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Abstract—This paper describes a linear feature matching 

method for overlapping data sources aimed at developing 

geospatial conflation tools. This method is based on identifying 

distinguished feature patterns, which are categorized as atomic 

patterns and composite patterns. It is hoped that these feature 

level patterns, once identified and modeled, will serve as a 

signature and as a helpful vehicle to enrich semantic meanings 

of a dataset. Features from overlapping sources will then be 

matched, by first matching large or complex structures and 

then breaking down to individual features of varying 

cardinalities. This feature matching method has been 

implemented as a core component for geoprocessing conflation 

tools to perform spatial adjustment, attribute transfer, and 

feature change detection. Applying these tools, in workflows, to 

real world data has produced promising results.  

Keywords-geospatial featture patterns; feature matching; 

geospatial data conflation; geoprocessing. 

I.  INTRODUCTION 

Geospatial data conflation is one of the classic 
requirements in data integration where attributes from one 
data source need to be transferred, or geometries adjusted, 
based on feature correspondences of another data source. 
With the vastly increasing distributed geospatial data and 
sharing of these data over the web, high demands on 
conflation solutions have been seen in recent years. The 
concept of conflation has also been extended to detect 
feature changes between updated and existing datasets where 
new features emerged and previously existing features 
disappeared. 

Due to differences in data capturing purposes, methods, 
scales, accuracy, or collecting time, corresponding geospatial 
features have discrepancies which may be spatial and non-
spatial. Spatial discrepancies can be topological, geometrical, 
and metrical. A road feature matching two roads broken at a 
new T-intersection, for example, is a topological change; a 
circular cul-de-sac corresponding to a rectangular loop 
reveals a geometrical difference; and a short extension of a 
road from an intersection finding its peer prolonged shifted 
and slightly rotated causes altered metric measures. A non-
spatial discrepancy occurs when the road name “Main St.” in 
one dataset is meant to be “Main Street” in another. Hence, 
finding relationships between corresponding features must 
be equipped with capabilities of distinguishing and handling 
these discrepancies. As a general consensus, the automation 
of conflating geospatial data requires a multitude of 

processes and possibly iterations with these processes, 
among which correctly matching features is central to the 
success of the automation. 

Section II of the paper overviews some published feature 
matching methods, and the one we have developed for the 
purpose of creating a suite of conflation tools. It is followed 
by a discussion in Section III on identifying distinct 
structural shapes which are the basis of matching features. 
The matching process, starting from matching structures is 
presented in Section IV. The result of structural matching is 
then broken down to match individual features, which is 
discussed in Section V. The testing of the feature matching 
method in building conflation tools and the practical uses of 
the tools in workflow contexts are discussed in Section VI. 
The paper will end with conclusions and a brief discussion 
on future work. 

II. OVERVIEW OF FEATURE MATCHING METHODS 

Given two overlapping sets of geospatial features named 
A and B, the problem of feature matching can be phrased as: 
for each feature in A, find its most likely counterpart in B if 
it exists. The catch here is the modifier “most likely” since it 
implies the application of cognitive knowledge and a 
conclusion can be elusive in complex configurations. 
Finding a matching method supported by objective measures 
has been a challenge to academicians and practicing 
professionals working on Geographic Information Systems 
(GIS) over the past 30 years. 

Ever since an automated, interactive feature matching 
system via iterative rubber-sheeting was developed by the 
U.S. Census Bureau [1], researchers have been looking to 
use similarity measures against features to enhance matches 
between datasets. Various definitions of similarities and their 
measuring methods have been discussed, from considering 
geometric properties such as orientation, shape, length, etc. 
to combining themes and semantic attributes [2], [3]. At the 
operational level, analytical [2], [4], statistical [5], and linear 
programming models have been proposed [6], [7].  

In what follows, a method of matching overlapping linear 
features is first outlined, leaving elaboration of details in 
subsequent sections. This method is in line with some of the 
published approaches [2], [4] that find similarities between 
corresponding features of different sources, based on 
topological, geometrical and metric properties of features. 
The main differences of the proposed method are that it 
emphasizes on discovering shape patterns from a single 
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dataset first and then cross-referring these patterns to probe 
and to assemble correspondent patterns in another. The 
method regards geometric patterns built progressively from 
low level shapes as objects to compare for similarities. 

