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Abstract—Current applications such as stock markets, e-
business, multimedia and telecommunications require further
real-time services. Such systems deal with large quantities of
data, and transactions have temporal constraints. Among these
applications, some of them must face unpredictable workloads.
The aim of our work is to maintain a robust RTDBS behavior
and to decrease the number of transactions which miss their
deadline.In this paper, we propose an approach based on the
(m,k)-firm model that allows to control the RTDBS behavior, in
particular during the instability phases, in order to improve the
quality of service (QoS) of applications. Multi-class transactions
are scheduled by DBP CC and we have to adapt QoS level for
each class to the load of the system.

Keywords-(m,k)-firm; real time scheduling; Imprecise Compu-
tation.

I. INTRODUCTION

Recently, the demand for real-time services has increased
considerably in many applications such as multimedia appli-
cations (video conferencing, video on demand services,Web
services and e-business,) . In addition, these applications
reflect an important requirement in data management. There-
fore, real-time database systems (RTDBS) become the sup-
port to the implementation of these applications. In these
applications, it is important to obtain complete and accurate
results before a certain deadline, while using fresh data.
However, as the users requests remain unforeseeable, the
RTDBS can be overloaded leading to the system inability to
meet deadlines and to control the data freshness.

The real-time systems distinguish generally between firm
and hard real time tasks. In firm systems, Authors suggested
relaxing the real time constraints of the tasks such as using
the (m,k)-firm model [8], [5], [11] or imprecise computations
[13]. The notion of (m, k)-firm constraints was introduced
in particular for periodic tasks [9]. The (m,k)-firm model
tolerate some deadline misses according to the (m,k)-firm
constraints.

In this paper, we propose such an architecture which
allows a differentiation of services between transaction
classes. To this end, we exploit the (m,k)-firm transactions
model and we propose a scheduling algorithm based on this
model, which guarantees a certain QoS for each transaction
class. However, we notice that if the system is overloaded,

the (m,k)-firm constraints are not respected. Thus we must
adapt the (m,k)-firm constraints to system load and introduce
imprecision in order to respect these constraints.

In Section 2, we present the related work in management
of QoS in RTDBS. In Section 3, we present the architecture
that we propose to manage transaction classes: we present
our transaction’s model, our queue’s model. Then we formu-
late the problem. In Section 4, we present our solution to
manage transactions classes in overload situations. Section
4 is devoted to the presentation of the simulations we
conducted to validate our model, as well as to the comments
on the results obtained. The simulation platform used is
called RTDS (Real-Time Database Simulator) that we have
developed in our laboratory. The simulations results show
the effectiveness of the proposed architecture and its ability
to support overload situations and to guarantee QoS for each
transaction class. Finally, we conclude the paper.

II. RELATED WORK

As one of the first efforts to address QoS management
in RTDBs, Kang et al. [10] developed a novel QoS man-
agement architecture called QMF. In QMF, a formal control
theoretic approach is applied to compute the required work-
load adjustment considering the miss ratio error, i.e., the
difference between the desired miss ratio and the currently
measured miss ratio. Feedback control is used since it is very
effective to support the desired performance. To the feedback
control loop, Amirijoo et al. [1] added the use Imprecision in
order to manage the QoS. Imprecise computation techniques
[13] provide means for achieving graceful degradation dur-
ing transient overloads by trading off resource needs for
the quality of a requested service. Imprecise computation
and feedback control scheduling have been used for QoS
management of RTDBs. In this approach the notion of
imprecise computation is applied on transactions as well as
data, i.e., data objects are allowed to deviate, to a certain
degree, from their corresponding values in the external
environment. Many other works trade with QoS by using
imprecision. Bouazizi et al. [6] proposed an approach based
on Feedback Control Scheduling (FCS) that allows to control
the RTDBS behavior, in particular during the instability
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phases, in order to improve the quality of service (QoS)
of applications. They proposed a technique which allows
to minimize the number of conflicts by exploiting multi-
versions data, while taking into account the database size.

III. SYSTEM ARCHITECTURE

A. Transaction’s Model
In a RTDBS, we distinguish two types of transactions:
• Update Transactions: they are periodic and have to

refresh regularly the database by updating data reported
by sensors.

• User transactions: they read/write non real-time data
and/or only read real-time data. They are generally non
periodic. As their arrival in the system is unpredictable,
they may cause overload situations. That is why impre-
cise transactions models are often used.

