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Abstract—A convergence algorithm for the orbit tracking of 
the free-evolutionary target system in closed quantum system 
is studied in this paper. The unitary transformation is used to 
change the problem of orbit tracking into the one of state 
transferring. The Lyapunov function with a virtual 
mechanical quantity P is employed to design a Lyapunov–
based controller for such a state transferring. The target 
states are divided into two classes: diagonal and non-diagonal. 
In the first class, the specific convergent conditions for the 
target state of diagonal states are studied; in the second class, 
the target states with non-diagonal superposition states and 
non-diagonal mixed-states are treated separately by two quite 
different ways. At last, the system simulation experiments are 
performed on a two-level quantum system and the tracking 
process is illustrated on the Bloch sphere. 

Keywords-orbit tracking; state transferring; the Lyapunov 
stability theorem; convergence 

I.  INTRODUCTION  
In recent years, the closed quantum system control theory 

has been increasingly developed. Quantum state transferring 
and quantum system tracking have been fully researched. 
The effective control algorithm has been designed based on 
certain control theory, such as optimal control [1-3], Bang-
bang control [4, 5], the Lyapunov-based control [6-9] and so 
on. Among them, optimal control produces iterative control 
algorithm, while bang-bang control is realized 
experimentally by pulses. Further demand for accuracy may 
results in the unacceptable number of pulses. The Lyapunov 
stability theorem may obtain an analytical algorithm, which 
can help us analyze the characteristics of the system. 

In this paper, the quantum system orbit tracking is 
investigated. For the orbit tracking, the target system is the 
free-evolutionary of the quantum system to be controlled. 
What we expect is to make the controlled system track the 
target system. The control goal is carried on in two steps: 
firstly, the system orbit tracking problem is changed into the 
state transferring one; secondly, a convergent control 
algorithm is designed to complete the goal. 

In fact, the control algorithm designed by the Lyapunov 
stability theorem is only stable, which cannot guarantee the 
quantum system converges to desired target state. For this 
purpose, a convergent rather than just stable control 
algorithm is needed to manipulate the quantum system. 
Some papers on this topic have been reported [9, 10]. 
Among them, complete state transferring with target state of 
eigenstates and diagonal mixed-states in closed quantum 

system has been proved to be convergent conditionally [11, 
12]. However, there is an open problem on the convergence 
of the non-diagonal target states including the superposition 
states and some mixed-states. In [12], a Lyapunov function 
based on virtual mechanical quantity P was proposed to get 
the convergence conditions for the diagonal mixed-states. 
However, it did not give specific instructions on how to 
design P. We will discuss the detailed convergence 
conditions of diagonal target states and non-diagonal target 
states in this paper. 

The rest of the paper is organized as follows. In Section 
II, the system model is described by the Liouville equation. 
The Lyapunov stability theorem is used to design the 
trajectory tracking control algorithm in Section III. Section 
IV is divided into two parts, the first part is to handle the 
convergence of initial target state with diagonal mixes-state 
and the second part is the one for non-diagonal initial target 
state. In Section V, numerical simulation experiments are 
performed on a two-level system. Finally, Section VI 
concludes this paper. 

II. DESCRIPTION OF THE CONTROL SYSTEM MODEL 
In this paper, we use quantum-Liouville equation to 

describe the control system model 

( ) ( ) ( )0ˆ ˆ,m m
m

i t H f t H t
t
ρ ρ

⎡ ⎤∂
= +⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∑ ( ) 0ˆ ˆ0ρ ρ=   (1a) 

 ( ) ( )0ˆ ˆ,f fi t H t
t
ρ ρ∂ ⎡ ⎤= ⎣ ⎦∂

   ( ) 0ˆ ˆ0f fρ ρ=  (1b) 

where 0H  is the free Hamiltonian representing the energy 
of the system and mH  represent system’s control 
Hamiltonians, all of them will be assumed to be time-
independent. ( )mf t  are time-dependent external control 
fields. The Planck constant is chosen as 1=  for 
convenience. The system state is denoted by density matrix 
( )ˆ tρ , the initial states of which at 0t =  is 0ρ̂ . Similarly, 

( )ˆ f tρ  is the target system state and its initial value is 0ˆ fρ . 
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The control objective is to design a convergent control 
algorithm to make the state ( )ˆ tρ  of (1a) follow target state 