The concept of identifying a hierarchy of pattern 
structures in a geospatial dataset has been inspired by a 
discussion on modeling patterns and structures in maps [8]. 
In cities and towns, design patterns are generally observed in 
urban and regional planning [9]. Researchers in GIScience 
have been detecting and describing street network patterns in 
geospatial databases out of a mass of seemingly chaotic data 
collections [10], [11]. It is believed that such a pattern 
system would reveal “meanings” of geospatial data for 
intelligent queries and applications. 

Figure 1.  Illustration of terms. 

Figure 1 illustrates the terms that are useful to the 
methods described in this paper. Linear features include 
roads, rivers, utility lines, or land use boundaries, etc. These 
features can be represented with polylines extended by a 
series of vertices in 2D space. A network of nodes and paths 
are formed from all input polylines. Informally, nodes are 
located at the two extreme vertices of a polyline. A node can 
be a connection of one or more polylines when at least one of 
their extremes coincide or are intersected at the same 
location. A dangling node does not make a connection to any 
other polylines while a pseudo node intersects exactly two 
polylines. A path is formed by one or more polylines 
connected at or incident to nodes and constrained by metric 
properties. In the method described in this paper, a path can 
span a number of nodes some of which may have more than 

two incident paths. Properties such as orientation, length, 
normalized length ratios of accumulative segments to the 
whole length, and turning angles are used to characterize a 
path. The number of adjacent paths and the adjacent angles 
formed by two adjacent paths are associated with a node. For 
clarity, the series of feature IDs composing a path is 
represented in a curled bracket as ordered list, as shown in 
Figure 1. 

Individual polylines can be short and long, straight, 
curved, or otherwise forming various shapes. The matching 
method discussed here uses a combination of top-down and 
bottom-up approach. The bottom-up process constructs 
progressively larger structures by connecting polylines that 
are constrained to form descriptive shapes or patterns in one 
dataset. By obtaining well behaved large patterns such as 
highways or river networks, global information about the 
data can be grasped. Models and analysis on top of patterns 
could be developed to derive semantics about the data. 

The top-down process takes each of the pattern structures 
to locate and to match similar patterns composed of a single 
or a plural set of constructive patterns from the other dataset. 
The matches of a few well distributed, distinct, and robust 
patterns could shed light on how the two datasets are shifted 
and rotated. The information could be further used for 
constraining proximity searches for matching of smaller or 
weakly-determined shapes. On the other hand, if the number 
of mismatches among the pattern structures is high, the 
matching process could report a strong dissimilarity between 
the two datasets. After the process of matching structures is 
completed, matching individual features will be followed by 
breaking down a pair of matched structures into 
corresponding feature pairs. In the break-down process, a 
method of gauging “affiliation” between features using 
metric and topological properties will be applied. 

 

III. IDENTIFYING STRUCTURES IN A DATASET 

Two kinds of structures can be identified in a dataset 
alone without referring to an overlapping or context layer. 
The first kind, termed atomic patterns, is formed by a single 
polyline geometry of a feature. The second, termed 
composite patterns, consists of a series of polyline 
geometries of two or more features which themselves may be 
of atomic patterns. Once identified, all these patterns and 
supporting polylines can be organized with a dynamic 
hierarchical structure for easy manipulation. 

A. Atomic Patterns 

Atomic patterns are captured when shapes of a linear 
feature class are read in and cached. No searches are 
involved in this stage. Depending on the nature and purpose 
of the feature class, there are unlimited ways that a linear 
feature can be shaped. It is impossible to design all 
stereotypes to fit all features in an ordinary feature class. 
Nevertheless, certain shapes stand out to observers’ eyes; 
others don’t. It is possible to devise well-structured scalable 
stereotypes to filter and describe them using a few 
parameters. The research undertaken at Environmental 
Systems Research Institute (Esri) has focused on developing 
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an increasing set of filters to catch Circular arcs, L-, Spoon-, 
Door-, U-, Sine-, Z-, Stairs-, Straddle-, and Straight-shapes, 
etc. All other polyline features not caught by any of these 
stereotypes fall into the Unknown-shapes. The figures in 
Figure 2 illustrate the stereotypes that are presently modeled. 

The analytical model of the stereotype for an L-shape, for 
example, is composed of two nearly straight sections 
connected by a sharp turning point. For Circular arcs, all 
segments should have their lengths close to an average 
length and all consecutive turning angles have a same sign 
and a near average magnitude. A Z-shape stereotype features 
two consecutive near-90

o
 turning angles in opposite signs, 

and all polyline sections are near straight. If consecutive 
near-90

o
 turning angles with alternating signs reach a count 

larger than 4, a Stairs-shape is formed. 

