
An Optimal Resource Assignment Problem in Smart Grid

Prakash Ranganathan

Department of Electrical Engineering

University of North Dakota

Grand Forks, ND, USA

e-mail:prakashranganathan@mail.und.edu

Kendall Nygard

Department of Computer Science

North Dakota State University

Fargo, ND, USA

e-mail:Kendall.Nygard@ndsu.edu

Abstract— The paper describes a resource allocation problem

in a smartgrid application formulated and solved as a binary

integer programming model. For handling power outages from

the main distribution circuit, the intelligent agents in the smart

grid have to utilize and negotiate with DER (distributed energy

resource) agents that act on behalf of the local generators in

the grid, to negotiate power supply purchases to satisfy

shortages. We develop a model that can assign these DERs

optimally to available multiple regional utility areas or units

(RUAs) that are experiencing power shortages. This is a

resource assignment problem. The DERs in our model depict

the behavior of power generated through windturbine, solar

powered generation or other renewable power generation units

and the region or area refers to a centralized distribution unit.

The integer programming approach is called a capacity based

Iterative Binary Integer Linear Programming (C-IBILP). All

simulation results are carried out using the optimization tool

box in MATLAB. Computation results exhibits very good

performance for problem instances tested and validates

the assumptions made.

Keywords— C-IBILP; DER; RUA; BB.

I. INTRODUCTION

Dynamic real-time power systems often operate in

continuously changing environments such as adverse

weather conditions, sudden transformer failures,

malfunctioning of a sub-system of a transmission or

distribution network. These disruptions along with the
complexity of our power network systems, cause the energy

demand and loads of a power system to fluctuate,

potentially resulting in widespread outages and huge price

spikes. Data from the North American Electric Reliability

Council (NERC) and analyses from the Electric Power

Research Institute (EPRI) indicate that average outages from

1984 to the present time have affected nearly 700,000

customers per event annually [1]. Smaller outages occur

much more frequently and affect tens to hundreds of

thousands of customers every few weeks or months, while

larger outages occur every two to nine years and affect
millions. Although preventing these outages remain

challenging, such changes (increases or decreases) in

demand by consumers can often be offset by distributed

energy resources (DERs), which are renewable resources

like solar and wind based power to satisfy the shortages or

reduce the outage levels. In our work, we consider the use of

such DER-based standby mechanisms and formulate to

support their issue. We apply an Iterative Binary Integer

Linear Programming (IBILP) technique [2] to optimally
assign DERs to a region based on criteria such as power

levels, demands and preferences. A resource allocation for

complex power system is robust with respect to variations in

demand and fluctuations in power levels. The amount of

additional power that DERs can generate and be effectively

utilized in power network is a measure of robustness.

Hence, we argue that a capacity based the Iterative Binary

Integer Linear Programming (C-IBILP) model is inherently

a robust resource allocation.

The structure of the remaining paper is as follows: In
Section II, an overview and related work for the smart grid

is discussed. In Section III, we present a general formulation

of this DER assignment problem. In Section IV, we describe

how to solve this problem optimally by using a branch-and-

bound based (BB) algorithm with equality and inequality

constraints. In Section V, we show the experimental results.

II. RELATED WORK

Mathematical programming has enjoyed a burgeoning

presence in theoretical computer science, both as a
framework for developing algorithms and, increasingly, as a

bonafide model of computation whose limits are expressed

in terms of sizes of formulations and integrality gaps of

formulations [3, 4, 17]. Linear formulations are an appealing

model of computation because both optimization and

decision problems fit naturally into the framework, and both

theoretically tractable and efficient practical algorithms

exist for solving linear programs. For instance, state-of-the-

art approaches to exactly solving large-scale instances of

many NP hard problems rely on integer programming

approaches that require the repeated solution of integer

programs representing the problems [5]. The polynomial-
time algorithms of [15] and other algorithms [13-16] cannot

be applicable in this application due to high complexity and

extensive run-times. Modification will be investigated in

future work. We refer to a fundamental model for DER

assignment as the Capacity based Iterative Binary Integer

Linear Programming (C-IBILP) model. There has been little

attention given to this type of approach in smart electrical

grid analyses. To our knowledge, smart-grid problems of

this type have not been solved for DER allocations using

optimization models that perform optimal matching of

28

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

supply sources demand sites using prediction of generation

and market-controlled consumption. Such optimization

algorithms are comparable to hard unsolved problems in

inference, optimization, and control [12].

