capacity based the Iterative Binary 

Integer Linear Programming (C-IBILP) model is inherently 

a robust resource allocation.  

 

The structure of the remaining paper is as follows: In 
Section II, an overview and related work for the smart grid 

is discussed. In Section III, we present a general formulation 

of this DER assignment problem. In Section IV, we describe 

how to solve this problem optimally by using a branch-and-

bound based (BB) algorithm with equality and inequality 

constraints. In Section V, we show the experimental results. 

 

II. RELATED WORK 

 

Mathematical programming has enjoyed a burgeoning 

presence in theoretical computer science, both as a 
framework for developing algorithms and, increasingly, as a 

bonafide model of computation whose limits are expressed 

in terms of sizes of formulations and integrality gaps of 

formulations [3, 4, 17]. Linear formulations are an appealing 

model of computation because both optimization and 

decision problems fit naturally into the framework, and both 

theoretically tractable and efficient practical algorithms 

exist for solving linear programs. For instance, state-of-the-

art approaches to exactly solving large-scale instances of 

many NP hard problems rely on integer programming 

approaches that require the repeated solution of integer 

programs representing the problems [5]. The polynomial-
time algorithms of [15] and other algorithms [13-16] cannot 

be applicable in this application due to high complexity and 

extensive run-times. Modification will be investigated in 

future work. We refer to a fundamental model for DER 

assignment as the Capacity based Iterative Binary Integer 

Linear Programming (C-IBILP) model. There has been little 

attention given to this type of approach in smart electrical 

grid analyses. To our knowledge, smart-grid problems of 

this type have not been solved for DER allocations using 

optimization models that perform optimal matching of 
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supply sources demand sites using prediction of generation 

and market-controlled consumption. Such optimization 

algorithms are comparable to hard unsolved problems in 

inference, optimization, and control [12].  

 

III. DER-ASSIGNMENT PROBLEM 
 

To illustrate our problem formulation, we assume that there 

are 7 areas (RUAs) and 6 DER units with the demand and 

preference levels shown in Fig 1. We define a Regional 

Utility Area (RUA) as the local distribution power utilities 

within the micro grid that distributes the power within their 

network for its loads [1]. For simplicity we name them Area 
1, Area 2….Area 7 as illustrated in Figure 1. The power 

demand and the preferences in Fig.1 depict a demand driven 

DER assignment problem that also accommodates 

preference information. The parameters in the figure are for 

illustration purposes. 

 

area1 area2 area3 area4

area5 area6 area 7

Area layout: the areas in higher power demand are in the bottom row

 
 

                               Figure 1. RUA layout 

 

A simple allocation ‗text‘ script on MATLAB would be as 

follows: text (0.1, .73, 'area1'); text (.35, .73, 'area2'); text 

(.60, .73, 'area3'); text (.82, .73, 'area4'); text (.35, .42, 

'area5'); text (.60, .42, 'area6'); text (.82, .42, 'area 7'). 

 

For example, suppose our simulation study is charged with a 
need to optimally assign 6 DERs, DER1, DER 2, DER3, 

DER 4, DER 5, DER 6, to 7 regional utility areas (RUA) 

based on criteria such as capacity in power levels that these 

DER are able to generate and preferences in the area that 

these DER wish to operate. For simplicity in our 

optimization procedure, we also assume that each RUA can 

have no more than one DER, and each DER gets exactly 

one RUA. The DER can have a preference for the area that 

they wish to join, and their preferences are considered based 

on their capacity, i.e., the more power they have been able 

to generate the power (kW), the higher the capacity.  
 

We weigh the preferences based on capacity power level of 

DER'S through a preference weight matrix (pwm), so that 

the more power that the DER's can generate, the more their 

preferences count. 

 

 
                  
                            Figure 2. DER vs RUA assignment problem 

 

Also, we impose multiple constraints such as some RUA 

have demand, some do not, and some demands are higher 

than others; DER 3 and DER 4 often work together, so we 

would like them to be no more than one RUA away, and 

DER 5 and DER 6 often work together so they also should 

be no more than one RUA away. Our approach to solve the 

assignment problem is to formulate it as a capacity based 

Iterative Binary Integer Linear Programming (C-IBILP) 

model and relax the integrality constraints. Our overall 
objective is to maximize the satisfaction of the preferences 

weighted by capacity which will allocate these DERs to 

their areas. This is done through a binary integer 

programming model by defining a linear objective function. 

Our algorithm uses a branch-and-bound procedure with 

linear programming bounds with 'minimum integer 

infeasibility' as the branch strategy and ‗depth first search 

for the node search strategy.  

