

Abstract—Resource management is the effective deployment for
an organization’s resources. It deals with classification,
allocation, stocking, processing, storage, and valuation for the
shared resources when they are needed. Among many
managerial tasks, the constrained resource allocation problem
has challenging many practitioners involved in manufacturing
operations. This problem seeks to find an optimal allocation of a
limited amount of resource to a number of manufacturing
activities for optimizing organization’s objective subject to the
resource constraints. Most existing methods use mathematical
programming techniques, but they are defaced in deriving exact
solutions for large-scale problems with reasonable time. A
viable alternative is to use swam algorithms which can obtain
approximate solutions to real-world intractable problems. This
paper presents two swarm algorithms embodying the adaptive
resource bound technique for conquering the constrained
nonlinear resource allocation problem. Experimental results
manifest that the proposed methods are more effective and
efficient than a genetic algorithm-based approach. The
convergence behavior of the proposed methods is analyzed by
observing the variations of population entropy. Finally, a
worst-case analysis is conducted to provide a reliable
performance guarantee.

Keywords-particle swarm optimization; ant colony
optimization; metaheuristic; resource allocation

I. INTRODUCTION
Resource management is the central process to ensure the

organization’s competence against its rivals. It deals with
classification, allocation, stocking, processing, storage, and
valuation for an organization’s resources when they are
needed. Among these tasks, resource allocation problem
(RAP) has been targeted by many researchers due to its
everlasting importance. The constrained RAP seeks for an
optimal allocation of resources to a number of activities for
optimizing organization’s objective subject to operational
constraints. For instance, project budgeting [1] allocates a
given amount of money to a number of projects for
maximizing the net present value (NPV) or internal rate of
return (IRR), software testing [2] allocates a number of
programmers with varying skills to achieve maximum
reliability of the software, task allocation [3] allocates a given
number of program modules to a number of processors for
minimizing the incurred cost, health care financing [4]
allocates a fixed amount of medical resource across
competing programs promising improved health for patients.

For a comprehensive survey the reader is referred to [5].
There exist many solution methods for tackling distinct

versions of RAP. We briefly summarize them as follows. (1)
Integer linear programming [6] and mixed integer linear
programming [4] have been used to formulate and solve the
linear RAP with discrete or continuous resource. (2) Basso
and Peccati [1] proposed a dynamic programming (DP)
algorithm with an efficient pruning procedure for solving the
portfolio optimization problem in project financing. Morales
et al. [7] presented three parallel DP algorithms using pipeline,
dominancy, and resource parallelism to conquer the curse of
dimensionality. (3) Bretthauer and Shetty [8] solved the RAP
subproblems using a branch-and-bound tree via a
one-dimension search for the optimal Lagrange multiplier of
the constraint. Bretthauer and Shetty [9] further improved the
algorithm by incorporating the pegging method, which
iteratively reduces the size of the relaxed subproblems
containing variables not satisfying their bounds, for solving
the problem more efficiently. (4) Since exact algorithms
could be very time expensive for large-scaled problems, an
alternative for solving the RAP is to find approximate
solutions with reasonable computational time. Dai et al. [2]
proposed a genetic algorithm for allocation of software
testing resource. The chromosome is represented by a list of
modular testing times to be allocated and the objective is to
maximize the system reliability with the minimum testing
cost. Hou and Chang [10] presented a genetic algorithm for
allocating a number of products among plants such that the
incurred production cost is minimized.

The motivations of this research are two-fold. First, we
observe that most of existing methods for tackling the RAP
are based on mathematical programming techniques which
may fail to derive exact solutions with reasonable time for
problems of large size. For the RAP practitioners, they would
like to obtain a feasible and quality, although not optimal,
solution when the problem size is large. An alternative for
obtaining approximate solutions is using metaheuristic
algorithms. Second, the development of metaheuristic
computation has been flourishing during the last decade.
Many metaheuristic paradigms such as genetic algorithm
(GA) [11], simulated annealing (SA) [12], tabu search (TS)
[13], ant colony optimization (ACO) [14], and particle swarm
optimization (PSO) [15] have been applied to solve
benchmark NP-hard problems. Encouraged by their
successful applications, we investigate the feasibility of using
metaheuristic algorithms for solving the RAP.

