
QoS-Aware Component for Cloud Computing

Inès Ayadi, Nöemie Simoni

Engineering School Telecom ParisTech

Paris, France

(ines.ayadi; noemie.simoni)@telecom-paristech.fr

Gladys Diaz

L2TI, Université Paris 13, Sorbonne Paris Cité

Villetaneuse, France

gladys.diaz@univ-paris13.fr

Abstract—Providing dedicated cloud services that ensure user's

QoS requirements is a big challenge in cloud computing.

Currently, cloud services are provisioned according to

resources availability without ensuring the expected

performances. The cloud provider should happen to evolve its

ecosystem in order to meet QoS-awareness requirements of

each cloud component. In this paper, we consider two

important points which reflect the complexity introduced by

the Cloud management: QoS-aware and self-management

aspects. QoS-aware aspect involves the capacity of a service to

be aware of its behavior. Self-management implies the fact that

the service is able to react itself with its environment. In this

paper we propose to integrate a QoS agent in each cloud

component in order to control and inform the system about its

current behavior.

Keywords-Cloud computing; QoS-aware; Autonomic

components; self management; Fractal ADL

I. INTRODUCTION

Cloud computing is a new trend that enables resources
(Infrastructure, Platform or Software) to be exposed as
services. These resources are offered using a pay-as-you-use
pricing plan. The final service offered to the user consists in
a set of components, which may be offered by different
providers. To satisfy the request of customer, the final
service must be provided in accordance with the required
level of QoS (Quality of Service). QoS management must be
considered to provide the attended end-to-end (E2E) QoS
level. In current solutions, a degradation of a component can
produce the degradation of the global service. Thus, one of
the major challenges in the current cloud solutions is to
provide the required services according to the QoS level
expected by the user.

Cloud users expect the system to guarantee the required
QoS services regardless of any unforeseeable events.
Consumers needs vary unpredictably depending on their
types (developer, service provider, end user) and their
strategies (QoS requirement, cost effective, optimization,
etc.). These unstable demands can result in SLA (Service
Level Agreement) violation due to the QoS degradation of
the cloud services. While cloud providers can ensure the
elasticity, the high availability and the reliability of services,
the QoS expectations of users are not achieved. QoS is a very
important aspect that must be considered in the different
phases of life-cycle of Cloud solutions. Thus, the QoS
aspects should be considered from the design phase of cloud
components in order to achieve the expected QoS
requirements. Consequently, we think that QoS-aware is a
good approach to be implemented in future dynamic cloud

environments. The QoS-aware approach implies the
knowledge of significant QoS information related to each
life-cycle phase. In fact, Cloud environments require a
dynamic configuration and management of services and
resources at run time in order to ensure the expected QoS.
This dynamicity and adaptability is only possible if the
system is able to use the pertinent QoS information in order
to predict the suitable consummation of resources needed by
the applications.

Complementarily, self-management approach must be
introduced to guarantee the E2E behavior of the global
service. The self-management implies the ability of each
service component to manage itself its behavior.

We propose in this paper the modeling of both aspects:
the QoS-awareness and the autonomic management in the
cloud. We suggest the modeling a QoS self-managed cloud
component using the Fractal ADL. Our work is part of the
OpenCloudware project [2].

This paper is organized as follows. Motivations are
presented in Section II. The related work for QoS-aware and
autonomic components aspects in cloud is described in
Section III. Section IV gives a brief review about our QoS
generic model. Our propositions for a QoS-aware component
in cloud are presented in Section V. We give the modeling
description of our proposed component and a use case in
Section VI. Finally, in conclusion, we exhibit the advantages
of our approach in Cloud Computing and the future works.