III. DER-ASSIGNMENT PROBLEM

To illustrate our problem formulation, we assume that there

are 7 areas (RUAs) and 6 DER units with the demand and

preference levels shown in Fig 1. We define a Regional

Utility Area (RUA) as the local distribution power utilities

within the micro grid that distributes the power within their

network for its loads [1]. For simplicity we name them Area
1, Area 2….Area 7 as illustrated in Figure 1. The power

demand and the preferences in Fig.1 depict a demand driven

DER assignment problem that also accommodates

preference information. The parameters in the figure are for

illustration purposes.

area1 area2 area3 area4

area5 area6 area 7

Area layout: the areas in higher power demand are in the bottom row

 Figure 1. RUA layout

A simple allocation ‗text‘ script on MATLAB would be as

follows: text (0.1, .73, 'area1'); text (.35, .73, 'area2'); text

(.60, .73, 'area3'); text (.82, .73, 'area4'); text (.35, .42,

'area5'); text (.60, .42, 'area6'); text (.82, .42, 'area 7').

For example, suppose our simulation study is charged with a
need to optimally assign 6 DERs, DER1, DER 2, DER3,

DER 4, DER 5, DER 6, to 7 regional utility areas (RUA)

based on criteria such as capacity in power levels that these

DER are able to generate and preferences in the area that

these DER wish to operate. For simplicity in our

optimization procedure, we also assume that each RUA can

have no more than one DER, and each DER gets exactly

one RUA. The DER can have a preference for the area that

they wish to join, and their preferences are considered based

on their capacity, i.e., the more power they have been able

to generate the power (kW), the higher the capacity.

We weigh the preferences based on capacity power level of

DER'S through a preference weight matrix (pwm), so that

the more power that the DER's can generate, the more their

preferences count.

 Figure 2. DER vs RUA assignment problem

Also, we impose multiple constraints such as some RUA

have demand, some do not, and some demands are higher

than others; DER 3 and DER 4 often work together, so we

would like them to be no more than one RUA away, and

DER 5 and DER 6 often work together so they also should

be no more than one RUA away. Our approach to solve the

assignment problem is to formulate it as a capacity based

Iterative Binary Integer Linear Programming (C-IBILP)

model and relax the integrality constraints. Our overall
objective is to maximize the satisfaction of the preferences

weighted by capacity which will allocate these DERs to

their areas. This is done through a binary integer

programming model by defining a linear objective function.

Our algorithm uses a branch-and-bound procedure with

linear programming bounds with 'minimum integer

infeasibility' as the branch strategy and ‗depth first search

for the node search strategy.

To develop our problem formulation, the first step is to

choose what each element of our solution vector |x|

represents. We use binary integer variables which represents
the specific assignments of DERS to RUAs. If the DER is

assigned to a RUA, the variable takes the value 1 and if not

assigned, the variable takes the value 0. We consider the

DER's in sequential order as DER 1, DER 2, DER 3, DER

4, DER 5, DER 6 and DER 7. The nth sequence of elements

in vector |x| stores the assignment variables for DER n. In

DER 1

DER 2

DER 3

DER 4

DER 5

DER 6

RUA/AREA 1

RUA/AREA 2

RUA/AREA 3

RUA/AREA 4

RUA /AREA 5

RUA/AREA 6

RUA/AREA 7

B

I

N

A

R

Y

A

S

S

I

G

N

M

E

N

T

A

L
G

demand

preference

29

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

our example |x (1)| to |x (7)| correspond to DER1 being

assigned to Area 1, Area 2, etc., up to Area 7. In all, our

vector |x| has 6 sequences of 7 elements each or 42 elements

in all. Each sequence has a single binary variable set to 1,

enforcing a multiple choice condition for each DER.