Jing-Yu Wang
Department of Information Management

National Chi Nan University
Nantou, Taiwan

wjykino@hotmail.com

Efficient Swarm Algorithms to Constrained Resource Allocation

Peng-Yeng Yin
Department of Information Management

National Chi Nan University
Nantou, Taiwan

pyyin@ncnu.edu.tw

1

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

The remainder of this paper is organized as follows.
Section 2 formulates the addressed RAP problem. Section 3
presents the proposed swarm algorithms with adaptive
resource bounds for tackling the problem. Section 4 reports
the comparative performances, convergence analysis, and
worst-case analysis. Finally, we conclude in Section 5.

II. PROBLEM FORMULATION
Given Q units of discrete resource and T activities, the

problem is to find an optimal resource allocation to these
activities such that the total costs entailed by performing the
activities are minimized. The quantity of resource allocated to
activity i is constrained in the range [ai, bi]. The cost function

)(ii xf is an integer nonlinear function which is dependent
upon the quantity xi of resource the activity i consumes.
Formally, the RAP problem considered in this sequel is
formulated by the following integer program.

 Min J(X) =∑
=

T

i
ii xf

1
)(, (1)

 subject to Qx
T

i
i =∑

=1

, (2)

 Qbxa iii ≤≤≤≤0 ; Ti ,...,2,1=∀ , (3)
 integer xi ∈ .

The objective function (1) represents the total cost resulted

from the resource allocation decision X = { } Tiix ≤≤1 .
Constraint (2) guarantees that the sum of allotted resource is
equivalent to the total units of available resource. Constraint
(3) states that the quantity xi of resource allotted to activity i is
constrained between the lower bound ai and upper bound bi.

III. PROPOSED METHOD

A. Adaptive Resource Bounds
As seen from Constraint (2) of the problem formulation,

the quantities of resource allotted to different activities are
correlated because all units of resource should be exactly
used out during the execution of activities. If we allocate too
many units of resource to a certain activity, the remaining
resource may be insufficient for performing the other
activities. On contrary, if we allocate too few quantities of
resource to a certain activity, the amount of remaining
resource may be larger than what can be maximally
consumed by the other activities. Therefore, exploring all
possible resource allocations between the pre-specified fixed
resource bounds will yield many infeasible solutions
violating Constraint (2) and impair the efficiency of the
algorithm.

Two remedies to the above problem are presented as
follows. The feasibility checking rule checks whether there
exist any feasible solutions for the given problem instance.
There exist no feasible solutions to the underlying problem if

either QaT

i i >∑ =1
 or QbT

i i <∑ =1
 holds since Constraint (2)

can never be satisfied in these conditions. If the given
problem instance passes the feasibility checking rule, the
adaptive resource bound updating rule guides the algorithm
to construct a feasible solution. It sequentially allocates
resource to the activity and adapts the resource bounds for the
next activity. Let Q′ be the remaining units of resource
(initially QQ =′) and assume that we have allocated
resource to the first i activities. We adapts the resource upper
bound for the (i+1)th activity as follows.

 −′=′ +
+=

+ ∑ 1
2

1 ,min i

T

il
li b aQb , i = 0, 1, …, T-2. (4)

The updating for the above resource upper bound is

because the (i+1)th activity can only consume at most

∑
+=

−′
T

il
laQ

2

 for satisfying the minimum resource requests of

the rest of the activities, and it cannot exceed the original
resource upper bound 1+ib of the (i+1)th activity neither.
Similarly, the resource lower bound for the (i+1)th activity is
updated by

 −′=′ +
+=

+ ∑ 1
2

1 ,max i

T

il
li abQa , i = 0, 1, …, T-2. (5)

After allocating resource to the first T - 1 activities with

respect to the adaptive resource bounds, the remaining
resource should be entirely given to the last activity in order
to ensure that all units of the resource have been completely
consumed.

