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Abstract—We consider the situation where fixed observations
of moving entities are sparse and the goal is to learn as much
as possible about their patterns of activity, before and after
such observations (e.g, cameras at a few intersections in a
city). Here we present a method for estimating probable paths
within a network given a limited set of vertex observations and
limited a priori assumptions about individual entity behavior.
We divide the process of analysis into two phases: a learning
phase in which aggregate information about many entities is
obtained and used to construct simple models given potential
observations, and a reasoning phase in which resampling
methods produce probable paths a specific entity may have
taken. To accomplish this, we extend a fair and efficient
method for randomly selecting unconditioned paths within
a network in order to draw paths conditioned on limited,
partial observations. The methods are validated by analyzing
hypothetical observations of entities moving on an existing city
street network. Our results show the scaling properties of this
approach by optimizing the locations of different numbers
of fixed potential observation points to obtain as maximal
coverage of the area as possible. We then construct a variety
of models based on an extremely sparse observational scenario
and demonstrate quantitatively and visually that these simple
methods, combined with structural information inherent in the
graph itself, can provide a great deal of context information
about an individual entity’s possible movement patterns.

Keywords-sparse observations; fair paths; path analysis

I. INTRODUCTION

Many GIS-based methods for analyzing the behavior
patterns of entities (e.g., people, cars, etc.) on both tradi-
tional and complex functional networks incorporate exten-
sive information about individual entity movement within
the network, often assuming one has access to GPS tracking
data or other such detailed information. Frequently, the goal
in such cases is to take existing data and use it to predict
future activity [1], [2].

Instead, we consider the situation where observations
are sparse and the goal is to try to learn as much as
possible about a pattern of activity before and after such
observations. For example, suppose there are fixed CCTV
camera locations at a few intersections, scattered throughout
a city. Given some highly limited general knowledge of

potential paths taken (e.g., a distribution of typical path
lengths) and some specific observations of a particular entity
at two or three of the intersections via the cameras, what are
the most probable paths the entity might have taken?

In this paper, we construct and employ a simple method
for drawing probable paths within a network given a handful
of vertex observations and limited a priori assumptions
about individual entity behavior. Our approach is to break-
down the process of analysis into two phases: a learning
phase in which aggregate information about many entities
is obtained and used to estimate path length distributions
conditioned on potential observations, and a reasoning phase
in which resampling methods are used to combine partial
observations about a specific entity with global knowledge
to provide an analyst probable paths an entity may have
taken. Though it is natural to think about these path-patterns
as movement in a physical network such as city streets, our
method makes no such assumptions.

This paper is developed around a fair and efficient (poly-
nomial) method for randomly selecting unconditioned paths
within a network in a probabilistically correct way. Our
algorithm (DRAWPATH) is constructed using elementary
concepts in graph theory and probability. We extend this
model to draw paths conditioned such that only paths that
contain specific observations, in a particular order (though
not necessarily consecutive) will be drawn. We validate
our approach by considering the analysis of hypothetical
movement patterns of entities operating on the city street
network in the western half of Laramie, Wyoming.

To determine the best coverage of the observations in
the town, we employ an evolutionary algorithm (EA) [3]
to optimize the locations of a limited number of fixed
potential observation points. The objective function used by
our EA relies on the same simple graph-theoretic notions
on which our DRAWPATH algorithm is based. We have a
simple way to estimate the probability that a path from the
general, aggregate movement distribution will pass through
at least one of the observations. We show that the coverage
we obtain scales well even as the number of potential
observation locations is greatly reduced.
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We then focus on an extreme case where there are only
two fixed positions in the town that we can use to analyze
movement. Several models are constructed based on these
two fixed positions, and these to demonstrate quantitatively
and visually that a great deal of context information about an
entity’s possible movement patterns can be obtained in spite
of the sparsity of observations. This provides preliminary
evidence for our position that the graph itself contains a
great deal of information, and that given a simple aggregate
movement model and a few individual entity specific obser-
vations, it is still possible to obtain a strong understanding
of probable movement patterns for the entity by exploiting
structural information within the graph itself.

This paper is organized as follows. The next two sections
provide context by discussing related literature and problem
formalization, respectively. Section IV explains are simple,
traditional graph theory based methods for drawing distri-
butionally correct fair random paths. After this, we indicate
how much coverage is possible with few observations by
optimizing potential observation locations for maximal cov-
erage, then in Section VI we discuss how prior distributions
for potential movement patterns through sparse observations
can be learned. Finally, we explain how one can put all
this together to reason over potential paths given sparse
observations and provide some concluding remarks.