A. DER Capacities

We impose constraints based upon DER preference level in

their area of operation driven by their capability to generate

power. The concept is that the more power that a DER can

generate, the higher preference level. For example consider

the randomly set power levels given in kiloWatts (kW)

below.

a. DER 19 kW
b. DER 210 kW
c. DER 35 kW
d. DER 43 kW
e. DER 51.5 kW and
f. DER 6 2 kW

We create a normalized weight vector based on capacity and

also assume that certain DERs should be used in some

preferred region or area, such as a DER with higher power

generation capability being be used in large demand areas.

This normalized weigh vector can be obtained on MATLAB
as follows:

capacity = [9 10 5 3 1.5 2];
weight vector = capacity/sum (capacity);

B. RUA Preferences

We set up a preference weight matrix (pwm or prefmatrix)

where the rows correspond to AREAS and the columns

correspond to DERS. We assume that each DER will give
values for each area so that the sum of all their choices, (i.e.,

their columns), sums to 100. A higher number means the

DER prefers the area. We justify the use of the preference

matrix by noting that limitations in algorithm scalability and

data availability preclude a fully centralized solution to the

problem of interest. Thus, decision making must be

decentralized, and we accordingly divide the power network

into many smaller RUAs, where the prefmatrix concept is

applied to individual regions in the network.

An example of DER preferences is shown below:

DER1 = [0; 0; 0; 0; 10; 40; 50];
DER2 = [0; 0; 0; 0; 20; 40; 40];
DER3 = [0; 0; 0; 0; 30; 40; 30];
DER4 = [1; 3; 3; 3; 10; 40; 40];
DER5 = [3; 4; 1; 2; 10; 40; 40];
DER6 = [10; 10; 10; 10; 20; 20; 20];

The ith element of a DER‘s preference vector is the value the

ith RUA. Thus, the combined preference matrix is expressed

as ‗prefmatrix‘:

 prefmatrix = [DER1 DER2 DER3 DER4 DER5 DER6];

Case 1: We treat the above ‗prefmatrix‘ arrangement as

case 1 for analysis. We then weigh the preferences matrix

by the |weightvector| to scale the columns by capacity. We

also reshape this matrix as a vector in column-order so that

it corresponds to our |x| vector. This is achieved in

MATLAB script as follows:

PM = prefmatrix * diag (weightvector);

c = PM (:);

30

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

IV. OBJECTIVE FUNCTION AND ADDED

CONSTRAINTS

A. Objective function

Our objective is to maximize the total preferences measure

weighted by capacity. This is a linear objective function

max c'*x or equivalently min -c'*x with c being preferences

of DER. We use the BINTPROG script [2] of MATLAB to

run our model that is defined as:

binary:x

beq,Aeq.x

b,A.x

 :xTf
x

min

where.,

f:Vector containing the coefficients of the linear objective

function.

A: Matrix containing the coefficients of the linear inequality

constraints A·x≤ b.

b: Vector corresponding to the right-hand side of the linear

inequality constraints.

Aeq: Matrix containing the coefficients of the linear equality

constraints Aeq·x = beq.

beq: Vector containing the constants of the linear equality

constraints.
x0:Initial point for the algorithm.

Options: Options structure containing options for the

algorithm.

 x: a binary integer solution

vector—that is, its entries can only take on the values 0 or 1.