( )ˆ f tρ  of system (1b).  
Firstly, to change the orbit tracking problem into a state 

transferring one, a unitary transformation 
0( ) exp( )U t itH= −  is performed on system (1): 

( ) ( ) ( ) ( )† ˆt U t t U tρ ρ= , ( ) ( ) ( ) ( )† ˆf ft U t t U tρ ρ= , where 
“ † ” denotes conjugate transpose, ”^” denotes states before 
unitary transformation. The system (1) after this 
transformation is represented by 

 ( ) ( ) ( ) ( )[ , ]m m
m

i t f t H t t
t
ρ ρ∂

=
∂ ∑   ( ) 0ˆ0ρ ρ=   (2a) 

 ( ) 0fi t
t
ρ∂

=
∂

      ( ) 00 ˆf fρ ρ=   (2b) 

where ( ) ( ) ( )†
m mH t U t H U t= .  

Calculate (2b), one gets 

 ( ) 0ˆf ftρ ρ= .  (3) 

After the above transformation, we have changed the 
tracking problem into the state transferring one. At present, 
the control goal of system (1a) following target system (1b) 
becomes the one of regulating state of (2a) to target state (3). 

III. CONTROL ALGORITHM DERIVATION 
Among many control methods, the Lyapunov-based 

method is simpler and easy to design. The basic idea of the 
Lyapunov method is to select a Lyapunov function ( )V x  
which satisfies the following three conditions: a) ( )V x is 
continuous and its first-order partial derivatives is also 
continuous in its definition; b) ( )V x  is positive semi-
definite, i.e., ( ) 0V x ≥ ; c) The first order time derivative of 
the Lyapunov function is negative semi-definite, i.e., 
( ) 0V x ≤ .  
There are usually three kinds of Lyapunov functions 

[11]. Here, the Lyapunov function based on virtual physical 
quantity is chosen 

 ( ) ( )ˆV tr Pρ ρ= , (4) 

where P  is virtual physical observable operator.  
To obtain a convergent control algorithm, the first-order 

time derivation of function (4) is obtained as 

 ( ) ( )( )( )[ , ]m m
m

V f t tr iH t t Pρ= −∑ . (5) 

For the sake of simplicity and availability, we let each 
item on the right side of (5) of summation sign be non-
positive in order to ensure 0V ≤ . The control algorithm can 
be derived as 

 ( ) ( )( )( )( ) [ , ]m m mf t k tr iH t t Pρ= − , 0mk >  (6) 

where, 0mk >  is the control gain to adjust the convergence 
speed of the system state. 

Comparing system (1) with (2a) and (3), one can see that: 
the system (1) is autonomous and the system (2) is not, 
however, the time-dependent target state ( )f tρ  in (1b) 
becomes a stationary state 0ˆ fρ  in (3). 

As we know, the control algorithm (6) designed by the 
Lyapunov stability theorem is usually only a stable one, 
which can not guarantee that the system converges to target 
state. For this reason, we need to do further study to get the 
convergence condition 0V < , which may guide people to 
design a convergent control algorithm. Next, we study this 
problem in detail. 

IV. CONTROL ALGORITHM CONVERGENCE ANALYSIS 
In order to implement effective control on a quantum 

system, a convergent control algorithm is even more 
important than the control algorithm itself. In the process of 
state transferring, the desired target is a time-invariant state. 
The variety of quantum states such as eigenstates, 
superposition states and mixed-states makes the different 
expressions of target state. On the one hand, from the 
system control perspective, the initial state of target system 
will be grouped into stationary state and the non-stationary 
one. For the stationary target state, according to (1b), 

( )ˆ =0fi t
t
ρ∂

∂
 holds, and so does ( ) ( )ˆ ˆ 0f ftρ ρ= . In such 

a case, one can get ( )0 ˆ, 0 =0fH ρ⎡ ⎤⎣ ⎦ . The system tracking of 
(1a) is equivalent to the state transferring. For the non-
stationary initial target state, the unitary transformation has 
changed the tracking problem into the state transferring one. 
Therefore, we can always change the system tracking into 
the state transferring. On the other hand, from the 
convergence of view, the initial target states are divided into 
two kinds. The first one is diagonal initial target state 
including eigenstates and some mixed-states. It can be 
represented by a diagonal density matrix. The second kind is 
non-diagonal initial target state, including superposition 
state and some mixed-states, whose convergence has not 
been resolved fully so far. 