II. BACKGROUND AND MOTIVATION

Understanding entity movement in space and time builds
on early work in regional geography regarding the concept
of space-time paths [4]. The space-time path — a “trace” of
an individual entity’s movement in space, through time — is
comprised of the set of ordered (in time) observations where
entity locations are recorded and the corresponding path
segments between those locations are inferred [5]. Where
space-time path approaches are limited, however, is when
the set of observations are limited and serve to capture only
a portion of a path.

Given the limitations of space-time path approaches when
much of the requisite entity movement data are unob-
served, alternative mechanisms to understand individual
movement are required. As technology and computational
approaches have advanced, focus has shifted toward mod-
eling movement in space using more bottom-up, agent-
based approaches [6]. For example, individual pedestrian
movements have been modeled at the “microscopic” scale
[7] in order to examine the role of fundamental behaviors
in governing movement characteristics. Other agent-based
approaches have emphasized crowd level behaviors [8], in
order to contextualize movement given larger, agglomera-
tive behaviors. These bottom-up approaches, however, often
assume little knowledge regarding the geographic space or
network neighborhood in which the entities are operating.

Understanding the space in which entities are moving
is an important aspect to understanding their potential be-

havior. Space-syntax studies demonstrate that network and
related areal topologies have demonstrable effect in how
space influences movement [9]. The environment, whether
unconstrained (e.g., an isotropic surface), constrained (e.g.,
a network), static, or dynamic, is an important determinant
in the driving the modeling approach [10]. Recognition that
certain movement patterns or typologies emerge as a function
of the space in which movement is occurring provides a basis
for understanding movement from limited observations [11].

Using limited observations to best cover a given space
(network or otherwise) and understand movement occurring
therein is thus an important aspect of this work. As with
the space-time path, early work in examining maximum
covering problems in a geographic context emerged in a
formalized way in regional geography studies [12]. Maximal
covering location theory has informed work ranging from
identification of best locations for security cameras in both
static [13] and dynamic environments [14].

In contrast to the high observation model of sensor
network approaches for understanding space-time paths,
low observation models require as much information as
possible that can be exploited from other sources. In the
following sections we formalize our approach for leveraging
information regarding the network space in which movement
is occurring and the use of a simple movement model of de-
scribing individual movement within the given environment.

III. FORMALIZING THE PROBLEM

As described in the introduction, the fundamental chal-
lenge we are considering is to determine the probability that
some specific person (for example) has traversed some path
given a graph, some observations of the person on that graph,
and a some kind of more general underlying distribution
regarding path properties. Let us clarify this problem both
by providing a formal description of the problem and by
example. For descriptive purposes, our examples refer to
some particular path taken by an individual named Bill.

Let G = (V,E) be a digraph with vertices V and edges
E. Graphs are given in the problem description, and they
represent some kind of network-based structural information
available in the problem itself. E.g., it might encode topo-
logical information about Bill’s home town street network.

We write a path simply as an ordered set of vertices,
p = 〈v0, v1, . . . , vk〉 such that ∀vi ∈ p, vi ∈ V and
∀vi, vi+1 ∈ p, (vi, vi+1) ∈ E. That is, a path is a sequence
of connected vertices. Note that paths can contain the same
vertex multiple times (i.e., the path can cycle). We define
the length of a path as the number of vertices in the path1.
A path represents every graph point on some route that a
person traverses within the graph. For example, Bill leaves
the bank, moves south a block to the corner gas station, then

1Technically, in graph theory, path length is traditionally defined as the
number of hops taken, k−1 where k is the number of vertices in the path;
however, we keep everything vertex-centric for consistency.
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heads east to the intersection of main and 1st, then moves
east once more to his apartment. His path’s length is three.

In addition, we have the concept of an observation, a
fixed vertex at which we can obtain information about a
specific person on a specific path. We may have multiple
observations regarding the same path. While we retain
order information about observations, one simplification
we make is to ignore time. We distinguish between two
types of observations, positive observations and negative
observations. Positive observations are an ordered collection
of sightings of an individual at specific vertices for the path,
〈o1, o2, . . . , om〉, where there exists some path p such that
for all oi in that collection, oi ∈ p. The set of negative
observations is an unordered collection of vertices through
which an individual did not pass. For simplicity, we use
M to notate the complete collection of observations. As an
example, consider a case where we observed Bill at the gas
station and later at the intersection of main and 1st avenue,
though we know he was not seen by the camera at the
bank. Most of his path, including his start and end point, are
unknown to us; however, we have two positive observations
and one negative observation regarding his path.