B. PSO-based Method
The PSO [15] is inspired by the observations for bird

flocking and fish schooling. A number of birds/fish flock
synchronously, change direction suddenly, and scatter and
regroup together. Each individual, called a particle, benefits
from the personal best experience of its own (pbest) and that
of any members of the swarm (gbest) observed so far during
the search for food. In what follows, we apply the PSO with
the adaptive resource bounds for solving the nonlinear RAP.

Each particle position Pi corresponds to a feasible resource
allocation satisfying all constraints. Formally,

()iTiii pppP ,...,, 21= where
jijj bpa ′≤≤′ , 1,...,2 ,1 −=∀ Tj and

∑
−

=

−=
1

1

T

j
ijiT pQp . The particle representation requests an

allocation which allots pij units of resource to the jth activity
and the last activity consumes the remaining resource. The
PSO initializes a swarm of particles at random. In each
iteration, particle i adjusts its velocity vij and position pij
through each activity dimension j by referring to the personal
best position (pbestij) and the swarm’s best position (gbestj)
as follows.

2

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

vij = K[vij + c1r1(pbestij – pij) + c2r2(gbestj – pij)] (6)

and
pij = pij + vij (7)

where c1 and c2 are the self- and socio-cognition

coefficients, r1 and r2 are random real numbers drawn from
U(0, 1), and K is the constriction factor. Clerc and Kennedy
[16] has shown that the use of a constriction factor is needed
to insure convergence of the PSO, and it is determined by

ϕϕϕ 42

2
2 −−−

=K (8)

where ϕ = c1+c2, ϕ >4. Typically, ϕ is set to 4.1 and K is
thus 0.729.

However, the fly of the particles is constrained by the
adaptive resource bounds. We set particle position pij to ja′ if

it passes over the adaptive lower bound, and to jb′ if it

exceeds the adaptive upper bound.
The swarm intelligence of the PSO is managed by pbest

and gbest. To identify them, the particle fitness should be
evaluated. We define the fitness function of particle Pi by

)(1)(ii PJPfitenss = , where J(Pi) is computed by the
objection function (1) using Pi as the decision for the resource
allocation. Thus, the smaller the total cost incurred by Pi, the
higher the fitness is, and vice versa. Here we propose a
bounding criterion to expedite the computation for the fitness.
We observe that the fitness value of a particle is only used for
determination of pbesti and gbest, but not directly used for
velocity update. Since J(Pi) is a monotonically increasing
function, we can use the fitness of the incumbent pbesti as a
fitness bound (which should not be confused with the
resource bound) and terminate the fitness evaluation of the ith
particle when the intermediate fitness value has exceeded this
bound. Also, only those pbesti that have been updated in the
current iteration need to be compared with gbest for its
possible updating. The use of bounding criterion can save the
computational time significantly.

In all of the experiments, we terminate the program when
our algorithm has experienced a specified number of
computations for the fitness function.

C. ACO-based Method
The ant colony optimization (ACO) [14] is inspired by the

research on the real ant foraging behavior. Ethologists
observed that ants can construct the shortest path from their
colony to the feeding source through the use of pheromone
trails. An ant leaves some quantities of pheromone on the
ground and marks the path by a trail of this substance. The
next ant will sense the pheromone laid on different paths and
choose one with a probability proportional to the amount of

pheromone on it. The ant then traverses the chosen path and
leaves its own pheromone. This is a positive feedback process
which favors the path along which more ants previously
traversed.

To apply ACO for solving the RAP, the problem must be
represented by an appropriate graph along which the ant
moves to construct candidate solutions. We represent an RAP
instance by a (T+2)-layered graph. The first layer (start) and
the last layer (sink) consist of only one node with which the
ant starts and terminates its traversal. The intermediate T
layers represent the allowable resource allocation quantities
for the T tasks, respectively. Therefore, for the ith layer the
allowable resource allocation quantity ranges from ia′ to ib′ .
An ant constructs a candidate solution by traversing a path
which starts from the start-node, visits each layer sequentially
by selecting a node with an allowable quantity, and finally
terminates at the sink-node.