For autonomous system (1), the LaSalle’s invariant 
principle can be used to analyze the convergence, where two 
assumptions are needed [13]: Assumption 1: 0H  is strongly 
regular, i.e., all the transition frequencies (differences of 
pairs of energy levels) are different, viz. jk pqΔ ≠ Δ , 
( , ) ( , )j k p q≠ , where jk j kλ λΔ = −  and jλ  is an 

8Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications



eigenvalues of 0H . Assumption 2: Control Hamiltonian 

mH is full-connected, viz. 

{ }| ,m jk jkH h h j k k j j k∈ = + > , where j  is the 

eigenstate associated with jλ . Because of the unitary 
evolution of closed quantum system, if being reachable then 
target state must be unitarily equivalent to the initial state, 
i.e., there exists a unitary transformation U  such that 

†
0 0ˆ ˆ= fU Uρ ρ . We make it as Assumption 3. 

The LaSalle’s invariant principle is not able to deal with 
the non-autonomous system (2), however, the Barbalat 
lemma can be applied based on above three assumptions, 
whose content is [14]: If scalar function ( ),V x t  satisfies: (1) 

( ),V x t  is lower bounded; (2) ( ),V x t  is negative semi-
definite; (3) ( ),V x t  is uniformly continuous in time, then 

( ), 0V x t → as t →∞ . One can see from the Lyapunov 
function (4) that (4) satisfies all the three conditions of 
Barbalat lemma: (1) ( ) 0V tr Pρ= ≥  is lower bounded for a 
positive P ; (2) Its first order derivative is negative semi-
definite under control algorithm (6); (3) The third condition 
can be replaced by the existence and continuity of the 
second derivation of ( ),V x t : 

( ) ( ) ( ), { ( )[ , ] ( ( )[ , ])}m m m
m

V t f t tr iH t P tr iH t Pρ ρ ρ= − +∑  

is bounded for a bounded input.  
According to the Barbalat Lemma, the first derivation of 

the Lyapunov function converges to zero for t →∞ , viz., 
( )( ), 0V ρ ∞ ∞ = . So a limitation states set at t →∞  is 

deduced by the Barbalat Lemma. We defined it as a stable 
set R , which is a concept similar to invariant set. 
According to the formula (6), the states in stable set satisfy 

0f = . For the non-autonomous system (2), if ρ ∈R , then 
=0ρ  holds for 0f = . It means that, once the system 

evolves into the stable set, it will stop at this set.  
The stable set R  is the set of critical points on any 

dynamic trajectory, viz. 

 ( )[ ]( ){ }: , 0, ,s m str iH t P m tρ ρ≡ = ∀R , (7) 

where sρ  denote critical stable points of (2), and fρ ∈R . 
The controlled system may converge to any one of states in 
stable set R . Now P is to be constructed to make the 
system converge to the target state. According to 
Assumption 2, (7) is rewritten as [ ]{ }: ,s s P Dρ ρ≡ =R , 
where D is a diagonal matrix. Obviously, if P  is chosen as 
a diagonal matrix, D is zero one, otherwise we can always 
design a set of proper eigenvalues of P to simplify (7) as 
[15]: 

 { }: [ , ] 0s s Pρ ρ≡ =R . (8) 

Equation (8) is the stable set to be discussed in this 
paper. It is known that (4) is a function of state and the 
system (2) will converge to stable set (8). Whether the 
system converges to target state or not depends on the 
relative position among target state, the controlled initial 
state, and all other stable states than target state. To make 
the system converge to the target state, the following 
condition is needed, viz. the relationship among initial state, 
target state, and other stable states must satisfy [12] 

 ( ) ( ) ( )0< <f sv v vρ ρ ρ . (9) 

Equation (9) is the condition to ensure the convergence 
of the controlled system. How to realize (9) is another key 
point which needs to be solved. In the following we’ll focus 
on this topic by designing the suitable P. The solutions are 
given by two cases. 

A. The target state is diagonal mixed-state 
The convergent conditions for diagonal target states 

have been investigated adequately [11-13]. However, the 
concrete construction of P has not been mentioned in 
previous results. In this section, we’ll discuss how to design 
P in (4) to satisfy (9). 