In addition to representing individual behavior, we are
interested in collecting aggregate information about possible
paths. Currently, we simplify things and consider only path
length for the prior distribution of path properties, and
we assume that (unconditioned) path lengths are Poisson
distributed. That is, for some path length k:

Pr {k} := λ(k−1)e−(k−1)

(k − 1)!
, k > 0

The k−1 adjustment is due to our having defined the path
length as the number of vertices. Conceptually, the number
of null-paths, paths that contain no vertices at all, is not a
sensible number to consider. For convenience, we say that
Pr {k = 0} = 0. Under the optimistic conditions provided by
the problem definition, namely that a set of historical path
lengths are provided, we can determine Pr {k} by simply
computing the expected length parameter λ ≈ 1

|K|
∑|K|

i=1 ki.
For our experiments, we assume this is done and specify λ
directly. In this paper, we use λ = 6 for all experiments.

We refer to Pr {k} as the prior path length distribution and
Pr {k|M}, the probability of a path of length k if we make
observations M , as the posterior path length distribution.
We break the problem into two phases, distribution learning
and path resampling, and define them separately. These are
described in Section VI and VII, respectively.

PROBLEM 1: Distribution Learning

Given: a graph G, hypothetical observations M ,
and a set of historical path lengths, K
(where ∀ki ∈ K, ki ∈ N+).

Find: prior path length distribution Pr {k}
and posterior path length distribution Pr {k|M}.

PROBLEM 2: Reasoning via Path Resampling

Given: a graph G, real observations M ,
and the model distribution Pr {k|M}

Find: a set of paths P such that ∀pi ∈ P,Pr {pi|M}
is “sufficiently large”.

IV. FAIR PATH SAMPLING WITH BASIC GRAPH THEORY

Ultimately, our efforts require efficient estimation meth-
ods for drawing paths that take graph structure into consider-
ation. One might simply produce random paths via a random
walk on the graph. For example, a starting node might be
selected at random, a random neighbor might be selected
from that vertex, repeating this process until a designated
criteria has been satisfied (e.g., a path length drawn a priori
according to some known distribution). However, ensuring
that constraints on the graph do not unintentionally bias such
walk is non-trivial, particularly when the graph is directed.
Alternatively, one might simply enumerate all possible dis-
tinct paths (addressing loops in some well-defined way) and
select a path from this set. Unfortunately, there may be a
combinatorially large number of potential paths. Moreover,
this set may be quite sparse with respect paths that contain
the observations.

Instead of these approaches, we turn to traditional graph
theory. Note that connectivity in a typical graph can be
represented using an adjacency matrix, L, containing binary
values, where a 1 in some cell Luv indicates that there is
a directed edge in the graph from vertex u to vertex v,
and a 0 indicates that there is no such edge. The matrix
L can also be interpreted as indicating all simple paths of
length precisely 1 between any pair of vertices. We can apply
matrix multiplication to produce a new matrix of the same
dimensions, L2, which then gives us the number of paths of
length 2 connecting each pair of vertices. In general, Lk

uv

gives the number of distinct paths of length k that connect
u ; v [15]. Our methods use this property in a variety of
ways. We refer to this as a “path-count” calculation.

We use this path-count calculation to estimate the prob-
ability that a path drawn according to our aggregate model
distribution (in this case, a path in the graph whose length is
Poisson distributed) passes through at least one of some set
of observations. For a given length, `, the total number of
paths of that length can be computed by summing all values
in the L` matrix for a particular graph. Paths that do not
pass through the one of the vertex observation points cannot
traverse an edge to or from any of the potential observation
points, so we can produce a new graph by removing all
the potential observation point vertices and their out-going
and in-coming edges. The total number of paths for a given
length for this graph can be computed in the same way as for
the original graph. The difference between these is the total
number of paths of length ` that passed through at least one
of these edges, and the ratio of this over all possible `-length
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paths in the original graph is the probability of drawing such
a path given the length, Pr {D|k = `}, where D is the event
of drawing a path going through at least one of some set of
observations. Thus

∑∞
i=1 Pr {D|k = i}Pr {k = i;λ} yields

the probability of a Poisson distributed path with expected
length λ going through at least one of the observations. We
estimate this by summing such values until some sufficiently
large path length or until the Pr {k = i;λ} is very small.