II. MOTIVATIONS

The present work is a continuation of the previous
research studies performed by the UBIS project [5]. This
project focuses on the user-centric approach and it aims at
providing personalized services anytime, anywhere and
anyhow. The goal of this project has been to ensure E2E
QoS requirements of the services demanded by the end-user.
For this purpose, the QoS management is handled within
different layers: service, network and equipment. The
resources in different layers are conceived as a set of service
elements (building blocks) in order to have a fine grained
QoS description. A generic QoS model [1] is proposed for
define the service elements behavior. We suggest that this
model could be used to deal with cloud computing issues
that are related to self-management and QoS-awareness.
Consequently, we apply our generic QoS model to design
cloud components by considering the expected QoS
requirements in the whole life-cycle. In fact, in our point of
view, the cloud environment is described as a set of
distributed components. A Cloud component is an
independent element that provides a well known

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

http://perso.telecom-paristech.fr/~simoni/

functionality and a QoS level. This notion of component is
generic and can be applied at different cloud levels. An IaaS
(Infrastructure as a Service) component can be for example
the CPU (MIPS), the VM, the network switch, etc. In the
PaaS (Platform as a Service) level, a component can be an
application container, a routing stack (number of packet sent,
delay of treatment of each packet), etc. The SaaS (Software
as a Service) component is the final service (processing time,
requests number, etc.) such as a financial service, a Web
service, etc. We also consider that management, control,
monitoring and security functions are conceived as cloud
components. This fine-grained modeling of components
allows composing applications by considering E2E QoS
requirements.

To more explain this, consider a user that demands a 3-
tier application from the cloud provider. This application is
composed by an Apache Web server, a Jonas application
server and a MySql database server. By applying our model
in Jonas for example, we consider this tier as a composition
of several Cloud components including: CPU, memory, VM
(where the Jonas server is hosted), the software of the server,
the network binding, etc. Each component is described by its
behavior. This allows the deployment of the Jonas software
in the adequate virtual environment that is in turn be hosted
in a suitable physical environment. In order to satisfy the
E2E QoS requirements (SLA), the cloud provider should
deploy the 3-tier application by composing adequate cloud
components. For example, the Jonas server should be put up
in a large VM instance (in terms of CPU and memory) in
order to process requests in less than 0.1s. Consequently, the
self-acknowledgement of the component’s behavior allows
the mapping of each virtual application (Vapp) in the
suitable environment.

Furthermore, our model deals with the unified control of
QoS aspects, and provides an answer to guarantee the
required QoS services regardless of any unforeseeable
events. To do this, a QoS-agent will be integrated into cloud
components in order to perform dynamic adaptation
according to QoS requirements.

III. RELATED WORK

Providing a QoS-aware solution requires autonomic
capabilities in the cloud components. In this section, we
review some approaches treating the two aspects: QoS-aware
and self-management components in cloud computing.

A. QoS-Aware cloud

S. Ferretti et al. [6] proposes a QoS-aware cloud
architecture that aims to satisfy QoS requirements of the
application. The principal function of this architecture is the
efficient resources management of the virtual execution
environment associated to the application. This architecture
includes features that eliminate resources over-provisioning
by changing and configuring the amount of resources
dynamically. But how can describe the behavior of an
application?

R. Nathuji et al. [7] propose “Q-Cloud”, a QoS-aware
control framework that manages resources allocation in order
to alleviate consolidated workload interference problem. The

principal aim of this framework is to dynamically allocate
resources of co-hosting applications based on QoS
requirements. Q-States (QoS states) notion is proposed in
order to assign additional QoS levels to the application. The
goal of these states is to offer additional flexibility to the user
in order to easily improve his application-specific QoS level.
But QoS levels generate different behaviors, then, can we
talk about the same service?

That is why, QoS monitoring feature presented in [9]
according to “as a service” paradigm is interesting. This
facility ensures a continuous control of QoS attributes in
order to avoid SLA violation.

H. Nguyen Van et al. [8] attempt to manage autonomic
virtual resources for hosting cloud services. It proposes a
two-level architecture that separates application’s QoS
specifications from the allocation and provision of resources.
An application-specific local decision module is proposed
within each application in order to analyze the QoS
requirements of the hosted service. This module determines a
high-level performance goal in order to make the best
decision in allocation and provision phases.