Figure 2.  Stereotypes filtering atomic patterns. 

Note that real world data of seemingly stereotypic shapes 
may not all demonstrate expected regularity, stereotype 
filters need to be able to detect and handle insignificant 
turbulences in a series of vertices. Techniques such as 
polyline generalization and statistical deviations can be 
employed to screen and remove abnormal vertices. 
Maintaining a robust set of low level pattern filters to hand 
real data is key to the pattern based feature match method, as 
the filters will be repeatedly employed in various stages of 
processing, including to detect non-atomic shapes. 

The atomic patterns illustrated in Figure 2 are common 
shapes that can be observed in most linear geospatial datasets 
representing urban structures. The set of atomic patterns 
reflects the maturity of the system in catching geometric 
shapes using analytic models. New and more complicated 
patterns would be added as the system evolves. 

B. Composite Patterns 

Composite patterns can be formed by a number of 
connected polylines, when together they present some 
distinct figures. In addition to the shapes shown in Figure 2, 

Circles, Carriageways, Cul-de-sacs, and Straight can be 
assembled from atomic patterns, as shown in Figure 3.  

Figure 3.  Composite patterns. 

A composite Circular arc, for example, can be traced out 
by looking for consecutive atomic Circular arcs that have a 
similar curvature and radius. A composite Circle is formed 
when a Circular arc is closed, else the tracing stops when a 
currently probed shape does not have similar parameters. A 
Cul-de-sac can be formed by tracing from both extremes of a 
Circular arc for a pair of near parallel lines (type1) or a pair 
of curvature reversed arcs (type2). A Carriageway pattern, 
generally, involves 4 polylines and is characterized by cross 
sections joined at a common intersection from which two 
pairs of near parallel polyline sections are split. Presently, 
only the above 5 composite structures are assembled in a 
dataset without referencing structures in a counterpart 
dataset. Other composite structures will be further formed by 
reference during the matching process, to be discussed in 
matching structures. 

Forming a composite pattern involves searches at the 
extending extreme nodes of the current path. It also requires 
decisions whether a testing atomic shape could be accepted 
and added into the path. Node topology, path continuity, and 
pattern compatibility are the factors in the decisions. 

C. Pattern Graph 

A pattern-path-node graph structure is created to collect 
and operate on the identified patterns, their associative paths, 
and their geometries, as shown in Figure 4.  

Figure 4.  Pattern-path-node graph. 

The Geometries are polylines imported from ArcGIS® 
feature classes, identified by Object ID. Excessive vertices, 
either duplicated or with distances smaller than a resolution 
tolerance, are removed through a simplification process. 
Multipart polylines are consecutively connected as a single 
shape. Associated with each of the Geometries is a structure 
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holding computed properties to describe the characteristics 
of a single polyline shape, including the ID of an atomic 
pattern type. The Nodes are identified as extreme vertices of 
geometry objects. Associated with each node are IDs of 
incident Geometries. A path in Paths contains a series of 
polylines identified by feature IDs that are connected to form 
a composite structure. A similar data structure to atomic 
patterns is used to hold characteristic properties of a path. 
The Patterns is a collection of Paths and associated Nodes 
that together describe a distinctive structure within a dataset. 
A pattern object contains a list of main paths that are central 
to the structure and lists of subordinate paths and nodes that 
are related to the main paths. 

IV. MATCHING STRUCTURES 

Prior to matching, an inventory of discovered patterns in 
each graph is established. Furthermore, an indexing of linear 
features from both graphs is created to facilitate proximity 
searches. The inventory is used for matching patterns which 
are listed by pattern types and spatially registered in a coarse 
grid. The indexing structure is detailed to line segments for 
refined searches after searches in inventory are firstly 
attempted. It is convenient to combine segments from both 
graphs into one indexing structure to pick best matches 
where multiple candidates are available.  

An order of importance will be determined for structure 
matching, which dictates which pattern type is to be 
specifically matched first. Our experience reveals that it 
should proceed from the most complicated to relatively 
simple structures. This is because simple structures may be 
part of a larger one. Straight lines will be matched last, just 
before matching Unknown-shape structures. 