Secondly, the path-count metric provides a means of “fair”
sampling for paths given a distribution of path lengths.
Algorithm 1 presents the pseudocode for DRAWPATH.

Algorithm 1 DRAWPATH (graph connection matrix L,
path length distribution)

Randomly select path length ` according to distribution
Compute the L` path-count matrix
Randomly select a source-destination pair for path p = 〈s,;, t〉

proportionate to the L` path counts
Let a = s
Let b = t
for i = `− 1 down to i = 2 do

Compute the Li path count matrix
Form pa, the 1-step ab intersection of this and L as follows:

Let ra be the ath row of Li

Let rb be the bth column of Li

Let cb be the bth column of the L connectivity matrix
Let pa = ra× cb, using element-by-element multiplication

Randomly select vertex, x, proportionate to pa values
Insert x following a in p and let a = x

end for

A process following such an algorithm will produce a
valid path in the graph with length ` in a distributionally
correct way — that is, the lengths of the paths drawn will be
Poisson distributed (in our case), and paths of any specific
length are equiprobable with other paths of that same length.

Both of the estimate for paths passing through at least one
of some set of potential observations and our DRAWPATH
algorithm are reasonably efficient. Matrix multiplication can
be performed in polynomial time (even naı̈ve implementa-
tions are O(n3)), so even under simple implementations,
the estimation metric is cubic for constant-sized maximum
length values, and the DRAWPATH algorithm runs in ex-
pected time O

(
E{`}2 · |V |3

)
, where E{`} is the expected

length of a path and |V | is the number of vertices in the
graph. In our implementation, the length factor is reduced
from quadratic to linear by eliminating redundant matrix
multiplications at the expense of storing all Li path count
matrices created in during the first iteration and using
the appropriate matrix during subsequent iterations as i is
relaxed. Indeed, we store and expand this list of matrices
throughout the estimation process so that the computation
for a given k is only ever computed once. The cubic factor in
the size of the vertex set can be reduced marginally through
the use of efficient matrix multiplication routines [15].

It is worth noting that these two methods can use any

length distribution, and they do not rely on the Poisson dis-
tribution. Our method merely needs some domain-relevant
way of computing Pr {k}. Additionally, there are relatively
straightforward ways to bias the draw using externally pro-
vided edge transition probabilities to replace the cb vector.
These two notions allow for the possible incorporation of a
more sophisticated aggregate behavior models, though this
is not explored in this paper.

V. OPTIMIZING POTENTIAL OBSERVATION LOCATIONS

To begin the process, we must determine the best location
to place our hypothetical observation points within the graph.
We are interested in the best observational coverage of the
graph — the potential locations for observations in the graph
that maximize the probability of observing someone. To be
effective, this should take the graph structure into account,
as well as the collective behavior model.

From our discussion in the previous section, we know
that we can estimate the probability that a path drawn
from our collective distribution passes through at least one
of some subset of potential observations fairly efficiently
using path-count matrix calculations. For this paper, we
use a simple evolutionary algorithm (EA) to optimize the
locations of a fixed number of possible observation points
using our estimate of the probability of observing paths as
the objective function.

Our algorithm encodes fixed-length individuals as poten-
tial positions for the observations. Out of a population of
20 individuals, one is selected at random to be cloned and
mutated. It replaces the worst individual in the population
(chosen uniformly at random if there is a tie) if it has at least
as high an observational coverage. The number of mutations
it undergoes is binomially distributed with the n = |V |
and success probability of 1

2m , where m is the number of
potential observations. With equal probability, a mutation
event will result in a swap of a position for some other
position in the graph or a swap of a position for one of its
neighboring vertices. The EA is run for 500 steps. These
parameters result from parameter tuning, and we make no
claim as to their quality except to say that in all cases the EA
made progress and appeared to converge to a local optima.

The West Laramie street network graph contains 143
vertices, and during the optimization process, the evaluation
heuristic considered paths of length 1 to 15. In spite of this,
there are over 7 million paths of such in this graph.