In this paper, we assume that transactions have firm
deadlines, i.e., a transaction which misses its deadline be-
comes useless and is aborted. In addition, we exploit the
imprecision model of transactions in overload situations
[13]. A transaction consists in a mandatory part and an
optional part. The mandatory part must be executed before
the transaction deadline. Optional part is composed of sub-
transactions which are executed if there remains enough
time before deadline. More the number of optional sub-
transactions executed is great, better is the result, i.e., the
quality of service of the result is enhanced.

We base our work on (m,k)-firm model. A transaction is
divided into k sub-transactions. To each sub-transaction is
assigned a weight according to the criticality of the data
it accesses. The m (less than k) sub-transactions having
the higher weight are labeled mandatory; the others are
optional. So, the transaction is composed of m mandatory
sub-transactions and (k-m) optional sub-transactions. Like
in Milestone model, the execution of the optional sub-
transactions will make the result more precise. The trans-
action is successfully executed if at least the m mandatory
sub-transactions are executed before deadline.

B. Queue’s Model
We adopt a multi queues model with a single server.

Indeed, in our model of transactions, we have different types
of transactions, executed by only one processor. We begin to
determine the number of queues needed by the architecture.
We have defined a parameter, called Importance which will
differentiate the types of transactions. We define three levels
of importance:

• Update transactions.
• High importance user transactions that perform write

operations.
• Low importance user transactions that perform read

operations.
In our queue model, we have as many queues as levels
of importance. So, we can differentiate service between

Figure 1. Queue model

transaction classes.Also, as user and distributed transactions
consist of a set of mandatory sub-transaction and several
optional sub-transactions, we have mandatory parts and
optional parts, in each queue. As transaction classes need
to be separated to allow service differentiation, each queue
is divided into two sub-queues: one for the mandatory parts
and one for the optional parts (cf. Fig. 1).

C. Serving queues

In a real-time system, attempting to guarantee the respect
of all transaction deadlines often leads to overload of the
system. Then, to avoid this situation where the system
becomes unstable, its better to guarantee a certain level of
quality of service instead of guaranteeing all the deadlines.
This is the idea behind (m,k)-firm model. The principle of
(m,k)-firm model is to guarantee that m tasks meet their
deadlines among k consecutive tasks. Therefore, we tolerate
that (k-m) tasks miss their deadlines, among any sequence
of k tasks.

Our problem is to schedule transactions inserted in differ-
ent queues. We thus choose DBP algorithm [9], [11] already
proposed to schedule network packets on several queues.
This algorithm is adapted to the real-time context and allows
to guarantee QoS. However, it does not include an access
control to data, i.e., a concurrency controller.

For this purpose, we proposed DBP CC algorithm (Dis-
tance Based Priority and Concurrency Control) [3], which is
an adaptation of DBP algorithm [9](Distance Based Priority)
to the RTDBS context.

DBP is a dynamic algorithm issued from the (m,k)-firm
model. The algorithm we propose provides several levels
of QoS described by various couples (m,k) specified by the
database administrator for each class of tasks.

DBP uses the history of the execution to compute the DBP
priority of each queue and determine the queue which is
going to miss its (m,k)-firm requirements and be in dynamic
failure state (less than m tasks among k consecutive tasks
respect their deadlines). The selected queue is considered of
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high priority DBP and the task at the head of the queue is
extracted and served.

DBP saves the history of execution in a structure named
k-sequence which is a sequence of k bits updated after task
execution (1 indicates the respect of deadline and 0 the
opposite). The priority (distance) is computed by DBP in
the following way:

PriorityDBP = k − l(m, s) + 1

where l(m,s) is the position leaving from the right of the mth

success (1) in the k sequence, s (the state of the queue). If
there are less than m byte 1 in the k-sequence s then l(m,s)
= k+1. Each queue has its own (m,k)-firm constraint and
its own k-sequence. Before extracting the transaction at the
head, a conflict detection and resolution test is executed.

D. Problem Formulation

This policy which we adopt has numerous advantages:
• It allows a differentiation between transactions (We so

obtain five classes and a queue is suited to every class
of transactions).

• It allows a differentiation of service between classes.
This is guaranteed by the attribution of a (m, k)-firm
constraint specified by the administrator of the database
and who fix the desired quality level. Besides, the
algorithm DBP CC aims to respect for this constraint
by extracting a transaction from the closest queue to the
state of dynamic failure. In addition, a differentiation is
made during the execution step as the system assigns
more time to the execution of the most important
classes.

