
  

  

Abstract—Resource management is the effective deployment for 
an organization’s resources. It deals with classification, 
allocation, stocking, processing, storage, and valuation for the 
shared resources when they are needed. Among many 
managerial tasks, the constrained resource allocation problem 
has challenging many practitioners involved in manufacturing 
operations. This problem seeks to find an optimal allocation of a 
limited amount of resource to a number of manufacturing 
activities for optimizing organization’s objective subject to the 
resource constraints. Most existing methods use mathematical 
programming techniques, but they are defaced in deriving exact 
solutions for large-scale problems with reasonable time. A 
viable alternative is to use swam algorithms which can obtain 
approximate solutions to real-world intractable problems. This 
paper presents two swarm algorithms embodying the adaptive 
resource bound technique for conquering the constrained 
nonlinear resource allocation problem. Experimental results 
manifest that the proposed methods are more effective and 
efficient than a genetic algorithm-based approach. The 
convergence behavior of the proposed methods is analyzed by 
observing the variations of population entropy. Finally, a 
worst-case analysis is conducted to provide a reliable 
performance guarantee. 
 

Keywords-particle swarm optimization; ant colony 
optimization; metaheuristic; resource allocation 

I. INTRODUCTION 
Resource management is the central process to ensure the 

organization’s competence against its rivals. It deals with 
classification, allocation, stocking, processing, storage, and 
valuation for an organization’s resources when they are 
needed. Among these tasks, resource allocation problem 
(RAP) has been targeted by many researchers due to its 
everlasting importance. The constrained RAP seeks for an 
optimal allocation of resources to a number of activities for 
optimizing organization’s objective subject to operational 
constraints. For instance, project budgeting [1] allocates a 
given amount of money to a number of projects for 
maximizing the net present value (NPV) or internal rate of 
return (IRR), software testing [2] allocates a number of 
programmers with varying skills to achieve maximum 
reliability of the software, task allocation [3] allocates a given 
number of program modules to a number of processors for 
minimizing the incurred cost, health care financing [4] 
allocates a fixed amount of medical resource across 
competing programs promising improved health for patients. 

 
 

For a comprehensive survey the reader is referred to [5]. 
There exist many solution methods for tackling distinct 

versions of RAP. We briefly summarize them as follows. (1) 
Integer linear programming [6] and mixed integer linear 
programming [4] have been used to formulate and solve the 
linear RAP with discrete or continuous resource. (2) Basso 
and Peccati [1] proposed a dynamic programming (DP) 
algorithm with an efficient pruning procedure for solving the 
portfolio optimization problem in project financing. Morales 
et al. [7] presented three parallel DP algorithms using pipeline, 
dominancy, and resource parallelism to conquer the curse of 
dimensionality. (3) Bretthauer and Shetty [8] solved the RAP 
subproblems using a branch-and-bound tree via a 
one-dimension search for the optimal Lagrange multiplier of 
the constraint. Bretthauer and Shetty [9] further improved the 
algorithm by incorporating the pegging method, which 
iteratively reduces the size of the relaxed subproblems 
containing variables not satisfying their bounds, for solving 
the problem more efficiently. (4) Since exact algorithms 
could be very time expensive for large-scaled problems, an 
alternative for solving the RAP is to find approximate 
solutions with reasonable computational time. Dai et al. [2] 
proposed a genetic algorithm for allocation of software 
testing resource. The chromosome is represented by a list of 
modular testing times to be allocated and the objective is to 
maximize the system reliability with the minimum testing 
cost. Hou and Chang [10] presented a genetic algorithm for 
allocating a number of products among plants such that the 
incurred production cost is minimized. 

The motivations of this research are two-fold. First, we 
observe that most of existing methods for tackling the RAP 
are based on mathematical programming techniques which 
may fail to derive exact solutions with reasonable time for 
problems of large size. For the RAP practitioners, they would 
like to obtain a feasible and quality, although not optimal, 
solution when the problem size is large. An alternative for 
obtaining approximate solutions is using metaheuristic 
algorithms. Second, the development of metaheuristic 
computation has been flourishing during the last decade. 
Many metaheuristic paradigms such as genetic algorithm 
(GA) [11], simulated annealing (SA) [12], tabu search (TS) 
[13], ant colony optimization (ACO) [14], and particle swarm 
optimization (PSO) [15] have been applied to solve 
benchmark NP-hard problems. Encouraged by their 
successful applications, we investigate the feasibility of using 
metaheuristic algorithms for solving the RAP. 
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The remainder of this paper is organized as follows. 
Section 2 formulates the addressed RAP problem. Section 3 
presents the proposed swarm algorithms with adaptive 
resource bounds for tackling the problem. Section 4 reports 
the comparative performances, convergence analysis, and 
worst-case analysis. Finally, we conclude in Section 5. 