To get a sense for how observational coverage can scale,
we ran our EA for several cases of m observations points,
{128, 64, 32, 16, 8, 4, 2, 1}. There were 25 independent ran-
dom trials conducted for each group. In each trial, we
recorded the best observation points discovered by the
algorithm. The graph below illustrates these results. In the
graph, the points represent the mean best solutions found of
the independent runs of the EA, and the whiskers represent
the 95% confidence window for each group. We plot a trend
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line through these points to give the reader a sense for how
observational coverage scales as the number of observation
points is decreased.
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Figure 1. The best observational coverage results for various number of
observation points. The points show the mean of 25 independent trial EA
runs, and the whiskers show the 95% confidence window for each group.

In each experimental group, the best results were taken
and verified as follows: The DRAWPATH algorithm de-
scribed above was sampled 2000 times and the number of
paths that contained at least one of the optimized obser-
vation locations was counted. This probability was within
the statistical proportions margin of error (α = 0.05) of
the estimated heuristic based on path-count calculations.
Additionally, the path-count estimate for the observational
coverage for paths of length 15 or smaller was compared to
the same heuristic for path lengths between 1 and 100 with
no statistical differences.

Figure 1 illustrates that the observational coverage scales
quite well for this graph. Clearly such coverage will differ
greatly depending on the graph and the collective behavior
model, it is also evident that a great deal of information
about individual behaviors in this graph can be available with
just a few observation points. Indeed, just two observation
points are needed to cover just over 17% of all paths. The
location of these observation points is shown the graph
below. For the remainder of the paper, we assume that our
algorithms have access to observations made at only these
two points. We refer to these two observations points as E
(the east-most point) and W (the west-most point).

VI. DISTRIBUTION LEARNING

The goal of the first stage of our method is to combine
the collective behavior model with hypothetical observations
to develop a better understanding of a potential entity
movement pattern. While one might simply try to compute
the posterior path length distribution when the specific
observations are made, we feel it is more constructive to
think of this as part of the more general learning process
for at least three reasons. First, such computations are likely
to be somewhat time consuming estimations. As a result,
it is beneficial to develop prior estimates based on hypo-
thetical observations so that sampling can be done relatively

Figure 2. The West Laramie street network with the potential observation
points highlighted. These two points represent the best pair of observation
locations for coverage discovered by our EA.

quickly in specific cases. Second, prior computation of the
posterior distribution facilitates useful analysis of potential
observations. These two reasons are justified further in
the next paragraph. Finally, when we base our collection
of hypothetical observations on historical information, we
can consider collections of known observations as a way
of encoding aspects of aggregate information about the
population. In that sense, it is a part of the learning process.

The idea of “hypothetical observations” is rooted in our
perception of how aggregate information may be acquired
for realistic problems. First, a reasonable scenario is one in
which the locations of the observation points are established
up front. For example, cameras are specifically located and
do not move. If the number of such potential observation
points is relatively small, we can pre-compute the posterior
path length distribution for many important combinations of
observations. Second, we can use a posterior path length
estimation algorithm to help with analysis and related,
subordinate problems to the main problem. For example, we
might examine a variety of potential observation points to
see how they affect the length distribution, or use some of the
underlying graph theoretic components from the estimation
phase to help determine their ultimate placement.

Bayes theorem gives the posterior path length distribution:

Pr {k|M} = Pr {M |k}Pr {k}
Pr {M}

The value of Pr {k} can be obtained from the historical
path lengths as described above. Since Pr {M} is the same
value in all cases that use the same observations, one can
simply normalize after computing a sufficient number of
cases for k. One can enumerate cases of k up to some
large number, terminating early when it is likely most of the
probability distribution has been accounted for. The way we
do this is to check when the running ratio described below
for each k drops below some small value (e.g., 0.001).

Pr {M |k}Pr {k}∑k
j=1 Pr {M |k}Pr {k}
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We modify the DRAWPATH algorithm discussed in Sec-
tion IV for drawing fair paths from the collective model to
help us compute the condition probability given observa-
tions. Here it is assumed that the observations are correct
and ordered. That is, if we observe an individual at some
vertex va then later at vb but never at vc, then the individual
really was at vertex va before passing through vb, and he
or she never passed through vertex vc. This latter point is
important: All observation points contain information about
paths since failing to see an individual at the point is not
the same as no knowing whether the individual visited the
point. Consequently, conditioning the path draw based on a
negative observation is straight forward: We simply remove
the vertex and all in-coming and out-going edges prior to
analysis, as we did when we estimated the observational
coverage probability.