• We can introduce imprecision easily. With this model
we can go of the most precise case (no tolerance to
the imprecision: constraints (k, k)-firm for the diverse
queues and the constraint (1,1)-firm for the trans-
actions) in the most imprecise case. The degree of
imprecision is controlled and it has two types:

– Imprecision of queues: controlled by an (m, k)-
firm constraint for each queue and which gives an
idea of the desired level of QoS of the queue: m
transactions have to succeed for any window of k
successive transactions and (k-m) transactions at
most can fail.

– Imprecision of transactions: controlled by a single
(m, k)-firm constraint for the user transactions as
only them are decomposable.

Naturally, it also presents inconveniences such as:
• In front of an overload, all the queues sink in dynamic

failure. In that case, the algorithm DBP CC applies
the EDF policy which is inappropriate in the case of
overload.

• The imprecision is introduced with only the (m,k)-firm
model. We can add to our model other techniques of

imprecision to decrease the probability of dynamic fail-
ure (as the notion of epsilon-data or delta-deadline[7]).

IV. SOLUTION

To improve this policy, it is necessary to address both
quoted problems:

A. Dynamic Failure

As we consider an opened system, the overload is a
state which can arise. In contrast to a closed system where
all the transactions are known (their resources also), in an
opened system we have transactions from the users that
are unpredictable. When the system becomes overloaded,
the system is unable to execute all the transactions before
their deadlines. If the overload is important, the (m, k)-
firm constraint is violated because we have less than m
transactions which respect their deadlines. So, the queue is
in a state of dynamic failure and if we have several queues in
our queue’s model, all will meet in this state. According to
DBP CC, if all the queues are in a state of dynamic failure,
the EDF policy is applied (badly suitable to the excess loads)
and we notice a decrease of the performances.

To address this problem, we have to avoid the state of
dynamic failure or to minimize it. So the solution of this
problem is quite clear: the priorities of queues have not to
be equal to 0.

The DBP priority of a queue is according to the position of
the mth 1 (success of the transaction). Thus more m is big,
smaller will be the priority and we approach the case of the
dynamic failure (priority equal to 0). This is confirmed by
experiments when we choose (m, k)-firm constraints where
m approaches of k. In such systems, if some transactions
miss their deadlines, the queue is in dynamic failure. In this
situation, the system is forced to extract transactions of this
queue and a transaction has to succeed to go out of the state
of dynamic failure. In case we have flexible constraints, the
system is less often in state of dynamic failure. In view of
these observations and their confirmation by simulations, we
intend to deploy a policy which decreases the probability
of dynamic failure. This is possible by the following two
actions:

• Apply as departure a flexible (m, k)-firm constraints
(where m goes away from k).

• Decrease the probability of dynamic failure for the
diverse queues. This can be made only on acting on
the DBP priorities (take away these priorities of 0 has
for consequence to decrease the probability of dynamic
failure)

B. How to avoid Dynamic Failure

To decrease the probability to be in dynamic failure means
to avoid having a priority equal to zero. The solution thus
is to analyze the formulation of the priority DBP CC and
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to ensue from it the solution. As we know, the priority
expression is as follow:

PriorityDBP = k − l(m, s) + 1

We have the following parameters in this formulation:
• The parameters of the constraint (m, k)-firm: m and k.
• The history execution of the k last transactions: the k-

sequence.
We can act only on the (m, k)-firm constraint as we cannot

touch the execution history of the queue. Indeed, when the
system is overloaded, to require less allows improvement
of the performances. Thus, if the priority of a queue aims
towards zero, we can decrease the value of m. Consequently
l (m, s) decrease and then the DBP CC priority increase. So,
to take away the priority of zero it is enough to decrease the
level of wished QoS (m). However it is necessary to clear
up when and how?

• When: indeed on step when this priority becomes equal
to zero because there it is too late. It is necessary to
specify a threshold S below which we suppose that the
system aims towards the failure. This presents another
advantage as the system becomes preventive to the
overload state.

• How: by specifying a law of regression of m. Indeed, m
has to oscillate between its original value and a minimal
value.

C. Expressing dynamically the (m,k)-firm constraint

The policy is to decrease the value of m when we notice
that the queue approaches the state of dynamic failure. The
detection of the approach of a state of dynamic failure
is noticed by fixing a threshold for every queue below
which we envisage the regression of m. However, we cannot
decrease m until it reach its minimal value of 1 because
in that case all the queues will have the same constraint
(the same importance). Thus, it is necessary to fix for every
queue a minimal value of m (by operating a differentiation
of service so that mminH > mminM > mminL).