Suppose the target state fρ  is a diagonal target state and 

{ }, 1,2i i nλ =  is the eigen-spectrum of 0ρ . The target 
state fρ  should be one permutation of { }, 1, 2i i nλ = , viz. 

1 2( , )f ndiagρ λ λ λ= . The other states sρ in R  are the 
different permutations of eigen-spectrum. In order to 
construct a P satisfied (9), three steps are performed: 

Firstly, P  is constructed to make fρ  be the point 
corresponding to the minimum value of (4), which is 
realized by the following lemma:  
Lemma 1: If the diagonal target state is 

1 2( , )f ndiagρ λ λ λ= , the matrix P  corresponding to fρ  

is ( )1 2, , nP diag p p p= , then fρ  is the point for the 
Lyapunov function (4) to be the minimum if the diagonal 
element  ip  of P  meets ( )( ) 0,i j i jp p i jλ λ− − < ∀ ≠ .  

The proof of Lemma 1 is in Appendix 1. 
Secondly, based on Lemma 1, a further study on P  is 

carried out and (9) is divided into two parts: 
Part 1: ( ) ( )0<fv vρ ρ  

The condition ( ) ( )0<fv vρ ρ  indicates that the 
Lyapunov function value of initial state is larger than that of 
target state. Otherwise it is inconsistent with the 
monotonically decreasing of (4) and the target state will be 
unreachable. It is easy to obtain 
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( ) ( ) ( ) ( )( )0 0
1

n

f iii ii
i

v v Pρ ρ λ ρ
=

− = −∑ . Based on the 

relationship between eigenvalues and matrix diagonal 

elements, the expression ( )0
1 1 1

1
n n n

i i ii
i i i

λ μ ρ
= = =

= = =∑ ∑ ∑  holds, 

where ( )0 iiρ  is the i-th diagonal element of the initial state 

0ρ . So there must be at least one k to make 
( )0k kkλ ρ< hold. If one wants to make 

( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0
1,

0
n

f k ikk iikk ii
i i k

v v P Pρ ρ λ ρ λ ρ
= ≠

− = − + − <∑

hold, where ( )kkP  is the k-th diagonal element of P, then 

we choose a certain k  satisfied ( )0k kkλ ρ< , one gets 

 ( ) ( ) ( )( ) ( )( )0 0
1,

>
n

i kkk ii ii kk
i i k

P P λ ρ ρ λ
= ≠

− −∑ . (10) 

Maybe there are more than one k  to satisfy ( )0k kkλ ρ< , 

we usually choose the one  which makes ( )kkP  correspond 

to a larger value such that ( ) ( )0fv vρ ρ<  holds. 

Part 2: ( ) ( )0 sv vρ ρ<  

sρ  should be one of the permutations of eigen-spectrum. 

According to Assumption 3, †
0 fU Uρ ρ= , so one has 

( ) ( ) ( )2†
0

1 1
( ) ( )

n n

f f ijii jj
i j

tr P tr PU U P Uρ ρ ρ
= =

= = ∑ ∑  

( ) ( )
1

( )
n

s sii ii
i

tr P Pρ ρ
=

= ∑  

( ) ( ) ( ) ( )2
0

1 1
( ) ( )

n n

s f ij sii iijj
i j

tr P tr P P Uρ ρ ρ ρ
= =

⎛ ⎞
⎜ ⎟− = −
⎜ ⎟
⎝ ⎠

∑ ∑

      sρ  and fρ  have the same spectrums, there must be 

( ) ( )f s iikk
ρ ρ= . For any unitary matrix U , there exist 

† †UU U U I= =  and ( )2
1

1
n

ij
j

U
=

=∑ . So one can get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

2 2
0

1

2

1

( ) ( )
n n n

s f ij f ijii jj kk
i j k j k

n n

f f ijii jj kk
i j k

tr P tr P P U U

P U

ρ ρ ρ ρ

ρ ρ

= ≠ ≠

= ≠

⎛ ⎞
⎜ ⎟− = −
⎜ ⎟
⎝ ⎠

= −

∑ ∑ ∑

∑ ∑

     For the above equation, there is at least one l  to make 

( ) ( ) <0f fll kk
ρ ρ−  hold. To make 0( ) ( ) 0str P tr Pρ ρ− < , 

the following expression is needed 

( ) ( ) ( ) ( )( )( ) ( )