Modifying the algorithm to consider the ordered positive
observations of an individual is more challenging. First note
that the algorithm above can be easily altered so that it
considers potential end points of the path. To incorporate
conditional observations, we combine this idea with a notion
we refer to as “path templates”.

A. Conditioning the Path Draw End Points

Given the start and end vertices of the path, we can simply
replace the third step of the PATHDRAW algorithm above
with the specific cell value in the L` matrix indicated by the
start and end vertex pair. If only the start vertex is available,
we can replace the summation in that step with summing the
row indicated by the start vertex. Such a value represents all
the unique paths of the given length that start at that vertex.
Likewise, if we receive just the end vertex, we can sum
the column indicated by that vertex — which is the count of
paths of a given length that end in that vertex. The rest of
the algorithm remains unchanged.

B. Path Templates and Piecewise Path Draws

Crucial to understanding our sample estimation methods
is the concept of a path template. Let us temporarily assume
we are given not just observations and a length, but we are
also told precisely where in the path the observations where
made. We can represent such a path by substituting the
unknown vertices with special “wildcard” symbols and treat
the entire path as a kind of rule or template. For example,
given a path length of 6 and observations at vertex a then
b, one partially informed path is: 〈..a.b.〉. A path matches
such a template if it is of length 6 and goes through vertex
a in its third position and vertex b in its fifth position.

Such a template can be broken up into three subpaths:
〈..a〉, 〈a.b〉, and 〈b.〉. We can then draw uniformly from
each subpath using PATHDRAW as discussed above and
assemble the complete path after the fact. Such a piece-wise
process allows us to draw a path p uniformly from the set of
paths that match a specific template. Note that we can also

precisely and efficiently compute the number of paths that
a template matches by multiplying the number of matches
of each of the subpaths.

C. Putting it Together: Estimating Pr {M |k}
If path templates were independent of one another with

respect to the paths they match, one needn’t even use DRAW-
PATH: Simply use the method just described to compute
the total number of paths that match a given template,
and instead sample templates of a given length. Knowing
this, in addition to the total number of paths of a given
length (unconditioned by observations) gives an easy and
efficient way to compute precisely the probability that of a
template match given path length. This reduces the problem
to sampling amongst templates rather than paths.

In principle, templates can be produced in a number of
ways. One method is to enumerate them given observations.
While this scales combinatorially with the length of the path
and number of observations, it is still quite manageable for
relatively small paths with sparse observations. Alternatively,
we can produce a template uniformly at random by using a
simple and efficient shuffling method.

Unfortunately, two different templates may match the
same path so the templates are not independent of one
another. We can use the inclusion-exclusion principle [16] to
adjust these match counts if we have a means of computing
the union of the match sets represented by two templates.
This is straightforwardly accomplished by merging tem-
plates: If two fixed positions do not match then the union
of the templates produces 0 matches, otherwise the merged
template is produced by retaining all fixed positions between
the two templates. For examples 〈a...b.c〉 ∪ 〈a.d...c〉 =
〈a.d.b.c〉. However, overall this computation can be quite
costly in the worst case since there can be a combinatorial
number of levels of such unions. It may be that only a
few levels are needed to get a reasonable approximation,
and there may be ways of using piece-wise DRAWPATH to
reduce the overhead of full enumeration. We would like to
explore this possibility in the future.

We store the templates that with non-zero numbers of
paths that were discovered during this process, along with
the number of paths they match (match count) as explicitly
computed from the path-count matrices as described above.
This is used during resampling, as we shall see.

Consider the West Laramie street network with two
fixed observation points as determined by our optimization
discussed in Section V, E and W . Since positive
observations are ordered but negative observations are not,
there are five cases for learning. Observation(s) at:

i) E then W ;
ii) W then E;

iii) E but not W ;
iv) W but not E;

v) neither point.

Since there are only a handful of such cases, we are free to
learn these distributions a priori. In more complex scenarios,
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it may be necessary to learn only the a few observational
scenarios, then add new cases as they occur.

VII. PATH REASONING GIVEN SPARSE OBSERVATIONS

Once we have learned a catalogue of distributions based
on potential observations, we can use this information to
resample paths given specific, actual observations. In much
the same way as the distribution is sampled in the first place,
this problem includes drawing a length, then a template,
then a path from that template. Because of the dependence
problem between templates above, we do not use the sample
to estimate probability, but instead assign the probability of
a path directly from the posterior distribution. This process
is described in more detail below.