For clarity, the first and second datasets involved in 
matching are named source and target, respectively. The 
matching process takes a pattern type from source and 
searches for a counterpart in the target inventory with the 
closest characteristic values for each of its members. If such 
a counterpart is found, a match is made. Otherwise, the 
process will perform proximity searches to identify 
piecewise shapes from target to fit the larger shape 
referenced in source. A successful fit will add the composed 
large structure and modify hierarchical relationships in the 
target graph. After all known structures in source are 
exhausted, the process should be repeated for a list of 
unmatched known shapes from target to match a counterpart 
from source. It is necessary to repeat matches initiated from 
either graph, as a large atomic structure existing in one graph 
may not exist in the other. The reverse process ensures that 
large known patterns be processed first prior to matching 
unknown shapes. At the end, structures of both graphs will 
either find a match or be declared not matched. 

Matched pairs may not be exactly of same patterns, but 
they must be compatible. For example, L- and Spoon-shape 
patterns are compatible, so are Door- and U-patterns. A 
straddle may be matched with one of the following 
compatible shape combinations: a straddle; two spoons; one 
spoon and one straight; one circular and two straight shapes. 

The diagram in Figure 5 illustrates the matching of an 
atomic straddle shape from the red graph to a number of 

piecewise polylines in the black graph. The first attempt of 
finding an atomic straddle counterpart from the black graph 
is failed. The characteristic sections of the red straddle will 
be identified, which are a circular arc in the middle part and 
two near straight sections. Proximity searches then start from 
the circular section. If a similar circular arc or a spoon shape 
is returned from the black graph, the rest of the parts will be 
traced from it. In the example, the search will first find 
feature 17, which has the closest curvature parameters to the 
middle section of the red feature 3301. Straight features 12 
and 18 are then traced out from 17. Pieced together, the 
composite straddle in black has properties most similar to 
that of 3301 in red. A match is done with the red atomic and 
the black composite straddles. 

 

Figure 5.  Matching a straddle. 

While composing structures during a match, gaps can 
sometimes exist in one of the graphs, as illustrated in Figure 
6. In the example, black circular arcs {1587, 1606, 1608, 
1592} form a composite circular path prior to matching. 
When taking the path to match a counterpart in red graph, 
two circular paths, {1833} and {1857, 1840} are found, 
which have similar circular parameters to that of the black. 
The two red paths together will form a matched composite 
path, with a gap in between. 

 

Figure 6.  Matching a circular path with gap. 

There is also a need to split a previously generated path. 
This is especially true for large straight paths. Figure 7 
illustrates such a case. In the diagram, the black graph shows 
a straight path composed of shapes {4, 5, 6} and two other 
straight paths {12} and {9}. The red graph has one red L-
shape {64}, and two straight paths {33} and {48}. During 
the matching process, the red L-shape is matched with {12} 
and possibly the longer straight path in black. It is necessary 
to break the long straight into two short ones {4} and {5, 6}. 
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After breaking, the L-shape is matched with {4, 12} and {5, 
6} is added into the black graph structure for further match. 

Figure 7.  Ilustration of splitting a path. 

To match unknown shapes, more comprehensive 
proximity computations, like buffering, will be needed, since 
little is known about their characteristics. For each unknown 
shape, a search for a set of candidates can be constrained by 
a given or derived search distance, whichever is smaller. The 
derived search distance can be computed from the result of 
uniquely matching known structures. 

V. MATCHING FEATURES 

A final step with the matched structures is to break them 
down to feature by feature match. Due to changes in real 
world and differences in data capturing, features from both 
graphs will not all have one-to-one correspondences. The 
following cardinality relationships exist in linear features, as 
shown in Figure 8. The m:n relationship occurs when it 
would be ambiguous to break the set of features further 
down to simpler correspondences. The 1:0 and 0:1 
relationships are included to indicate no corresponding 
features could be matched to satisfy similarity measures.  

Figure 8.  Cardinalities between matched features. 

In addition to the length ratio parameter associated with 
paths, two constraints are considered while matching features 
from matched structures. The first is topological when other 
paths incident to nodes and separated by adjacent angles will 
be analyzed and compared. If there is insufficient topological 
information, the measure of “orthogonally projected 
overlapping” between elements of two paths will be applied.   

Figure 9 illustrates the process that respects topological 
measures. Two paths of, source (red) {6, 7, 8} and target 
(black) {4, 5, 6, 7}, are matched. Features from source will 
be taken, one at a time, to match features in target. In the 
diagram, red feature identified as 6 is first matched with 
black 4. Two determinations will be applied to append black 
5 to the match list after 4. First, the length ratio of black 4 is 
still smaller than that of red 6; second, the extreme node of 
black 4 is a pseudo node. Adding black 5 to 4 satisfies the 
length ratio better, furthermore, its front end fits better 

topologically to the front end of red 6. Other features are 
matched by applying similar reasoning process using local 
neighborhood, and considering shape characteristics of 
incident paths, if necessary. 