( ) ( )( )( ) ( ) ( )( )

2

2

,

(

) /

n n

f f ijll ii lljj kk
i l j k

n

f f lj f fjj kk kk ll
j k j l

P P U P

U

ρ ρ

ρ ρ ρ ρ

≠ ≠

≠ ≠

> − +

− −

∑ ∑

∑

i

 (11) 

The above process is to construct P for diagonal target 
states. We conclude that: if the target state is of diagonal, a 
Hermite and positive diagonal matrix P is selected. To 
ensure the convergence, the diagonal elements of P must 
satisfy Lemma 1, (10) and (11) simultaneously. 

B. The target state is of non-diagonal density matrix 
It is more complicated to analyze the convergence for 

the non-diagonal target state. The idea is as follows: let the 
non-diagonal target state be changed into diagonal one and 
the virtual physical quantity P  is designed as that in A. 
However, the superposition state is one kind of pure states, 
which can be represented by wave functions as 

=f f fρ ψ ψ . In this case, the diagonalization of target 
state is not necessary. Next, we go onto the analysis of non-
diagonal superposition state and mixed-state in detail. 

1)  In the case of non-diagonal superposition state 
Prior to analysis, another lemma is introduced. 

Lemma 2 [16]: For the n-level Hermite matrix A and B, if 
they are commutive, viz. [A, B] =0, then A and B own the 
same eigenstates. We rewrite P according to its eigen-
decomposition as = k k k

k
P p ψ ψ∑ , where kψ  is its 

eigenstate and kp  is eigenvalue. According to fρ ∈R  and 
Lemma 2: P is demonstrated as 

 1
=2

= +
n

f f k k k
k

P p pψ ψ ψ ψ∑ , where 1 = fψ ψ . And 

=0,i jψ ψ  for i j≠ .  (12) 

And sρ  should be 

 1
=2 =1

= + =1
n n

s f f k k k k
k k

ρ λ ψ ψ λ ψ ψ λ∑ ∑  (13) 

It is known that the states 0ρ  and sρ  have the same 
spectrum under the unitary evolution, and therefore sρ  has 
the same eigenvalues with 0ρ , so does the target state fρ .  

Substituting =f f fρ ψ ψ  into (13), the eigen-

spectrum of fρ  is { }1,0, 0 . Then for sρ , there is only 
one eigenvalue iλ  to be non-zero, viz. 

= ( =1)s i i i iρ λ ψ ψ λ . 

If it denotes =j j jρ ψ ψ  in (12), then 
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( )

( ) ( ) ( )

( )

1

0 1 0 0
=2

= ( )=

= +

= ( 1)

f f

n

f k k
k

s j

v tr P p

v p tr p tr

v p j

ρ ρ

ρ ρ ρ ρ ρ

ρ

⎧
⎪
⎪⎪
⎨
⎪
⎪ ≠⎪⎩

∑  (14) 

Combined (14) with (9), a suitable P must be 
constructed to satisfy 

  ( ) ( ) ( )1 1 0 0
=2

0< < + < 1
n

f k k j
k

p p tr p tr p jρ ρ ρ ρ ≠∑  (15) 

It can be seen from (15) that the virtual mechanical 
quantity P  may not be a diagonal matrix for non-diagonal 
superposition target state. The P constructed based on (12) 
and (15) can guarantee the convergence of non-diagonal 
superposition target state, where (12) describes how to 
construct the eigenstates and (15) is to determine the 
eigenvalues. Moreover, the eigenvalue 1p  of P , whose 
corresponding eigenstate is the target state, is the smallest 
one.  

2)  In the case of non-diagonal mixed-state 
For system (1), suppose the initial target state 0ˆ fρ  is a 

non-diagonal mixed-state. The solution of (1b) is 
( ) 0 0-

0ˆ ˆiH t iH t
f ft e eρ ρ= . To deal with this situation, a unitary 

transformation has transformed the tracking problem of (1) 
into the state transferring one of (2). We follow the idea of 
changing the non-diagonal 0ˆ fρ  into a diagonal one by 
another unitary transformation and then a convergent 
control algorithm can be designed based on A. 