While the cited solutions aim to satisfy QoS requirements
of applications, the management is still resource-based by
adapting resource reservation to QoS requirements. The
QoS-aware aspects are not addressed. A QoS-aware
component should provide the same expected service and the
same intended QoS level. In others words, Cloud Services
must maintain the same behavior even if the environment
conditions are changed. Thus, we propose, through this
paper, a QoS-aware Cloud component that can itself control
its behavior.

B. Self-managed components in cloud

An autonomic cloud components should intrinsically
integrates the dynamic adaptation and self-management
capabilities in order to meet the non-functional requirements.
We present in this section a review of some references of this
context.

F. Zambonelli et al. [10] propose the management of
service components that are able to adapt dynamically their
behavior according to the changes perceived in their
environment. The research issues include the identification
mechanisms, to enable components to self-express the most
suitable adaptation scheme and acquiring the proper degree
of self-awareness to enable putting in action self-adaptation
and self-expression schemes. The rule execution model
provides mechanisms to dynamically detect and handle rule
conflicts for both, behavior and interaction rules.

H. Liu [11] et al. propose an “Accord framework” that
enables the development of autonomic elements and their
autonomic composition. They provide rules and mechanisms
for reconciliation among manager instances, which is
required to ensure consistent adaptations. For example, in
parallel Single Component Multiple Data (SCMD) each
processing node may independently propose different and
possible conflicting adaptation behaviors based on its local
state and execution context. Several others research papers
have been related on the self-management of cloud services
such as [12], [13], and [14]. They implement the loop MAPE

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

principles (Monitoring, Analysis, Planning, and Execution)
in order to maintain QoS requirements and reduce the
probability of SLA violations.

These approaches suggest some paradigms to create
autonomic cloud components, but they still modeled
according to the monolithic approach. However, cloud
computing system requires a new approach where Cloud
Services are conceived as a set of independent building
blocks. Moreover, these proposals focus on self-management
treated by the implementation of loop MAPE principles. But,
in an environment as heterogeneous as the cloud, these
solutions can be difficult to implement. Is that self-
management would not be a more appropriate solution?

 In our approach, we consider the self-management of
each service component based on QoS control. The QoS
control helps to inform and prevent the degradation of
component's behavior. It provides a new approach to
preserve and guarantee the services of the whole System. To
do this, we propose to integrate a QoS agent into the cloud
component in order to allow it to manage his behavior. In
fact, the integration of a QoS agent in each component
allows implementing the self-management capabilities, since
the agent is able to indicate whether or not the component
performs its work in the normal conditions. For example, if
the current values (at runtime) of a QoS criterion is exceeded
over its thresholds values, the QoS-agent sends an "out-
contract" to indicate that there is a problem and that it must
be replaced by another ubiquitous component. To complete
the self-management mechanism, we assume the existence of
ubiquitous components in the Cloud environment. These
ubiquitous components provide the same service and have
the same QoS level.

IV. QOS GENERIC MODEL OVERVIEW

The principal objective of our generic QoS model is to
design components by taking into account not only the
processing aspects but also the management ones. For this
purpose, an informational model is proposed to manage the
non-functional aspects of each resource (see Fig. 1). This
model is generic and unified. It applies to all layers
(equipment, network, service). Resources in each layer are
conceived as a set of service elements. The informational
model describes the QoS criteria of each service element.

Our QoS model introduces the definition of autonomic
components throughout a QoS agent. The QoS agent
manages and monitors the component behavior by using
QoS criteria types (see Table I).

TABLE I. QOS CRITERIA TYPES

QoS Criteria

Availability Capacity Delay Reliability

D
es

cr
ip

ti
o
n

is the portion of

time that a
service

component

makes the
requested

service without
failure

is the

processing

capacity of
service

component

during a
unit of time

 is the total
time taken

by a service

component
to fulfill its

functions

is the compliance

rate of the
rendered service

compared to the

demanded one

Resources of each component must be allocated
dynamically in accordance with their current QoS. The
management of the sharing service's resources and
capabilities is performed through a queue integrated in each
component. The acceptance of a new request in the queue is
done according to the current values of QoS criteria [1]. The
QoS criteria are evaluated through three types of measurable
values: conception, current and thresholds values [3] (see
Table II).