Figure 9.  Example of feature matching process. 

An orthogonally projected overlapping length is obtained 
by projecting the extremes of polyline A onto polyline B. If a 
projection is footed on the extension from an extreme of B, 
the extreme vertex will be projected back onto polyline A. 
The projected overlapping length is then calculated with the 
two points enclosing the orthogonally overlapped section. 
Figure 10 shows five cases that overlapping lengths are 
enclosed.  

Figure 10.  An example of obtaining orthogonally projected length. 

The method described in this paper requires that for a 
pair of features to be considered a match, the projected 
overlapping length must not be less than half length of the 
shorter polyline. Case e in Figure 10, for example, does not 
satisfy the requirement. Using this measure, gaps in the path 
could correspond to a feature with no match. An example of 
this case is shown in Figure 6 where the black feature 1606 
does not have a sufficient projected overlap with either red 
1833 or 1857. It will have a 1:0 match.  

VI. APPLICATION AND RESULTS 

The method presented in this paper has been designed as 
a core component to support three geoprocessing tools for 
ArcGIS, the commercial GIS software produced and 
marketed by Esri Inc. They are Detect Feature Changes, 
Generate Rubbersheet Links, and Transfer Attributes, all of 
which rely on matching features of two datasets from 
separate sources covering the same geographic areas. 

One of the challenges in developing feature matching 
techniques, and application tools based on them, is to find 
effective ways to assess results produced by these tools by 
feeding user data of various complexities. The evaluation is 
necessary for users to gain confidence on the levels of 
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accuracy that could be expected from using these tools. 
Another challenge is to find practical workflows to complete 
conflation tasks with high levels of automation. 

Applying the above mentioned conflation tools to real 
world data, Lee, Yang, and Ahmed [12] have devised 
workflows to perform data integration tasks such as spatial 
adjustment, transferring attributes, and generating reports on 
feature changes by detecting spatial and attribute 
discrepancies. Furthermore, a set of script tools, written with 
Python or built by chaining other tools in ArcGIS, have been 
developed to automatically verify and evaluate outputs 
produced by the conflation tools. Their assessment shows an 
achievement of above 90% of feature matching and 
conflation accuracy in executing the workflows on top of 
multiple user datasets demonstrating excellent, ordinary, and 
poor similarities. The successful rates are compatible to 
those claimed in published papers [4], [6]. Due to 
unavailability of software developed based on the other 
published feature matching methods, a cross-comparison 
under similar conditions on performance, ease of use, and 
robustness, etc., cannot be reported in this paper. 

VII. CONCLUSION AND FUTURE WORK 

A method of matching linear features overlapping the 
same geographic area has been described. By catching 
atomic and composite feature patterns to construct a pattern 
graph, better understanding of a dataset is obtained. Patterns 
of a dataset are recognized through a set of stereotypes as 
low level constructs, which can be applied to compose large 
pattern structures within a dataset and with reference to the 
other dataset during the matching process. Based on the 
graphs built on source and target data, matching features 
starts with matching structures, in which locating of paired 
structures becomes less dependent on coordinates, rotation, 
and shift, but more on referencing local neighborhood 
structures. Processes of matching individual features are 
explained. Consideration factors, determining how matched 
structures are broken down into matched features, are also 
elaborated. The method is implemented as a core component 
which is used for producing conflation geoprocessing tools 
in ArcGIS. Testing and application of the tools in practical 
workflows have demonstrated promising results. 

While the research reported in this paper has established 
a framework in developing feature matching based tools, 
more work is needed to complete the missing parts of the 
methodology. First, a full analysis on the algorithms in 
accomplishing matching features is necessary in terms of 
time and space complexity, from which comparisons to other 
methods could be made. Evidence of practical uses, and 
results from applying the conflation tools and workflows in 
solving real world problems, should be included as an 
integral part of the method. Meanwhile, it is anticipated that 
the method and its applications will continue to evolve on the 
following fronts: 

 Maintaining existing pattern recognition stereotypes 
so that they become more versatile and robust; 

 Developing new patterns to reduce the number of 
unknown-shape elements in graphs; 

 Developing reasoning on top of identified 
geometric patterns to enrich semantic meanings, 
hence the metadata of a dataset; 

 Considering matching patterns coming from 
datasets with varying generalization scales; and 

 Researching on geospatial matching and conflation 
between vector datasets and raster images. 
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