In system (2), the target state 0ˆ fρ  is a Hermite matrix, 

so it exists another unitary transformation fU  to meet 
†

0ˆf f ffU U Dρ = . It is performed on system (2), viz., 
†

f fU Uρ ρ′ = , †
f f f ffU U Dρ ρ′ = = , then the system (2) 

becomes 

( ) ( ) ( ) ( ) †
0 0

1
ˆ, 0

M

m mt f f
m

i t H f t H t U U
t
ρ ρ ρ ρ

=

⎡ ⎤∂ ′ ′ ′= + =⎢ ⎥
∂ ⎢ ⎥⎣ ⎦

∑
  (16a) 

 ( ) ( )0 0f f fi t D
t
ρ ρ∂ ′ ′= =

∂
 (16b) 

where †
mt f m fH U H U= . 

After unitary transformation fU , the tracking of target 

system with non-diagonal initial state 0ˆ fρ  in (2) can be 
changed into the tracking of a diagonal stationary state in 
(16). According to (8), the stable set of (16) is still 

{ }: [ , ] 0s s Pρ ρ≡ =R . The convergence analysis is the same 
as that in A. 

In conclusion, we have acquired the convergence 
conditions for non-diagonal target states. 

V. APPLICATIONS AND EXPERIMENTAL RESULTS 
ANALYSES 

In this part, a two level atom system controlled by a 
single control field is considered. Take superposition target 
state for example, the effectiveness of the proposed method 
will be illustrated. 

The free Hamiltonian of the controlled system (1) is 
0 = zH ωσ  and the control Hamiltonian is 1= xH σ , where 
( , , )i i x y zσ =  denotes Pauli matrix and [ ]= 0 1;1 0xσ , 

[ ]= 1 0;0 1zσ − . Obviously, this example satisfies the 
three conditions in Section IV. 

The initial state of (1a) is 0
1 2= 0 + 1
3 3

ψ  and the 

initial target state of (1b) is 1 7= 0 + 1
8 8fψ . They are 

both non-diagonal superposition states. The design process 
of a convergent control algorithm is as follows: 

1) Construct P 
To construct P, a set of linearly independent vector 
( )=1,2k kψ  is prepared. In this example, we choose 

1 = fψ ψ , 2 1=eψ . Then the Schmidt orthogonalization 

is performed. Suppose the orthogonalized vectors are 1s  

and 2s , where 1 fs ψ= . According to (12), 

1 1 1 2 2 2= +P p s s p s s  holds. The state except target 
state in R  is 2 2s s sρ = . Here, we choose 

1 2=0.2, 2p p = , then [ ]1.775  -0.595;-0.595  0.425P = . 
2) System Simulation results 

The control gain in (6) is selected as 0.1k = . The 
simulation results are showed in Fig. 1, where the red circle 
denotes the controlled initial state and the blue circle is the 
target state; the red line is the controlled trajectory and the 
arrow indicates its direction. Fig. 1(a) shows the state 
transferring process during [0,50]t∈ . Fig. 1(b) is the 
control field. 

To illustrate better the control strategy, the control field 
Fig. 1(b) is applied to the origianl system (1). The tracking 
results are showed in Fig. 2, where the red dashed line is the 
evolution curve of controlled state in (1a) and the blue solid 
line is the one of target state in target system (1b); the red 
circle and the blue circle indicate the initial location at the 
current period of the controlled state and the target state 
respectively; the arrow indicates the direction. In Fig. 2(a), 
the evolution trajectory at [0,8]t∈  is showed, from which 
one can see that the controlled system is asymptotically 
stable with respect to the target system on the Bloch sphere. 
Fig. 2(b) is the state trajectory at [8,30]t∈  and Fig. 2(c) is 
the magnified bottom view of Fig. 2 (b). We have specially 
labeled the different locations with black box. It can be seen  
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Figure 1(a). State evolution of (2)                    Figure 1(b). Control field 

    
(a) [0,8]t∈                                  (b) [8,30]t∈  

 
(c) The bottom view of magnified (b) 

 
Figure 2. The state trajectory tracking process of non-diagonal 
superposition target state 

 
from Fig. 2(c) that the red circle overlapped the blue one at 

=30t (the top box), so the tracking is completed at the 
moment. Since then, the controlled system would follow the 
target state in the target orbit. All the three figures 
demonstrated completely how the system (1a) to track the 
system (1b). If the index performance 

2ˆ ˆ( ) ( )fv t tρ ρ= − ( ) ( )†
ˆ ˆ ˆ ˆf ftr ρ ρ ρ ρ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 is used to 

measure the tracking accuracy, then 59.41*10v −=  holds at 
t=50. 