II. PROBLEM FORMULATION 
Given Q units of discrete resource and T activities, the 

problem is to find an optimal resource allocation to these 
activities such that the total costs entailed by performing the 
activities are minimized. The quantity of resource allocated to 
activity i is constrained in the range [ai, bi]. The cost function 

)( ii xf  is an integer nonlinear function which is dependent 
upon the quantity xi of resource the activity i consumes. 
Formally, the RAP problem considered in this sequel is 
formulated by the following integer program. 

 

 Min    J(X) =∑
=

T

i
ii xf

1
)( ,                             (1) 

 subject to Qx
T

i
i =∑

=1

,                                         (2) 

  Qbxa iii ≤≤≤≤0 ; Ti ,...,2,1=∀ ,    (3) 
 integer xi ∈ . 

 
The objective function (1) represents the total cost resulted 

from the resource allocation decision X = { } Tiix ≤≤1 . 
Constraint (2) guarantees that the sum of allotted resource is 
equivalent to the total units of available resource. Constraint 
(3) states that the quantity xi of resource allotted to activity i is 
constrained between the lower bound ai and upper bound bi. 

III. PROPOSED METHOD 

A. Adaptive Resource Bounds 
As seen from Constraint (2) of the problem formulation, 

the quantities of resource allotted to different activities are 
correlated because all units of resource should be exactly 
used out during the execution of activities. If we allocate too 
many units of resource to a certain activity, the remaining 
resource may be insufficient for performing the other 
activities. On contrary, if we allocate too few quantities of 
resource to a certain activity, the amount of remaining 
resource may be larger than what can be maximally 
consumed by the other activities. Therefore, exploring all 
possible resource allocations between the pre-specified fixed 
resource bounds will yield many infeasible solutions 
violating Constraint (2) and impair the efficiency of the 
algorithm. 

Two remedies to the above problem are presented as 
follows. The feasibility checking rule checks whether there 
exist any feasible solutions for the given problem instance. 
There exist no feasible solutions to the underlying problem if 

either QaT

i i >∑ =1
 or QbT

i i <∑ =1
 holds since Constraint (2) 

can never be satisfied in these conditions. If the given 
problem instance passes the feasibility checking rule, the 
adaptive resource bound updating rule guides the algorithm 
to construct a feasible solution. It sequentially allocates 
resource to the activity and adapts the resource bounds for the 
next activity. Let Q′  be the remaining units of resource 
(initially QQ =′ ) and assume that we have allocated 
resource to the first i activities. We adapts the resource upper 
bound for the (i+1)th activity as follows. 
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The updating for the above resource upper bound is 

because the (i+1)th activity can only consume at most 

∑
+=

−′
T

il
laQ

2

 for satisfying the minimum resource requests of 

the rest of the activities, and it cannot exceed the original 
resource upper bound 1+ib  of the (i+1)th activity neither. 
Similarly, the resource lower bound for the (i+1)th activity is 
updated by 
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After allocating resource to the first T - 1 activities with 

respect to the adaptive resource bounds, the remaining 
resource should be entirely given to the last activity in order 
to ensure that all units of the resource have been completely 
consumed. 

B. PSO-based Method 
The PSO [15] is inspired by the observations for bird 

flocking and fish schooling. A number of birds/fish flock 
synchronously, change direction suddenly, and scatter and 
regroup together. Each individual, called a particle, benefits 
from the personal best experience of its own (pbest) and that 
of any members of the swarm (gbest) observed so far during 
the search for food. In what follows, we apply the PSO with 
the adaptive resource bounds for solving the nonlinear RAP. 