Algorithm 2 PATHRESAMPLE (observation set M ,
graph G,

posterior path length distributions,
templates & match counts,

maxSamples)
Initialize path list to an empty list
for i = 1 to maxSamples do

Lookup posterior {k|M} distribution
Draw path length according to Pr {k|M}
Lookup recorded templates & match counts
Randomly select template proportionate to match count
for each unspecified subpath in the template do

Randomly select valid subpath using piecewise draw
end for
if path is unique then

Assign the path probability Pr {k|M}
Store path and probability in path list

end if
end for
Remove from path list all but the 5% most probable paths
return path list with associated probabilities

The list of paths recovered from the resampling procedure
is used in two ways. In each of the five observational
cases, the graph can be plotted with the resampled paths
overlaid for visualization. Second, a quantitative measure
of informativeness of the resampled path can be estimated
based on an edge count frequency histogram: All edges
are treated as separate bins, and an edge is counted once
for each of the resampled paths in which it participates,
then the entire list of edges is normalized to create a
distribution of edge usage in the resampled paths. Given
a baseline condition that equiprobable edges implies no
information, we compute the distance of this edge count
frequency histogram to a vector of length |V | with all values
equal to 1/|V |, where |V | is the number of vertices in the
graph. These visually and intuitively confirm the idea that
the observations can provide significant context about an
entity’s behavior

The results presented in Table I indicate that having any
positive observations at all provides a substantive amount

Table I
DISTANCE MEASURES BETWEEN UNIFORM DISTRIBUTION OF EDGES

AND THE EDGE COUNT FREQUENCY HISTOGRAMS CONSTRUCTED FROM
RESAMPLED PATHS FOR EACH LEARNED DISTRIBUTION.

Case # Case Description Distance
i Observation at E then W 0.2206
ii Observation at W then E 0.2289
iii Observation at E but not W 0.2403
iv Observation at W but not E 0.2223
v Observations at neither point 0.0949

of information over and above no detection. Figures 3, 4,
and 5 we present three graphs that are visually indicative
of these results, cases i, iii, and v, respectively.

Figure 3. The 5% most probable resampled paths for an individual on the
West Laramie street network, under the condition that he/she was observed
first at the east-most (E) observation point then the west-most (W).

Figure 4. The 5% most probable resampled paths for an individual on the
West Laramie street network, under the condition that he/she was observed
at the east-most (E) observation point but not at the west-most (W).

VIII. CONCLUSIONS

In this work, we adopt the position that, because the struc-
ture of a graph itself contains a great deal of information,
one can use relatively simple graph theory and probability
techniques to learn a lot about potential behavioral patterns
of entities operating within the graph even under quite
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Figure 5. The 5% most probable resampled paths for an individual on
the West Laramie street network, under the condition that he/she was not
observed at either location.

spartan conditions: There is little a priori information avail-
able about collective movement and there are few specific
observations available.

We presented a simple technique for estimating the ob-
servational coverage of a set of fixed observations — the
probability that a path drawn from our prior path distribution
will pass through at least one of the observation points. This
method was used by a basic evolutionary algorithm to find
near optimal positioning of fixed potential observation points
within the graph. As it turns out, for the West Laramie street
network graph, the observational coverage scales nearly
logarithmically as the number of observational points is
reduced. Indeed, just two fixed positions can cover nearly a
fifth of all paths in the graph.

We also presented an efficient way to draw a path from
that prior distribution in a probabilistically correct way.
We expanded this algorithm to permit the path draw to
incorporate conditions associated with ordered observations.
We used this algorithm to construct five models of to
match potential entity movement in a graph using five
cases of hypothetical observations. These models were used
to resample paths from the posterior path distributions to
produce the most probable paths an entity might have taken
given the different observational scenarios. Both quantitative
and qualitative evidence was provided that such observations
provide a great deal of contextual information about possible
entity behavior.

In the future, we are interested in expanding our collective
model of behavior to incorporate more sophisticated prior
bias information. For example, there may be ways to in-
corporate time by combining the use of the Poisson length
distribution with rate-of-travel and edge cost information
over fixed time constraints. Additionally, we can incorporate
edge transition probability information into the DRAWPATH
algorithm to bias the draw based on a learned aggregate
model. This may be facilitated but our complementary and
parallel efforts to make use of biased random walker models
as a means constructing edge transition probabilities.
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