TABLE II. QOS CRITERIA VALUES

Value types of QoS criteria

Conception Threshold Current

D
es

cr
ip

ti
o
n

is the

maximum

capacity of

the service
component

processing

is the limits

values not to be

exceeded by a
service

component in

order to ensure a
normal behavio

is the real current value of a QoS

criteria in instant t. It is used to

supervise the behaviour of the

service component. This value

would be compared with the
threshold values to control the

non-violation of the service

capacities

The Fig. 1 shows our information QoS model that defines

all these concepts. The first level represents the QoS criteria
(availability, reliability, delay, and capacity) of each
component. The second one shows the measured values of
each criterion. Finally, the third level depicts necessary
parameters to do measurement.

Our QoS model is based on four criteria: Availability,
Delay, Capacity and Reliability. We briefly justify the choice
of the four criteria. Our logic is how evaluate the behaviour
of a given environment without being linked to its
dependencies such as location, time, network type, the
delivered service, the terminal, etc. Therefore, our objective
is to determine QoS criteria that achieve the End-to-End
transparency. We expose the transparency in four
dimensions:

 Temporal transparency: a given information can be
delivered anytime. This transparency dimension is
associated with the availability criteria in order to
evaluate how long the system (middleware, network,
etc.) is in operation during the transfer.

 Distance transparency: a given information can be
delivered regardless of the distance between the end-
nodes. A delay criterion is associated to this
dimension in order to evaluate the processing and
transfer time.

 Spatial transparency: a given information can be
delivered regardless of its volume. The Capacity
criterion is associated to this dimension in order to
evaluate the system capabilities to treat any volume
of information.

 Semantic transparency: a given information can be
delivered without alteration of its content. The
reliability criterion is associated to this dimension in
order to evaluate how the system can treat correctly
the information.

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Figure 1. Information QoS model

Our QoS generic model is associated to multiple profiles
[4] for managing QoS measured parameters, which are
solicited during the different phases (design, deployment,
operational) of the life-cycle (see Table III).

TABLE III. PROFILES IN LIFE-CYCLE

Life-cycle phases

Design Deployment Operational

Profiles Resource profile
Resource Usage

Profile
Real Time

Profile

Values

of QoS

criteria

Conception values Threshold values Current values

V. QOS-AWARE COMPONENT PROPOSITION

Our contribution consists of adding a new feature to the
Cloud Service Component (CSC) in order to cope with the
QoS management throughout the life-cycle. Our extension of
Fractal component is an integration of a QoS component that
represents the QoS agent presented in Sections II and IV.
This "QoSComponent" allows managing the cloud
component's behavior and enables to send notifications in the
case of SLA violation or QoS degradation. We describe in
this section our proposed QoS-Aware component.

Figure 2. QoS-aware Cloud Service Component with Fractal

A. QoS-aware Component Model Description

Our proposition consists in an extension of the Fractal
component by adding non-functional features that manage
dynamically the offered QoS, like is shown in Fig. 2. The
goal is to add a QoSComponent within each Fractal
component. A new Fractal control interface (QoSC) is
proposed to monitor and manage the QoS criteria.

B. Characteristics of of the CSC

The CSC are characterized by the following proprieties:

 Mutualisation: the CSC is a multi-tenant service
element. Several users can share it in the same time.
A CSC is stateless in order to offer the same service
to all simultaneous demands.

 QoS Self-management: a CSC can self-control and
self-monitor his behavior. The QoSComponent is
implemented in each CSC in order to monitor the
QoS criteria and to generate accurate notifications in
the case of QoS degradation.

 Exposability: a CSC has a business value. Users can
custom their services thanks to a portal catalogue.

C. Functionnals aspect of the CSC

The functional aspects represent the implementation of
the offered service, including the content and the
management controllers. The proposed CSC uses the
following native Fractal controllers:

 Attribute Controller (AC): it manages (get, set, and
update) the configuration attributes of the
component. In the reconfiguration phase, this
controller can modify the values of these attributes.