In summary, for the initial target states including diagonal 
and non-diagonal target states, the controlled system will 
converge to its target system under the control algorithm (6) 
with P  designed as in Section IV. 

VI. CONCLUSION 
We have proposed a convergent orbit tracking control 

algorithm for the free-evolutionary target quantum system in 

this paper. The unitary transformation was used to change 
the tracking problem into the regulation one. For the 
convergence analysis in state regulation, the target states 
were divided into diagonal and non-diagonal ones. For the 
former, we continued to perfect the convergence analysis of 
diagonal mixed-states. The explicit convergence conditions 
of P have been obtained. For the non-diagonal target state, if 
the superposition state was considered, a specific non-
diagonal P was designed to ensure the convergence. If the 
target state was non-diagonal mixed-state, there must be a 
unitary transformation to change the Hermitian non-diagonal 
matrix into the diagonal one, and the convergence conditions 
could been obtained as that of diagonal mixed-state.  
 
Appendix 1: The proof of Lemma 1. 
Prove: P  is a diagonal matrix, one gets ( ) 0fv ρ =  from (10). 

( ) [ ]( ) [ ]( ){ }* , ,m mt mt
m

v i f tr H P tr H Pρ ρ ρ= − +∑  

( ) [ ]( )
[ ]( )

2

2

, * ,

, * ,

m

m

f mt f mt
m

mt f mt
m

v f tr H P H

f tr H H P

ρ ρ

ρ

⎡ ⎤= − ⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑

∑
 

Let [ ], , ,mt f mtA H B H Pρ⎡ ⎤= =⎣ ⎦ , then 

( ) ( )( ) ( ) ( )( ),j i mt j i mtij ijij ijA H B p p Hλ λ= − = − , so 

( )( )( )

( )( )( )

2

1 1 1 1

2

1 1

( )
ij

ij

n n n n

ij ji j i i j mt
i j i j

n n

j i j i mt
i j

tr AB A B p p H

p p H

λ λ

λ λ

= = = =

= =

= = − −

= − − −

∑∑ ∑∑

∑∑
. 

If fρ  is a stable state, then  ( ) 0fv ρ > , one gets: 

( ) ( ) 0,i j i jp p i jλ λ− − < ∀ ≠ . 

Let 1 2{ , }nμ μ μ be the spectrum of fρ  with 

iμ arranged in a non-increasing order, viz 

1 2 nμ μ μ< < < . Then the corresponding P  is 
( )1 2, , nP diag p p p=  and 1 2> > > np p p  is obtained by 

the above description. Any other states sρ  in stable set 
R can be obtained by m  times swapping arbitrary two 
elements of { }1 2, nμ μ μ . We let 

( ) ( )f sbool tr P tr Pρ ρ= − . 
Suppose the spectrum from smallest to largest of target 

state is { }1 2, , , , , , , ,i j k nμ μ μ μ μ μ , then: 

i j↔ : 

( ) ( ) ( )( ) 0i i j j j i i j i jbool p p p pμ μ μ μ μ μ= − + − = − − <  

,i j j k↔ ↔ : 
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( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( ) 0

i i j j j k k k i

i i j j j i i k k k i

i j i j j k i k

bool p p p

p p p

p p p p

μ μ μ μ μ μ

μ μ μ μ μ μ μ μ

μ μ μ μ

= − + − + −

= − + − + − + −

= − − + − − <

 

, ,i j j k k l↔ ↔ ↔ :

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )( ) ( )( ) ( )( ) 0

i i j j j k k k l l l i

i i j j j i i k

k k i i l l l i

i j i j j k i k k l i l

bool p p p p

p p

p p

p p p p p p

μ μ μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ

= − + − + − + −

= − + − + −

+ − + − + −

= − − + − − + − − <

and so on. Finally, we get ( ) ( )f sv vρ ρ< . Lemma 1 is 
proved. 
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