The node transition rule determines the probability which
is dependent on two factors: pheromone and visibility.
Without loss of generality, assume that the ant is currently
positioned at the jth node of the ith layer and is going to select
a node, say, the kth node, from the (i+1)th layer. We use
pheromone ijkτ to exploit the historical traversal experiences

for all the ants and determines the desirability for traversing
the edge from a global optimization view. On the other hand,
the visibility ki ,1+η has nothing to do with the ant traversal

experiences and only considers the problem-specific static
information, which corresponds to the greediness about
selecting a node from a local heuristic view. In particular, the
visibility value for selecting the kth node from the (i+1)th
layer is defined as

()kf
s

i
ki

1
,1

+
+ =η , i = 0, 1, …, T-2; k = ai+1, …, bi+1, (9)

where s is a small constant. That is ki ,1+η grows inversely

proportional to ()kfi 1+
. The smaller the cost ()kfi 1+

 incurred
by allocating k quantities of resource to the (i+1)th task, the
higher the value of ki ,1+η .

We define the node transition probability ijkp with which

the ant at the jth node of the ith layer moves to the kth node of
the (i+1)th layer as follows.

∑ +

+

′

′= +

+=
1

1 ,1

,1

i

i

b

al liijl

kiijk
ijkp

ητ
ητ

βα

βα
 (10)

where α and β are ACO parameters controlling the relative
importance ratio between ijkτ and ki ,1+η . Before activating

the next iteration, the quantity of pheromone on each edge is
updated by the following pheromone updating rule,

3

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

() ∑
=

∆+−←
m

t

t
ijkijk

1
1 ττρτ (11)

where)1 ,0(∈ρ is the evaporation rate of pheromone trails,

m is the size of ant population, tτ∆ is calculated by

()t

t

XJ
s=∆τ (12)

J(Xt) is computed by the objection function (1) using Xt as the
decision for the resource allocation.

IV. EXPERIMENTAL RESULTS
In this section, we analyze the properties of the proposed

swarm algorithms and present the comparative performances
with competing algorithms. The platform for conducting the
experiments is a PC with a 2.4 GHz CPU and 256 MB RAM.
All programs are coded in C++ language.

A. Synergism
An interesting property about swarm algorithms is whether

there exists an optimal size for the swarm. Given a fixed
computation resource, the larger the swarm size, the smaller
the number of evolutionary iterations can be performed for
each particle/ant, and vice versa. We fix the number of times
for evaluating the objective function when performing our
algorithm with swarms of different size. As shown in Fig. 1,
the average cost is minimal when the swarm size equals 20 for
both the PSO- and ACO-based algorithms. In other words,
there does exist an optimal swarm size for the given problem
instance such that the synergism among different individuals
is maximized.

B. Convergence
The convergence of the swarm algorithms can be analyzed

by deriving the information entropy contained in the swarm.
Here, we propose the information entropy for measuring the
convergence of pbest in PSO and of node transition
probability in ACO, because the evolution trajectories of PSO
and ACO are substantially drawn by the value of pbest and
the node transition probability. Fig. 2 shows a typical run for
the variations of entropy value as the number of evolutionary
iterations increases. It is observed for both swarm algorithms
that the entropy value drops drastically at the initial period,
then decreases gradually and finally stagnates. This
demonstrates that the swarm intelligence is greatly enriched
during the initial stage where the swarm scatters in the entire
search space; but as the evolution becomes mature, the
distributed awareness is resorting to the centralized
awareness.

C. Comparative Performances
The performance of the proposed swarm algorithms is

evaluated by competing with an existing GA-based approach
[10] and a naïve exhaustive search. We report the average
cost and the needed mean CPU time over five independent

 (a) PSO

 (b) ACO
Fig. 1 Average costs obtained by using swarms of different size.

