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Abstract— This paper investigates the potential of a cellular 
automata (CA) model based on logistic regression (logit) and 
Markov Chain Monte Carlo (MCMC) to simulate the 
dynamics of urban growth. The model assesses urbanization 
likelihood based on (i) a set of urban development driving 
forces (calibrated based on logit) and (ii) the land-use of 
neighboring cells (calibrated based on MCMC). An innovative 
feature of this CA model is the incorporation of MCMC to 
automatically calibrate the CA neighborhood transition rules. 
The MCMC based CA model is applied to Wallonia region 
(Belgium) to simulate urban growth from 1990 to 2000 using 
Corine Land Cover data (CLC). The outcome of logit model is 
evaluated by the relative operating characteristic (ROC). The 
simulated map of 2000 is then validated against 2000 actual 
map based on cell-to-cell location agreement. The model 
outcomes are realistic and relatively accurate confirming the 
effectiveness of the proposed MCMC-CA approach. 

Keywords- cellular automata; Markov chain Monte Carlo; 
logistic regression. 

I.  INTRODUCTION 

Among the various urbanization modelling approaches, 
the cellular automata approach has gained popularity for 
urban modelling. Since the pioneering work of Tobler [1], 
there has been considerable interest in modifying standard 
CA models to make them more suitable for urban modelling 
[2]–[4]. Key challenges in CA are calibrating the transition 
rules. Early methods for CA calibration were based on trial 
and error [5] and/or a visual test, to determine the model’s 
parameters. Recently, a variety of automated methods based 
on statistics [6], machine learning [7], artificial neural 
networks [8] and optimization algorithms [9] have begun to 
be widely employed. This paper contributes to such 
automated calibration methods by using MCMC to calibrate 
CA neighborhood transition rules. 

In this paper, CA model is employed to simulate urban 
growth based on urbanization probability of a cell according 
to a number of driving forces of urban growth and state of 
the cell and its neighbors. Logit method is used to calibrate 
the driving forces parameters whereas MCMC is used to 
calibrate neighborhood rules.  

This paper is structured as follows. Section II presents 
the study area. Section III describes the CA model. Section 
IV gives and discusses the results. Finally, Section V 
presents our conclusions. 

II. STUDY AREA 

The study area is located in southern Belgium (Wallonia 
region). It accounts for 55% of the territory of Belgium with 
a total area of 16,844 km². The main metropolitan areas are 
Charleroi, Liège, Mons, and Namur (Fig. 1). They are all 
characterized by a historical city-center, around which the 
urban development expanded.  

 
Figure 1.  Study area. 

The total population in 2010 was 3,498,384 inhabitants 
that makes up a third of Belgium population. 

III. METHODS 

The initial state of the simulation starts from land-use in 
1990 and proceeds to simulate an urban growth of 2000. The 
analysis of land-use change is based on the CLC with 
resolution of 100×100m for the years 1990 and 2000. The 44 
classes of CLC datasets have been reclassified into 7 classes 
(urban lands, arable lands, grasslands, forests, wetlands, 
water bodies and others). The quantity of change was 
constrained to the actual quantity of new urban cells in 1990-
2000 divided evenly by 10 (the number of years). 

The quantity of change is spatially allocated based on 
two decision rules. The first rule set concerns the main urban 
growth driving forces, using logit. The second decision rule 
deals with the neighborhood interactions, using MCMC. The 
input dependent variable (Y) for logit model is a binary map 
of the actual non-urban/urban changes within 1990-2000. 
The independent variables (Xn) are distance to roads, 
distance to major cities, slope, access to jobs, and zoning. All 
Xn do not take into account neighboring regions or states. 
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All Xn are standardized and show a very low degree of 
multicollinearity (variance inflation factors ranging from 
1.01 to 2.76). Logit is calibrated using a random sample of 
50,000 cells in order to minimize spatial autocorrelation. 
MCMC is used to calibrate neighborhood interaction which 
is arranged in five square distances from the cell. We use the 
most popular MCMC formulation based on the Metropolis-
Hastings algorithm that yields a sequence of samples whose 
stationary distribution eventually converges to a specified 
probability density function. The objective function of the 
MCMC is the maximization of cell-to-cell (CTC) location 
agreement. The sample with higher score is sampled more 
than the sample with lower score. In this manner, the 
algorithm smartly samples from a parameter space, and the 
global optimal solution can be obtained in a relatively small 
number of runs.  

IV. RESULTS AND DISCUSSIONS 

Table I lists logit calibration of driving forces. These 
coefficients reveal that the location of a new urban 
development is strongly correlated with the zoning status. 
Distances to different road classes and cities also play an 
important role in explaining urban development at a specific 
location but far less than the zoning status. 

TABLE I.  COEFFICIENT VALUES OF THE DRIVING FACTORS.  

Driving factor Coefficient 

Intercept (constant) -0.9816 

Slope 0.0002 

Dist to cities -0.1982 

Dist to highway -0.1962 

Dist to major roads -0.2292 

Dist to secondry roads -0.3185 

Dist to local roads -0.5677 

Access to jobs  0.0004 

Zoning 2.6809 

The weights calibrated by MCMC that defines the 
neighborhood interactions are illustrated in Fig. 2. The 
calibration shows that the impact of existing urban lands on 
new urban development is extremely significant, whereas 
other land-uses have far less effect than urban land in the 
immediate neighborhood of the cell. The neighborhood 
effect is strongest in the immediate neighborhood of the cell, 
decreases and becomes neutral at a distance of around 5 
cells.  

The ROC value of the probability map, generated by 
logit, is 0.78. The cell-to-cell location agreement is 32.75%.  

V. CONCLUSION 

This paper presents a CA model based on MCMC. The 
MCMC allows to automate the calibration of the model 
without losing flexibility and analysis capability. The model 

is calibrated based on the observed urban growth in 1990–
2000 and used to simulate 2010 urban growth in Wallonia.  

 
Figure 2.  Weighting parameters (Y axis) that represent the interaction 

between an urban cell and other land-uses 

The cell-to-cell location agreement, which measures for 
the new urban cells in the 1990-2000, is similar to the 
numbers reported for the best performing CA urban models. 
The results confirm that MCMC is a method with great 
potential for urban CA calibration. 
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