B. Constraints

The first set of constraints requires that each DER is

assigned to exactly one area. For example, since DER2 is

the second DER, we enforce the condition that |sum(x

(8:14)) =1|. We represent these linear constraints in an

equality matrix Aeq and right hand side vector beq, where

|Aeq*x = beq|, by building the appropriate matrices. The

matrix |Aeq| consists of ones and zeros. For example, the

second row of |Aeq| corresponds to DER2 getting exactly

one RUA, so the row pattern is the following:

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0

These conditions are implemented in MATLAB code as

follows:

|Aeq (2, :)*x = 1| is equivalent to |sum(x (8:14)) = 1|.
numAREAS = 7;

numDERS = 6;
numDim = numAREAS * numDERS;
onesvector = ones (1, numAREAS);
Each row of Aeq corresponds to one DER.

Aeq =blkdiag (onesvector, onesvector, onesvector, onesvector,
onesvector, onesvector);
beq = ones (numDERS, 1);
view the structure of Aeq, that is, where there are nonzeros (ones)
figure;

The second sets of constraints are inequalities. These

constraints specify that each AREA has no more than one

DER in it, i.e., each AREA has one DER in it, or is empty.
We build the matrix |A| and the vector |b| such that |A*x <=

b| to capture these constraints. Each row of |A| and |b|

corresponds to a RUA and so row 1 corresponds to the DER

assigned to RUA 1. In this case, the rows have the type of

pattern shown below for row 1:

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 ... 1 0 0 0 0 0 0

Each subsequent row is similar but is shifted (circularly) to

the right by one spot by one position. For example, row 3

corresponds to RUA 3 and enforces that |A(3,:)*x <= 1|, so

that AREA 3 cannot have more than one DER. Figures 3

and 4 illustrate equality and inequality constraints that are

explained above.

0 5 10 15 20 25 30 35 40

DER1
DER2
DER3
DER4
DER5
DER6

nz = 42

Equality constraints: each DER gets exactly one RUA or Area

 Figure 3. Equality Constraints

DER1 DER2 DER3 DER4 DER5 DER6

AREA 1

AREA 3

AREA 5

AREA 7

nz = 42

Inequality constraints: no more than one DER per RUA or area

 Figure 4. Inequality constraints

A = repmat(eye(numAREAS),1,numDERS);
b = ones(numAREAS,1);

where ‗repmat‘ represents the replicate and tile array. The

elements of next set of constraints are also inequalities, so

they are added to the matrix |A| and vector |b|, that already

contain the inequalities from above. We wish to enforce that

DER3 and DER4 are no more than one AREA (RUA) from

each other, and similarly for DER5 and DER6. First the

symmetric distance matrix for the RUAs is built using

31

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

physical locations and Manhattan (i.e., the ―taxicab‖

metric).

D = zeros(numAREAS); // generates a 7 x 7 zero matrix
Setting up the top right half of the matrix

D(1,2:end) = [1 2 3 2 3 4];
D(2,3:end) = [1 2 1 2 3];
D(3,4:end) = [1 2 1 2];
D(4,5:end) = [3 2 1];
D(5,6:end) = [1 2];
D(6,end) = 1;

The lower left half is the same as the upper right D =

triu(D)' + D; We find the RUA‘s that are more than one

distance unit away.

[AREAA,AREAB] = find(D > 1);
numPairs = length(AREAA);

This finds |numPairs| pairs of AREAS. For example, if

DER3 occupies one AREA in the pair, then DER4 cannot

occupy the other AREA in the pair, else it would be more

than one unit away in terms of AREA. The same condition

holds for DER5 and DER6. This gives |2*numPairs|

additional inequality constraints which we add to |A| and |b|.
By adding rows to A, we accommodate these constraints as
follows:
numrows = 2*numPairs + numAREAS;
A((numAREAS+1):numrows, 1:numDim) =

zeros(2*numPairs,numDim);
For each pair of AREAS in numPairs, for the |x(i)| that

corresponds to DER 3 in |AREAA| and for the |x(j)| that

corresponds to DER4 in |AREAB|, x(i) + x(j) <= 1 i.e.,

either DER3 or DER4 can occupy one of these AREAS, but

not both.