 (a) PSO

 (b) ACO
Fig. 2 The entropy as the number of iterations increases.

4

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

runs of each algorithm for every problem instance, while the
exhaustive search is executed one time for deriving the exact
solution. For practical concerns, all competing algorithms are
terminated if the execution time exceeds 48 hours, and we
discard such cases for further comparison.

We generate a set of testing problems with diverse
computational complexity by varying the number of activities
(T) and the mean allowable range of allocated resource units
(() TabT

i ii∑ =
−=∆

1
) for all activities. The value of T ranges

from 5 to 20, and for each value of T, we set ∆ to 10, 20, and
30, respectively. The value of Q is given appropriately for
various values of T and ∆ in order to assure existence of
feasible solutions. It is seen from Table 1 that, for the small-
and median-sized problems, both PSO and ACO can derive
solutions that are equal or very close to the exact solutions as
reported by exhaustive search, while the solutions obtained
by the GA-based approach are far from the optima. As for the
large-sized problems, the solutions obtained by using the
PSO and ACO are also significantly better than those
obtained by the GA-based approach. This is mainly due to the
adaptive resource bounds technique for avoiding producing
infeasible solutions and thus significantly reducing the
searching space. On the other hand, the GA-based method
does not actually reduce the searching space, when infeasible
solutions are produced it modifies them to feasible solutions
by adjusting resource allocation between activities to ensure
that the resource allocation does not violate resource bound
constraints.

As for the computational efficiency, Table 1 also illustrates
that the CPU times consumed by the exhaustive search
method grow exponentially with the problem size, and it fails
to solve large-scaled problems. The computational times
consumed by GA also grow at a fast rate and exceed 48 hours
for the last four instances. On the other hand, the
computational time used by the PSO and ACO methods as the
problem size increases is still in an acceptable range, thought
the ACO-based method seems to be computationally faster
than the PSO-based method. In summary, both the proposed
swarm algorithms can derive quality solutions against
scalable problems.

D. Worst-case Analysis
Since swarm algorithms are stochastic methods, each

separate run of the same program could yield different result.
It is critical to analyze the worst-case performance one may
obtain if the swarm algorithm is adopted for tackling the RAP.
The worst-case performance is analyzed as follows. First, the
program is executed for a specific number of repetitive runs
and each run will output an optimal solution. Second, the
worst-case analysis is set up as the worst solution we could
get from those optimal solutions. Fig. 3 shows the worst-case
analysis where the swarm algorithms are executed to solve
the problem instance with (Q, T, ∆) = (400, 20, 30) for 1,000
times. The curve shows that about 97% of the repetitive runs
can obtain a quality solution with cost less than or equal to 33,
meaning that we can be confident in using the swarm
algorithms for solving the RAP. When the user requests a
worst-case guarantee for the derived solution with cost no
more than 33, he/she can obtain such a solution by executing
the swarm algorithms for no more than 30 repetitive runs (3%
of 1,000 runs).

V. CONCLUSIONS
The constrained resource allocation problem (RAP) seeks

for an allocation of a fixed amount of resource to a number of
activities such that the objective is optimized and the resource
constraints are met. RAP has many applications, including
product allocation, resource distribution, project budgeting,
software testing, health care resource allocation, just to name
a few. Different versions of problem formulations have been
proposed in accordance with various applications. This paper
addressed the nonlinear RAP with integer decision variable
constraint. The proposed swarm algorithms are built on the
foundation of PSO and ACO with the adaptive resource
bounds technique in order to construct feasible solutions.
Simulation results show that the swarm algorithms derive
comparable solutions to the exact solutions obtained using an
exhaustive search method. The swarm algorithms also
outperform a GA-based approach which yields worse
solutions and needs more computational time. The general

TABLE I
COMPARATIVE PERFORMANCES

Q T ∆ PSO
cost time

ACO
cost time

GA
cost time

Exhaustive
cost time

100 5 10 17 1301 17.8 48 17.8 3078 17 0.001
 5 20 12 1582 12 152 13.0 3982 12 0.001
 5 30 5 2012 5 326 10.5 4556 5 0.001