 

To develop our problem formulation, the first step is to 

choose what each element of our solution vector |x| 

represents. We use binary integer variables which represents 
the specific assignments of DERS to RUAs. If the DER is 

assigned to a RUA, the variable takes the value 1 and if not 

assigned, the variable takes the value 0. We consider the 

DER's in sequential order as DER 1, DER 2, DER 3, DER 

4, DER 5, DER 6 and DER 7. The nth sequence of elements 

in vector |x| stores the assignment variables for DER n. In 

DER 1 

 

DER 2 

DER 3 

DER 4 

DER 5 

DER 6 

RUA/AREA 1 
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our example |x (1)| to |x (7)| correspond to DER1 being 

assigned to Area 1, Area 2, etc., up to Area 7. In all, our 

vector |x| has 6 sequences of 7 elements each or 42 elements 

in all. Each sequence has a single binary variable set to 1, 

enforcing a multiple choice condition for each DER.  
 
A. DER Capacities  

 
We impose constraints based upon DER preference level in 

their area of operation driven by their capability to generate 

power. The concept is that the more power that a DER can 

generate, the higher preference level. For example consider 

the randomly set power levels given in kiloWatts (kW) 

below. 

 

a.  DER 19 kW 
b. DER 210 kW 
c. DER 35 kW 
d. DER 43 kW 
e. DER 51.5 kW and  
f. DER 6 2 kW 

 

We create a normalized weight vector based on capacity and 

also assume that certain DERs should be used in some 

preferred region or area, such as a DER with higher power 

generation capability being be used in large demand areas. 

This normalized weigh vector can be obtained on MATLAB 
as follows: 
  
capacity = [9 10 5 3 1.5 2]; 
weight vector = capacity/sum (capacity); 

 

 
 
B. RUA Preferences 

 
We set up a preference weight matrix (pwm or prefmatrix) 

where the rows correspond to AREAS and the columns 

correspond to DERS. We assume that each DER will give 
values for each area so that the sum of all their choices, (i.e., 

their columns), sums to 100.  A higher number means the 

DER prefers the area. We justify the use of the preference 

matrix by noting that limitations in algorithm scalability and 

data availability preclude a fully centralized solution to the 

problem of interest. Thus, decision making must be 

decentralized, and we accordingly divide the power network 

into many smaller RUAs, where the prefmatrix concept is 

applied to individual regions in the network. 

An example of DER preferences is shown below: 
 
DER1 = [0; 0; 0; 0; 10; 40; 50]; 
DER2 = [0; 0; 0; 0; 20; 40; 40]; 
DER3 = [0; 0; 0; 0; 30; 40; 30]; 
DER4 = [1; 3; 3; 3; 10; 40; 40]; 
DER5 = [3; 4; 1; 2; 10; 40; 40]; 
DER6 = [10; 10; 10; 10; 20; 20; 20]; 

 
The ith element of a DER‘s preference vector is the value the 

ith RUA. Thus, the combined preference matrix is  expressed 

as ‗prefmatrix‘:  

 
 prefmatrix = [DER1 DER2 DER3 DER4 DER5 DER6]; 

 
 

Case 1: We treat the above ‗prefmatrix‘ arrangement as 

case 1 for analysis. We then weigh the preferences matrix 

by the |weightvector| to scale the columns by capacity. We 

also  reshape this matrix as a vector in column-order so that 

it corresponds to our |x| vector.  This is achieved in 

MATLAB script as follows:  
 

PM = prefmatrix * diag (weightvector); 

 
 

c = PM (:); 

 
 

30

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-107-6



IV. OBJECTIVE FUNCTION AND ADDED 

CONSTRAINTS  

 
A. Objective function 

 

Our objective is to maximize the total preferences measure 

weighted by capacity. This is a linear objective function 

max c'*x or equivalently min -c'*x with c being preferences 

of DER. We use the BINTPROG script [2] of MATLAB to 

run our model that is defined as:  

 

binary:x

beq,Aeq.x

b,A.x

  :xTf
x

min
 

 

where.,  

f:Vector containing the coefficients of the linear objective 

function. 

A: Matrix containing the coefficients of the linear inequality 

constraints A·x≤ b. 

b: Vector corresponding to the right-hand side of the linear 

inequality constraints. 

Aeq: Matrix containing the coefficients of the linear equality 

constraints Aeq·x = beq. 

beq: Vector containing the constants of the linear equality 

constraints. 
x0:Initial point for the algorithm. 

Options: Options structure containing options for the 

algorithm.  

 x: a binary integer solution                                                                                                                                                                            

vector—that is, its entries can only take on the values 0 or 1. 