 Binding Controller (BC): it manages
interconnections between client and server
interfaces. Binding channels can be deactivated or
activated depending on Fractal component life-cycle.

 Content Controller (CC): this controller manages the
hierarchic architecture of the Fractal component. It
adds, removes or substitutes Fractal sub-
components.

 Life-cycle controller (LC): it allows the start-up and
the shutdown of a Fractal component. As the QoS
management is performed at many phases of the life-
cycle, we propose new functionalities to this
controller that will be described in the section IV.4.

 Naming controller (NC): it manages the Fractal
component identification.

To ensure the QoS self-management of the cloud
component, we propose a new QoS Controller (QoSC). The
QoSC controller manages the CSC's behavior. This
controller allows sending QoS notifications that indicate if
the component maintains its behavior. These notifications are
essential to take reactive decisions in the case of failures or
QoS degradation.

D. The QoS management in the Life-cycle

 The native life-cycle controller of a Fractal component
allows managing the runtime phase. It handles the start-up
and the shutdown states. However, the autonomic

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

management of the component's behavior requires more
operations in others life-cycle phases. In fact, the QoS
management is not only performed in runtime phase but also
in the design and the deployment phases.

The life-cycle controller is needed to check which is the
current life-cycle stage of the component and what are the
constraints associated with each phase. For this purpose, we
propose new functionalities of the life-cycle controller in
order to maintain QoS measurements according to life-cycle
phases. We define six life-cycle phases of a cloud
component: design, development, deployment, runtime,
billing and retirement. In the present subsection, we focus on
life-cycle phases in which QoS management is performed
(design, the deployment and the runtime phases).

 Design phase: represents the modeling phase of a
cloud component. In this phase, each QoS criteria
has conception values that determine the maximal
cloud service processing capacities (e.g., server
memory, CPU cores, maximal transaction per
second, etc.). These values are static and
unchangeable during the whole life-cycle. The life-
cycle controller creates the “resource profile”
containing these values.

 Deployment phase: represents the integration stage
of a cloud service within the execution environment.
In this phase, the life-cycle controller determines
constraints of the execution environment and creates
the “resource usage profile” with the threshold
values of each criterion. These values show the
limited capacity beyond which the cloud service's
behavior becomes abnormal (e.g., the limit CPU of
the virtual machine in which the cloud service is
deployed).

 Runtime phase: represents the processing phase of a
cloud component. The “current values” of each QoS
criteria are dynamically determined throughout this
stage (e.g., free disk space, current load network,
requests number in the queue, etc.). These values are
measured and updated by the QoSComponent and
containing in the “Real-time profile”.

In this stage, the life-cycle controller manages the cloud
services states that are presented as follows:

 Unavailable: this state is equivalent to the shut-down
state performed by the native life-cycle controller.

 Available: this state indicates that the CSC is not
reserved and it is able to be used.

 Activable: in this state, the CSC is awaiting for
additional information (example: login/password) to
begin the execution.

 Activated: is equivalent to the start-up state. In this
phase, the CSC is already in use.

E. QoS Component description

In our proposition, a QoS component is integrated in
each CSC in order to allow the QoS self-management. The
QoSComponent controls the CSC's behavior throughout the
QoSC interface. The QoS component has two main
functions: cloud service control and QoS notifications.

a. Cloud service control

The QoS component controls the behavior of a cloud

service element based on QoS profiles (Section III.B). In

fact, each cloud service possesses a set of QoS profiles that

include criteria QoS values (conception, current and

threshold). The QoSComponent performs the following

functions by means of the QoSC controller.

 Update current values of the QoS criteria: the QoS

component interrogates a "Monitoring module" in order

to have current values of the QoS metrics. Then, it

evaluates and updates these values in the "real time

profile". The Monitoring module is an entity that gives

different metrics others than QoS metrics. This module

is provided as a service (MaaS: Monitoring as a

Service) and integrated in each cloud component. The

description of this module is out of the scope of the

present paper.