C. Branch and Bound (BB) Strategy

The branch and bound algorithm is a well-known optimal

solution method. Branch and bound (BB) algorithms are

methods for solving non-convex global optimization

problems [6-8]. They are exact (non-heuristic), in the sense

that they calculate a provable upper and lower bounds on

the globally optimal objective value and they terminate

when all suboptimal feasible solutions have been

eliminated. Branch and bound (BB) algorithms can be
computationally slow. In the worst case they require effort

that grows exponentially with problem size. We achieved

fast convergence in our problems. We do note that due to

total unimodularity of the basic A matrix, that a network-

based customized linear programming solver could be used

to provide the lower bounds very quickly in large problems.

The BB algorithm is a well known algorithm in the research

community [6-9]. An example run of the Branch and Bound

algorithm is shown in Fig.5 followed by a snippet of

MATLAB code showing the iterative output for each node

displayed in the branch and bound algorithm. We let the

BINTPROG choose the start point.

x0 = [];
f = -c;
options = optimset('Display','iter','NodeDisplayInterval',1);
[x,fval,exitflag,output] =

bintprog(f,A,b,Aeq,beq,x0,options);
fval
exitflag
output

To reduce the number of nodes explored, the time, or
number of iterations taken, there are alternative options

available. BINTPROG use the options to adjust the

algorithm with differing node and branching variable

strategies [2].

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

50

nz = 104

Inequality constraints: DER3 AND DER4 nearby; DER5 & DER6 nearby

n
o
d
e
s
 e

x
p
lo

re
d

Figure 5. BB search algorithm with Inequality constraints

32

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

For example, the default branching strategy is |'maxinfeas'|,

which chooses the variable with the maximum integer

infeasibility for the next branch, that is, the variable whose

value is closest to 0.5. Running the problem again with the

branching strategy set to |'mininfeas'|, the variable the

minimum integer infeasibility is chosen (that is, the variable
whose value is closest to 0 or 1 but not equal to either).

For structuring the tree, depth-first and best-node search

strategy are available. For example, in ‗df‘, at each node in

the search tree, if there is a child node one level down in the

tree that has not already been explored, the algorithm

chooses one such child to search. Otherwise, the algorithm

moves to the node one level up in the tree and chooses a

child node one level down from that node. In best-node (bn)

strategy, the node with lowest bound on the objective

function is the default. In our limited computational

experience, convincing and acceptable results were quickly
reached. For future work, we would plan to increase the

scale of our test problems and investigate improved BB

schemes.

 V. RESULTS

The simulation is carried out in a MATLAB platform. The

results show that the optimal value is reached after 163

iterations with 54 nodes participation in 1.22 seconds

(case1) using the capacity based Iterative Binary Integer

Linear Programming (C-IBILP) based branch and bound
method which maximizes the satisfaction of the DER

preferences weighted by its capacities.

The final output shown in Figure 6 presents the DER

allocation with the RUA 1 or area 1 treated as empty for

optimal assignment.

Solution for default BranchStrategy and NodeSearchStrategy

 empty DER4 DER6 DER5

 DER3 DER2 DER1

 Figure 6. An optimal DER assignment solution for case 1

Case 2: If we change the preferences of DER‘s according to

the matrix shown below, then the optimal solution is

reached with 13 iterations, 1 node in 0.047 seconds with

default node and branch strategies.

Solution for BranchStrategy=mininfeas and default NodeSearchStrategy

 DER6 DER5 empty DER3

DER2 DER1 DER4

 Figure 7. An optimal DER assignment solution to case 2

VI. CONCLUSION

The paper presents a resource assignment problem for smart

grid application. The capacity based Iterative Binary Integer

Linear Programming (C-IBILP) model is designed to

specify an optimal allocation of distributed energy resources
(DER‘s) during power outage periods to satisfy shortages.