B. Constraints 

The first set of constraints requires that each DER is 

assigned to exactly one area. For example, since DER2 is 

the second DER, we enforce the condition that |sum(x 

(8:14)) =1|. We represent these linear constraints in an 

equality matrix Aeq and right hand side vector beq, where 

|Aeq*x = beq|, by building the appropriate matrices.  The 

matrix |Aeq| consists of ones and zeros. For example, the 

second row of |Aeq| corresponds to DER2 getting exactly 

one RUA, so the row pattern is the following:  

 

  0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 

 

These conditions are implemented in MATLAB code as 

follows: 
 
|Aeq (2, :)*x = 1| is equivalent to |sum(x (8:14)) = 1|. 
numAREAS = 7; 

numDERS = 6; 
numDim = numAREAS * numDERS; 
onesvector = ones (1, numAREAS); 
Each row of Aeq corresponds to one DER.  

Aeq =blkdiag (onesvector, onesvector, onesvector, onesvector, 
onesvector, onesvector); 
beq = ones (numDERS, 1); 
view the structure of Aeq, that is, where there are nonzeros (ones) 
figure; 

 

The second sets of constraints are inequalities. These 

constraints specify that each AREA has no more than one 

DER in it, i.e., each AREA has one DER in it, or is empty. 
We build the matrix |A| and the vector |b| such that |A*x <= 

b| to capture these constraints. Each row of |A| and |b| 

corresponds to a RUA and so row 1 corresponds to the DER 

assigned to RUA 1. In this case, the rows have the type of 

pattern shown below for row 1: 

 
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0  ... 1 0 0 0 0 0 0 
 

Each subsequent row is similar but is shifted (circularly) to 

the right by one spot by one position. For example, row 3 

corresponds to RUA 3 and enforces that |A(3,:)*x <= 1|, so 

that AREA 3 cannot have more than one DER. Figures 3 

and 4 illustrate  equality and inequality constraints that are 

explained above. 
 

0 5 10 15 20 25 30 35 40

DER1
DER2
DER3
DER4
DER5
DER6

nz = 42

Equality constraints: each DER gets exactly one RUA or Area

 
 

                    Figure 3. Equality Constraints 

 

DER1 DER2 DER3 DER4 DER5 DER6

AREA 1

AREA 3

AREA 5

AREA 7

nz = 42

Inequality constraints: no more than one DER per RUA or area

      

 
                              Figure 4. Inequality constraints 

 

A = repmat(eye(numAREAS),1,numDERS); 
b = ones(numAREAS,1); 
 

where ‗repmat‘ represents the replicate and tile array. The 

elements of next set of constraints are also inequalities, so 

they are added to the matrix |A| and vector |b|, that already 

contain the inequalities from above. We wish to enforce that 

DER3 and DER4 are no more than one AREA (RUA) from 

each other, and similarly for DER5 and DER6. First the 

symmetric distance matrix for the RUAs is built using 
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physical locations and Manhattan (i.e., the ―taxicab‖ 

metric).  

D = zeros(numAREAS); // generates a 7 x 7 zero matrix 
Setting up the top right half of the matrix 

D(1,2:end) = [1 2 3 2 3 4]; 
D(2,3:end) = [1 2 1 2 3]; 
D(3,4:end) = [1 2 1 2]; 
D(4,5:end) = [3 2 1]; 
D(5,6:end) = [1 2]; 
D(6,end)   = 1; 

The lower left half is the same as the upper right D = 

triu(D)' + D; We find the RUA‘s that are more than one 

distance unit away. 

 
[AREAA,AREAB] = find(D > 1); 
numPairs = length(AREAA); 

This finds |numPairs| pairs of AREAS. For example, if 

DER3 occupies one AREA in the pair, then DER4 cannot 

occupy the other AREA in the pair, else it would be more 

than one unit away in terms of AREA. The same condition 

holds for DER5 and DER6. This gives |2*numPairs| 

additional inequality constraints which we add to |A| and |b|. 
By adding rows to A, we accommodate these constraints as 
follows: 
numrows = 2*numPairs + numAREAS;  
A((numAREAS+1):numrows, 1:numDim) = 

zeros(2*numPairs,numDim); 
For each pair of AREAS in numPairs, for the |x(i)| that 

corresponds to DER 3 in |AREAA| and for the |x(j)| that 

corresponds to DER4 in |AREAB|, x(i) + x(j) <= 1 i.e., 

either DER3 or DER4 can occupy one of these AREAS, but 

not both. 