200 10 10 26 2954 26 234 38.0 7439 26 0.001
 10 20 12 3565 12 440 25.3 21317 12 8812
 10 30 13.5 3865 13.4 518 29.0 27132 13 142294

300 15 10 32.4 4085 32 416 47.0 194642 32 76159
 15 20 21.6 4927 22 604 60.0 285676 - > 2 days
 15 30 17.2 6609 17 1007 - > 2 days - -

400 20 10 40.6 5938 40 610 - - - -
 20 20 28.1 7210 28.2 1047 - - - -
 20 30 31.2 9927 31.2 2327 - - - -

5

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

properties and the convergence behaviors of the swarm
algorithms are analyzed. Finally, a performance guarantee is
provided through the worst-case analysis.

ACKNOWLEDGMENT
This work is supported in part by the National Science

Council of Taiwan under grant NSC
98-2410-H-260-018-MY3.

REFERENCES
[1] A. Basso and L. A. Peccati, Optimal resource allocation with minimum

activation levels and fixed costs, European Journal of Operational
Research, vol. 131, 2001, pp. 536-549.

[2] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang, Optimal testing –resource
allocation with genetic algorithm for modular software systems, The
Journal of Systems and Software, vol. 66, 2003, pp. 47-55.

[3] A. Ernst, H. Hiang and M. Krishnamoorthy, Mathematical
programming approaches for solving task allocation problems, Proc. of
the 16th National Conf. Of Australian Society of Operations Research,
2001.

[4] A. A. Stinnett and A. D. Paltiel, Mathematical programming for the
efficient allocation of health care resource, Journal of Health
Economics, vol. 15, 1996, pp. 641-653.

[5] T. Ibaraki and N. Katoh, “Resource allocation problems: algorithmic
approaches,” MIT Press, Boston, 1988.

[6] S. Birch and A. Gafni, Cost effectiveness analysis: Do current decision
rules lead us where we want to be?, Journal of Health Economics, vol.
11, 1992, pp. 279-296.

[7] D. Morales, F. Almeida, F. Garcia, J. L. Roda, and C. Rodriguez,
Design of parallel algorithms for the single resource allocation problem,
European Journal of Operational Research, vol. 126, 2000, pp.
166-174.

[8] K. M. Bretthauer and B. Shetty, The nonlinear resource allocation
problem, Operations Research, vol. 43, 1995, pp. 670-683.

[9] K. M. Bretthauer and B. Shetty, A pegging algorithm for the nonlinear
resource allocation problem, Computers & Operations Research, vol.
29, 2002, pp. 505-527.

[10] Y. C. Hou and Y. H. Chang , A new efficient encoding mode of genetic
algorithms for the generalized plant allocation problem, Journal of
Information Science and Engineering, vol. 20, 2004, pp. 1019-1034.

[11] D. E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning,” Addison Wesley, Reading, Massachusetts, 1997.

[12] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, Optimization by simulated
annealing, Science, vol. 220, 1983, pp. 671-680.

[13] F. Glover, Tabu search - Part I, ORSA Journal of Computing, vol. 1,
1989, pp. 190-206.

[14] M. Dorigo, “Optimization, learning, and natural algorithms,” Ph.D.
Thesis, Dip. Elettronica e Informazione, Politecnico di Milano, Italy,
1992.

[15] J. Kennedy and R.C. Eberhart, Particle swarm optimization,
Proceedings IEEE Int’l. Conf. on Neural Networks, IV, 1995, pp.
1942-1948.

[16] M. Clerc and J. Kennedy, The particle swarm explosion, stability, and
convergence in a multidimensional complex space, IEEE Transaction
on Evolutionary Computation, vol. 6, 2002, pp. 58-73.

 (a) PSO

 (b) ACO
Fig. 3 The worst optimum cost vs. the number of repetitive runs of the

PSO algorithm.

6

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