Computational results show that our C-IBILP algorithm

exhibits very good performance for problem instances

tested. A branch and bound algorithm for the smartgrid

problem was described. It combines the extension results

previously presented in the literature with new elements,

such as a new lower bound that works by exploiting some

properties connected with the ad- hoc branching rule we

have developed. Computational results establish that the

algorithm is very competitive. It greatly improves the results

obtained by methods that have recently appeared in the
literature. The limitation of our approach is that the method

does not scale well for larger DERs. Our current efforts

involve extending this assignment model to a more scalable

assignment formulation for which larger numbers of DER‘s

can to serve each RUA.

VII. REFERENCES

[1] M. Amin, "Balancing market priorities with security issues:

interconnected system operations and control under the restructured

electricity enterprise," IEEE Power and Energy Magazine, vol. 2, pp.

30-38, July/August 2004.

33

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

[2] Mathworks Inc, Binary Integer Programming (BINTPROG),

http://www.mathworks.com, accessed 08.31.2010.

[3] S. Arora, B. Bollobas, L. Lorasz, and I. Tourlakis, ―Proving

integrality gaps without knowing the linear program,‖ Theory of

Computing, vol. 2, pp. 19-51, February, 2006.

[4] M. Alekhnovich, S. Arora, and I. Tourlakis, ―Towards strong

nonapproximability results in the Lovasz-Schrijver hierarchy.‖ Proc.

of the 37th Annual ACM Symp. on Theory of Computing, ACM,

2005, pp.294–303, doi:10.1145/1060590.1060634.

[5] C. Barnhart, E. Johnson and G. Nemhauser,1998. ―Branch-and-

Price: Column generation for solving huge integer programs,‖

Operations Research vol. 46, 1998, pp.316–329.

[6] B. Balakrishnan, and S. Balemi. ―Branch and bound algorithm

for computing the minimum stability degree of parameter-dependent

linear systems,‖ Int. J. of Robust and Nonlinear Control, vol. 1, 1991,

pp.295–317, October–December 1991.

[7] E. Lawler and D. Wood. ―Branch-and-bound methods: A

survey,‖ Operations Research, vol 14, 1966, pp.699–719.

[8] R. Moore. Global optimization to prescribed accuracy.

Computers and Mathematics with Applications, vol. 39, 1991, pp.25–

39.

[9] L. Wolsey, Integer Programming, John Wiley & Sons, 1998.

[10] G. Nemhauser and L. Wolsey, Integer and Combinatorial

Optimization, John Wiley & Sons, 1988.

[11] F. Hillier, Frederick. and G. Lieberman., Introduction to

Operations Research, McGraw-Hill, 2001.

[12] http://www.oe.energy.gov/smartgrid.htm, accessed 08.31.2010.

[13] P. Kouvelis and P. Yu. Robust Discrete Optimization and its

Applications. Kluwer Academic Publishers, 1997.

[14] G. Kozina and V. Perepelista. ―Interval spanning trees problem:

solvability and computational complexity,‖ Interval Computations,

vol. 1, 1994, pp.42-50.

[15] J. Kruskal. ―On the shortest spanning subtree of a graph and the

travelling salesman problem,‖ Proc. of the American Mathematical

Society, 1956, pp.48-50.

[16] R. Montemanni and L. Gambardella. ―A branch and bound

algorithm for the robust spanning tree problem with interval

data,‖ European Journal of Operational Research, vol. 161, March,

2005, pp.771-779.

[17] S. Khot and N. Vishnoi, ―The unique games conjecture,

integrality gap for cut problems and embeddability of negative type

metrics,‖ Proc. of the 46th Symposium on Foundations of Computer

Science, 2005, pp. 53-63, doi:10.1109/SFCS.2005.74.

34

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

http://www.mathworks.com/
http://www.oe.energy.gov/smartgrid.htm