By drawing up the curve of regression of m between
its original value and its minimal value, we notice that m
follows an exponential function between the priority 0 and
the fixed threshold. Except this interval m takes its original
value.

So, we obtain the following mathematical formulation:

m = mmin+(c×PriorityΩ) if 0 ≤ Priority ≤ Threshold

m = moriginal if Priority ≥ Threshold

By setting (priority = Threshold), we can fix the values of
c and Ω and we obtain:

c× ThresholdΩ = moriginal −mmin
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Figure 2. Evolution of m according to the DBP priority

D. More imprecision

To introduce more imprecision during the phases of
overload, we can resort much techniques which introduce
imprecision at the level of data and transactions. The impre-
cision is introduced on two levels: data and Transactions.
We deal with Quality of Data (QoD) and Quality of Trans-
actions(QoT). The QoD can be translated by the notion of
epsilon-data or Data-Error where the data becomes valid on
an interval not on a given value. It can also be translated
in the notion of multi-versions data. The QoT is translated
by a partial execution of the transaction or its replacement
by the other one less expensive at CPU time. So the main
advantage of our approach is that it combines QoD and QoT.
It integrates two notions :

• the notion of ε - data
• the notion of ∆-deadline

1) ε-data: Under epsilon-data, the isolation is not maxi-
mal as a transaction can read a data which is being updated
by another transaction. Thus, a transaction T which wishes
to acquire a lock in a conflicting mode (W/R or W/W) can
obtain this lock provided that the generated imprecision does
not overtake epsilon.

2) ∆-deadline: Under delta-deadline, we can relax the
deadline of a transaction and so the new deadline is equal
to the former one to whom we add ∆.

V. SIMULATIONS AND RESULTS

A. Context

Simulation of the protocols developed for RTDBS re-
quires a platform which respects transactions ACID (Atom-
icity, Consistency, Isolation, Durability) properties and
which offers adequate mechanisms to the support of time
constraints. Most research teams on RTDBSs developed their
own simulator : Beehive [14], DeeDS [2], J-Radex [12]. In
our research team, we have developed a simulator, called
RTDS [4], which is described briefly, bellow.
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B. RTDS simulator

RTDS [4] is a discrete-event simulator written in Java,
designed by our research team to simulate real-time database
behavior. It is especially devoted to test and to compare con-
currency control and scheduling algorithms that are proposed
in a RTDBS.

C. Simulation parameters

Parameter Value
Number of ressources 100

Number of temporal ressources 20
Number of non real-time resources 80

Load of update transactions 40
Execution time of periodic transactions 10 to 20 ms

Execution time of a user transaction 70 to 100 ms
Number of mandatory sub-transactions 1

in an user transaction
Number of optional sub-transactions 1 to 4

Number of resources used per sub-transaction 1

Table I
SIMULATION PARAMETERS

D. Simulation results

We carried out four experiments:
1) In the first simulation, all transactions are inserted

in the same queue. So, in our Queue’s Model we
have one single queue. Then we apply EDF (Earliest
Deadline First) to schedule this queue.

2) In the second simulation, we show the impact of
the system load on the system performances. In the
simulation, we have five queues in our Queue’s Model,
each queue holding a class of transactions (mandatory
and optional parts of a transaction are put in different
queues).

3) In the third experiment, the (m,k)-firm constraint be-
comes dynamic and it is expressed formally according
to the established equation. We show that the sys-
tem prevents the state of overload by relaxing the
(m,k)-firm constraints of queues which approach the
dynamic failure. This relaxation has for consequence
improvement of results.

4) In the last experiment, we measure the impact of the
introduction of imprecision on the performances of the
system.

1) Simulation 1: Effect of Scheduling policy and Queue’s
Model: In this simulation, our queue’s model includes
a single queue that will contain the different classes of
transactions. We use EDF to schedule the queue and the
queue is ordered according to the deadline (the transaction
in the top is that having the nearest deadline).

In Figure 3, we notice:
• EDF is not suitable for transient overload: When the

load of the system increases, we have transactions with

Figure 3. Transaction Miss Ratio (MR) when using EDF, with one single
queue

nearest deadlines trying to execute and they are unable
to meet their deadlines. In addition, the time wasted to
execute failed transactions has an impact on the respect
of deadlines of waiting transactions.