 
C. Branch and Bound (BB) Strategy             

                        

The branch and bound algorithm is a well-known optimal 

solution method. Branch and bound (BB) algorithms are 

methods for solving non-convex global optimization 

problems [6-8]. They are exact (non-heuristic), in the sense 

that they calculate a provable upper and lower bounds on 

the globally optimal objective value and they terminate 

when all suboptimal feasible solutions have been 

eliminated. Branch and bound (BB) algorithms can be 
computationally slow. In the worst case they require effort 

that grows exponentially with problem size. We achieved 

fast convergence in our problems. We do note that due to 

total unimodularity of the basic A matrix, that a network- 

based customized linear programming solver could be used 

to provide the lower bounds very quickly in large problems.   

The BB algorithm is a well known algorithm in the research 

community [6-9]. An example run of the Branch and Bound 

algorithm is shown in Fig.5 followed by a snippet of 

MATLAB code showing the iterative output for each node 

displayed in the branch and bound algorithm. We let the 

BINTPROG choose the start point. 
 

x0 = []; 
f = -c; 
options = optimset('Display','iter','NodeDisplayInterval',1); 
[x,fval,exitflag,output] = 

bintprog(f,A,b,Aeq,beq,x0,options); 
fval 
exitflag 
output 

 

To reduce the number of nodes explored, the time, or 
number of iterations taken, there are alternative options 

available. BINTPROG use the options to adjust the 

algorithm with differing node and branching variable 

strategies [2].   
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Figure 5. BB search algorithm with Inequality constraints 
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For example, the default branching strategy is |'maxinfeas'|, 

which chooses the variable with the maximum integer 

infeasibility for the next branch, that is, the variable whose 

value is closest to 0.5. Running the problem again with the 

branching strategy set to |'mininfeas'|, the variable the 

minimum integer infeasibility is chosen (that is, the variable 
whose value is closest to 0 or 1 but not equal to either).  
 

For structuring the tree, depth-first and best-node search 

strategy are available. For example, in ‗df‘, at each node in 

the search tree, if there is a child node one level down in the 

tree that has not already been explored, the algorithm 

chooses one such child to search. Otherwise, the algorithm 

moves to the node one level up in the tree and chooses a 

child node one level down from that node. In best-node (bn) 

strategy, the node with lowest bound on the objective 

function is the default. In our limited computational 

experience, convincing and acceptable results were quickly 
reached. For future work, we would plan to increase the 

scale of our test problems and investigate improved BB 

schemes.  

 

           V.  RESULTS 

 

The simulation is carried out in a MATLAB platform. The 

results show that the optimal value is reached after 163 

iterations with 54 nodes participation in 1.22 seconds 

(case1) using the capacity based Iterative Binary Integer 

Linear Programming (C-IBILP) based branch and bound 
method which maximizes the satisfaction of the DER 

preferences weighted by its capacities.  

The final output shown in Figure 6 presents the DER 

allocation with the RUA 1 or area 1 treated as empty for 

optimal assignment. 

Solution for default BranchStrategy and NodeSearchStrategy

 empty   DER4   DER6 DER5 

  DER3   DER2 DER1

  
               
       Figure 6. An optimal DER assignment solution for case 1 

Case 2: If we change the preferences of DER‘s according to 

the matrix shown below, then the optimal solution is 

reached with 13 iterations, 1 node in 0.047 seconds with 

default node and branch strategies.  

 

 

Solution for BranchStrategy=mininfeas and default NodeSearchStrategy

 DER6 DER5  empty    DER3   

DER2 DER1  DER4  

 

            Figure 7. An optimal DER assignment solution to case 2 
 

VI. CONCLUSION 

The paper presents a resource assignment problem for smart 

grid application. The capacity based Iterative Binary Integer 

Linear Programming (C-IBILP) model is designed to 

specify an optimal allocation of distributed energy resources 
(DER‘s) during power outage periods to satisfy shortages. 

Computational results show that our C-IBILP algorithm 

exhibits very good performance for problem instances 

tested. A branch and bound algorithm for the smartgrid 

problem was described. It combines the extension results 

previously presented in the literature with new elements, 

such as a new lower bound that works by exploiting some 

properties connected with the ad- hoc branching rule we 

have developed. Computational results establish that the 

algorithm is very competitive. It greatly improves the results 

obtained by methods that have recently appeared in the 
literature. The limitation of our approach is that the method 

does not scale well for larger DERs. Our current efforts 

involve extending this assignment model to a more scalable 

assignment formulation for which larger numbers of DER‘s 

can to serve each RUA.   
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