Each particle position Pi corresponds to a feasible resource 
allocation satisfying all constraints. Formally, 

( )iTiii pppP ,...,, 21=  where 
jijj bpa ′≤≤′ , 1,...,2 ,1 −=∀ Tj  and 

∑
−

=

−=
1

1

T

j
ijiT pQp . The particle representation requests an 

allocation which allots pij units of resource to the jth activity 
and the last activity consumes the remaining resource. The 
PSO initializes a swarm of particles at random. In each 
iteration, particle i adjusts its velocity vij and position pij 
through each activity dimension j by referring to the personal 
best position (pbestij) and the swarm’s best position (gbestj) 
as follows. 
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vij = K[vij + c1r1(pbestij – pij) + c2r2(gbestj – pij)]            (6) 

and 
pij = pij + vij                                                                                                            (7) 
 
where c1 and c2 are the self- and socio-cognition 

coefficients, r1 and r2 are random real numbers drawn from 
U(0, 1), and K is the constriction factor. Clerc and Kennedy 
[16] has shown that the use of a constriction factor is needed 
to insure convergence of the PSO, and it is determined by 

 

ϕϕϕ 42

2
2 −−−

=K                                                     (8) 

 
where ϕ = c1+c2, ϕ >4. Typically, ϕ  is set to 4.1 and K is 
thus 0.729. 

However, the fly of the particles is constrained by the 
adaptive resource bounds. We set particle position pij to ja′  if 

it passes over the adaptive lower bound, and to jb′  if it 

exceeds the adaptive upper bound. 
The swarm intelligence of the PSO is managed by pbest 

and gbest. To identify them, the particle fitness should be 
evaluated. We define the fitness function of particle Pi by 

)(1)( ii PJPfitenss = , where J(Pi) is computed by the 
objection function (1) using Pi as the decision for the resource 
allocation. Thus, the smaller the total cost incurred by Pi, the 
higher the fitness is, and vice versa. Here we propose a 
bounding criterion to expedite the computation for the fitness. 
We observe that the fitness value of a particle is only used for 
determination of pbesti and gbest, but not directly used for 
velocity update. Since J(Pi) is a monotonically increasing 
function, we can use the fitness of the incumbent pbesti as a 
fitness bound (which should not be confused with the 
resource bound) and terminate the fitness evaluation of the ith 
particle when the intermediate fitness value has exceeded this 
bound. Also, only those pbesti that have been updated in the 
current iteration need to be compared with gbest for its 
possible updating. The use of bounding criterion can save the 
computational time significantly. 

In all of the experiments, we terminate the program when 
our algorithm has experienced a specified number of 
computations for the fitness function. 

 

C. ACO-based Method 
The ant colony optimization (ACO) [14] is inspired by the 

research on the real ant foraging behavior. Ethologists 
observed that ants can construct the shortest path from their 
colony to the feeding source through the use of pheromone 
trails. An ant leaves some quantities of pheromone on the 
ground and marks the path by a trail of this substance. The 
next ant will sense the pheromone laid on different paths and 
choose one with a probability proportional to the amount of 

pheromone on it. The ant then traverses the chosen path and 
leaves its own pheromone. This is a positive feedback process 
which favors the path along which more ants previously 
traversed. 

To apply ACO for solving the RAP, the problem must be 
represented by an appropriate graph along which the ant 
moves to construct candidate solutions. We represent an RAP 
instance by a (T+2)-layered graph. The first layer (start) and 
the last layer (sink) consist of only one node with which the 
ant starts and terminates its traversal. The intermediate T 
layers represent the allowable resource allocation quantities 
for the T tasks, respectively. Therefore, for the ith layer the 
allowable resource allocation quantity ranges from ia′  to ib′ . 
An ant constructs a candidate solution by traversing a path 
which starts from the start-node, visits each layer sequentially 
by selecting a node with an allowable quantity, and finally 
terminates at the sink-node. 

The node transition rule determines the probability which 
is dependent on two factors: pheromone and visibility. 
Without loss of generality, assume that the ant is currently 
positioned at the jth node of the ith layer and is going to select 
a node, say, the kth node, from the (i+1)th layer. We use 
pheromone ijkτ  to exploit the historical traversal experiences 

for all the ants and determines the desirability for traversing 
the edge  from a global optimization view. On the other hand, 
the visibility ki ,1+η  has nothing to do with the ant traversal 

experiences and only considers the problem-specific static 
information, which corresponds to the greediness about 
selecting a node from a local heuristic view. In particular, the 
visibility value for selecting the kth node from the (i+1)th 
layer is defined as 

 

( )kf
s

i
ki

1
,1

+
+ =η ,  i = 0, 1, …, T-2; k = ai+1, …, bi+1,           (9) 

 
where s is a small constant. That is ki ,1+η  grows inversely 

proportional to ( )kfi 1+
. The smaller the cost ( )kfi 1+

 incurred 
by allocating k quantities of resource to the (i+1)th task, the 
higher the value of ki ,1+η . 