• Inserting transactions on a single queue leads to a poor
differentiation of service as the criteria that matters is
the deadline not the importance of the transaction.

2) Simulation 2: Variation of the system load:
Figure 4 traces the variation of the miss ratio according to
the system load. We vary the system from under loaded state
(10 transactions per second) to an overload state (arrival
rate of 40 transactions per second). In under loaded state,
all transactions meet their deadlines, whereas in overload
state several transactions miss their deadlines. We notice
that the system becomes overloaded at the arrival rate of
40 transactions per second. We also note that when we use
the (m, k)-firm model, we can differentiate service between
different classes of transactions, thus, transactions’ miss ratio
of the prioritized class is lower than other classes.

Figure 4. Transaction Miss Ratio (MR) when using (m,k)-firm model,
with five queues in the system

In Figure 4, MR Update, MR High User and
MR Low User have the following meaning respectively:
miss ratio of update transactions, miss ratio of high
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m K mmin Threshold c Ω
Update 18 20 10 2 6 1

High Mandatory 14 20 6 5 1.2 1
High Optional 7 20 2 1 5 1

Low Mandatory 4 20 1 1 3 1
Low Optional 1 20 1 1 0 0

Table II
QUEUES PARAMETERS

importance user transactions and miss ratio of low
importance user transactions. In the simulation, we have
three classes of transactions dispatched in five queues:
Update, High Mandatory, High Optional, Low Mandatory
and Low Optional with respectively the following (m,k)-
firm constraints: (18,20), (14,20) ,(7,20), (4,20) and
(1,20).

3) Simulation 3: A dynamic (m,k)-firm constraint: In the
second experiment, m follows the mathematical function
established previously and we have the parameters expressed
in Table II.

Figure 5. Transaction Miss Ratio when we apply dynamic (m,k)-firm
constraints

In the Figure 5, we notice that usage of dynamic (m,k)-
firm constraints allows to improve the results as they de-
crease the probability of dynamic failure. We notice that
the performances in this simulation are better than those of
the first simulation. However, the performances with flexible
constraints are better as the flexible constraints correspond
to the minimal values required for m (less probability of
dynamic failure). Applying the minimal constraints present
however two anomalies:

• The performances do not correspond to the wished
levels of QoS: the performances are widely superior
to the constraints even when the system is overloaded
or not.

• The distance between the constraints is small and so
we have a bad differentiation of service.

To address the noticed problems, we suggest the use of
imprecise actions, to specify hard constraints and lead the
system to respect them.

4) Simulation 4: Impact of imprecision.: In the last sim-
ulation, we apply dynamic constraints and we use imprecise
actions. Indeed, if the DBP priority becomes lower than the
threshold specified for the queue, we decrease the value of
m and we apply two imprecise actions:

• We omit to execute any transaction which wishes to
update a data if the new value is meanwhile [real value
- ε , real value + ε] and we consider them as successful.
This action ( allows us to spare CPU time whom we
can assign to the execution of the other transactions.

• We relax the deadlines of all the transactions. So, the
system can respect the new ones. The performances
obtained in Figure 6 confirm that the combination of
(m, k)-firm constraints and imprecision allow us to
obtain the best performances while respecting the levels
of quality of service specified.

Figure 6. Transaction Miss Ratio when we apply dynamic (m,k)-firm
constraints and we use imprecision

VI. CONCLUSION AND FUTURE WORK

In RTDBS, execution of transactions before their dead-
lines often leads to overload situations, during which the
system performances are degraded. Based on (m,k)-firm
model, we proposed, in this paper, an approach to control
this degradation for each class of transactions. Results of
the simulations we have carried out have shown that when
using dynamic constraints and imprecision, we are able to
differentiate service in a RTDBS according to the transaction
classes. A transaction consists of a mandatory part and
several optional parts. We insert each transaction class into
two queues: one containing the mandatory part and the
other contains optional parts. Then, we choose an (m,k)-firm
constraint for each queue and we serve queues by applying
the DBP CC algorithm. Finally, when a queue approaches
a dynamic failure, we decrease formally the value of m and
we use imprecise actions in order to respect levels of QoS of
each queue. In the near future, we plan to deploy and adapt
this approach to a distributed context. Also, we project to use
the (m,k)-firm model for load balancing or data replication.
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