We define the node transition probability ijkp  with which 

the ant at the jth node of the ith layer moves to the kth node of 
the (i+1)th layer as follows. 

 

∑ +
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′= +
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1
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al liijl

kiijk
ijkp

ητ
ητ

βα

βα
                                                    (10) 

 
where α and β are ACO parameters controlling the relative 
importance ratio between ijkτ  and ki ,1+η . Before activating 

the next iteration, the quantity of pheromone on each edge is 
updated by the following pheromone updating rule, 
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where )1 ,0(∈ρ  is the evaporation rate of pheromone trails, 

m is the size of ant population, tτ∆  is calculated by 
 

( )t

t

XJ
s=∆τ                                                                    (12) 

 
J(Xt) is computed by the objection function (1) using Xt as the 
decision for the resource allocation. 

 

IV. EXPERIMENTAL RESULTS 
In this section, we analyze the properties of the proposed 

swarm algorithms and present the comparative performances 
with competing algorithms. The platform for conducting the 
experiments is a PC with a 2.4 GHz CPU and 256 MB RAM. 
All programs are coded in C++ language. 

A. Synergism 
An interesting property about swarm algorithms is whether 

there exists an optimal size for the swarm. Given a fixed 
computation resource, the larger the swarm size, the smaller 
the number of evolutionary iterations can be performed for 
each particle/ant, and vice versa. We fix the number of times 
for evaluating the objective function when performing our 
algorithm with swarms of different size. As shown in Fig. 1, 
the average cost is minimal when the swarm size equals 20 for 
both the PSO- and ACO-based algorithms. In other words, 
there does exist an optimal swarm size for the given problem 
instance such that the synergism among different individuals 
is maximized.  

B. Convergence 
The convergence of the swarm algorithms can be analyzed 

by deriving the information entropy contained in the swarm. 
Here, we propose the information entropy for measuring the 
convergence of pbest in PSO and of node transition 
probability in ACO, because the evolution trajectories of PSO 
and ACO are substantially drawn by the value of pbest and 
the node transition probability. Fig. 2 shows a typical run for 
the variations of entropy value as the number of evolutionary 
iterations increases. It is observed for both swarm algorithms 
that the entropy value drops drastically at the initial period, 
then decreases gradually and finally stagnates. This 
demonstrates that the swarm intelligence is greatly enriched 
during the initial stage where the swarm scatters in the entire 
search space; but as the evolution becomes mature, the 
distributed awareness is resorting to the centralized 
awareness. 
 

C. Comparative Performances  
The performance of the proposed swarm algorithms is 

evaluated by competing with an existing GA-based approach 
[10] and a naïve exhaustive search. We report the average 
cost and the needed mean CPU time over five independent 

     (a) PSO 

    (b) ACO 
Fig. 1  Average costs obtained by using swarms of different size. 

 

     (a) PSO 

    (b) ACO 
Fig. 2  The entropy as the number of iterations increases. 
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runs of each algorithm for every problem instance, while the 
exhaustive search is executed one time for deriving the exact 
solution. For practical concerns, all competing algorithms are 
terminated if the execution time exceeds 48 hours, and we 
discard such cases for further comparison. 

We generate a set of testing problems with diverse 
computational complexity by varying the number of activities 
(T) and the mean allowable range of allocated resource units 
( ( ) TabT

i ii∑ =
−=∆

1
) for all activities. The value of T ranges 

from 5 to 20, and for each value of T, we set ∆ to 10, 20, and 
30, respectively. The value of Q is given appropriately for 
various values of T and ∆ in order to assure existence of 
feasible solutions. It is seen from Table 1 that, for the small- 
and median-sized problems, both PSO and ACO can derive 
solutions that are equal or very close to the exact solutions as 
reported by exhaustive search, while the solutions obtained 
by the GA-based approach are far from the optima. As for the 
large-sized problems, the solutions obtained by using the 
PSO and ACO are also significantly better than those 
obtained by the GA-based approach. This is mainly due to the 
adaptive resource bounds technique for avoiding producing 
infeasible solutions and thus significantly reducing the 
searching space. On the other hand, the GA-based method 
does not actually reduce the searching space, when infeasible 
solutions are produced it modifies them to feasible solutions 
by adjusting resource allocation between activities to ensure 
that the resource allocation does not violate resource bound 
constraints. 

As for the computational efficiency, Table 1 also illustrates 
that the CPU times consumed by the exhaustive search 
method grow exponentially with the problem size, and it fails 
to solve large-scaled problems. The computational times 
consumed by GA also grow at a fast rate and exceed 48 hours 
for the last four instances. On the other hand, the 
computational time used by the PSO and ACO methods as the 
problem size increases is still in an acceptable range, thought 
the ACO-based method seems to be computationally faster 
than the PSO-based method. In summary, both the proposed 
swarm algorithms can derive quality solutions against 
scalable problems. 

D. Worst-case Analysis  
Since swarm algorithms are stochastic methods, each 

separate run of the same program could yield different result. 
It is critical to analyze the worst-case performance one may 
obtain if the swarm algorithm is adopted for tackling the RAP. 
The worst-case performance is analyzed as follows. First, the 
program is executed for a specific number of repetitive runs 
and each run will output an optimal solution. Second, the 
worst-case analysis is set up as the worst solution we could 
get from those optimal solutions. Fig. 3 shows the worst-case 
analysis where the swarm algorithms are executed to solve 
the problem instance with (Q, T, ∆) = (400, 20, 30) for 1,000 
times. The curve shows that about 97% of the repetitive runs 
can obtain a quality solution with cost less than or equal to 33, 
meaning that we can be confident in using the swarm 
algorithms for solving the RAP. When the user requests a 
worst-case guarantee for the derived solution with cost no 
more than 33, he/she can obtain such a solution by executing 
the swarm algorithms for no more than 30 repetitive runs (3% 
of 1,000 runs). 

V. CONCLUSIONS 
The constrained resource allocation problem (RAP) seeks 

for an allocation of a fixed amount of resource to a number of 
activities such that the objective is optimized and the resource 
constraints are met. RAP has many applications, including 
product allocation, resource distribution, project budgeting, 
software testing, health care resource allocation, just to name 
a few. Different versions of problem formulations have been 
proposed in accordance with various applications. This paper 
addressed the nonlinear RAP with integer decision variable 
constraint. The proposed swarm algorithms are built on the 
foundation of PSO and ACO with the adaptive resource 
bounds technique in order to construct feasible solutions. 
Simulation results show that the swarm algorithms derive 
comparable solutions to the exact solutions obtained using an 
exhaustive search method. The swarm algorithms also 
outperform a GA-based approach which yields worse 
solutions and needs more computational time. The general 

TABLE I 
COMPARATIVE PERFORMANCES 

Q T ∆ PSO 
cost     time 

ACO 
cost        time 

GA 
cost        time 

Exhaustive 
cost       time 

100 5 10 17 1301 17.8 48 17.8 3078 17 0.001 
 5 20 12 1582 12 152 13.0 3982 12 0.001 
 5 30 5 2012 5 326 10.5 4556 5 0.001 

200 10 10 26 2954 26 234 38.0 7439 26 0.001 
 10 20 12 3565 12 440 25.3 21317 12 8812 
 10 30 13.5 3865 13.4 518 29.0 27132 13 142294 

300 15 10 32.4 4085 32 416 47.0 194642 32 76159 
 15 20 21.6 4927 22 604 60.0 285676 - > 2 days 
 15 30 17.2 6609 17 1007 - > 2 days - - 

400 20 10 40.6 5938 40 610 - - - - 
 20 20 28.1 7210 28.2 1047 - - - - 
 20 30 31.2 9927 31.2 2327 - - - - 
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properties and the convergence behaviors of the swarm 
algorithms are analyzed. Finally, a performance guarantee is 
provided through the worst-case analysis. 
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    (a) PSO 

    (b) ACO 
Fig. 3  The worst optimum cost vs. the number of repetitive runs of the 

PSO algorithm. 
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