 QoS degradation: the QoS component has to detect

degradation behavior of the cloud service. In fact, there

are many causes that can bring to QoS degradation such

as network congestion, increasing processing time, etc.

 Processing a new request: as the cloud service element

can be shared by several users in the same time, new

users’ requests can be received. This component uses

the QoS profiles in order to make an accurate decision

about the possibility to treat a new request.

b. QoS notification (In/Out Contract)

The QoSComponent notifies permanently if the service

retains his behavior during the run-time. It sends to the

Cloud system an "In contract" message if the intended

comportment is maintained (Figure 3). The second possible

notification is an "Out contract" message. This notification

indicates that the CSC does not maintain the correct

behavior. This notification helps to prevent the occurrence

of anomalies or failures.

Figure 3. QoSComponent notifications

If the events manager receives an Out contract. One
solution may be performed is to replace the degraded CSC
component by a ubiquitous one. In fact, two CSC
components are ubiquitous if they have the same function

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

and an equivalent QoS level. Many others reactions can be
performed by the events manager. However, the
management reactions will be treated in our future work.

VI. SPECIFICATION AND USE CASE

In this Section, we describe the CSC specification with
the Document Type Definition (DTD) grammar.

A. Specification of the extended DTD

To describe distributed cloud component in accordance
with our models we need to specify new formal notions with
a DTD grammar. To do this, we use the basic DTD grammar
of the ADL fractal language. We propose an extension of
this grammar in order to depict the proposed notions such as
QoS component, QoSC controller, etc. All implementations
presented in this paper have been made by using Fractal
ADL plug-in [15] in the eclipse IDE (Integrated
Development Environment) [16]. This Section shows the
extended DTD grammar that describes the notions
corresponding to our model.

The basic DTD notions that define the native Fractal
component specification are the following:

 component: can be primitive or composite

 interface: is the point of access to the component

 binding: it allows components communication

 content: represents the content of the component

 attributes: are described by a name/value pair. They
are used to (re)configure the component

 controller: represents the membrane of a component.
As it is shown in Fig. 2, an Autonomic Cloud Service

component is essentially composed of three parts: the
interfaces, the primitive fractal component and the QoS
component. Based on the basic DTD description, we add
new notions to describe our proposed component. These
notions are the following:

 CompositeComponent: represents our proposed
component (the Cloud Service Component).

 PrimitiveComponent: represents a non-composite
Fractal component.

 QoSComponent: manages the non-functional aspects
of the cloud component (Section IV).

 interface-QoSC: is the QoS notifications controller.
The remainder of this Section describes examples of the

extended DTD grammar. We describe the Cloud Service
Component with the extended DTD grammar as follows:

<!ELEMENT CompositeComponent (PrimitiveComponent+,
QoSComponent+, NC+, BC+, AC+, LC+, CC+, interface-QoSC+)>
<!ATTLIST CompositeComponent
 name CDATA #REQUIRED >

The DTD of the QoSComponent is described through three

notions: QoSCriteria and QoSParameter. The needed

controllers of this element are: NC, BC, AC, LC. A

QoSComponent has a name and a role (client, server).

<!ELEMENT QoSComponent (QoSCriteria+, QoSParameter, NC+, BC+,
AC+, LC+)>

<!ATTLIST QoSComponent

 name CDATA #REQUIRED

 role (client | server)>

As previously mentioned, the interface-QoSC is a new
controller added to the CompositeComponent. Through this
interface the QoS component communicates with the
component to send management messages: In/Out contract.
The QoS component can have different roles (passive,
active, proactive and inter-active).

<!ELEMENT interface-QoSC (#PCDATA)>

<!ATTLIST interface-QoSC

 name CDATA #REQUIRED
 role (passive | active | proactive | inter-active)

 signature CDATA #REQUIRED >

Four QoS criteria (Availability, Delay, Capacity,
Reliability) define the type of parameters to be measured.
Our model defines three values types of these criteria:
(Conception | Threshold | Current). The DTD specification of
the QoSCriteria is as follows:

<!ELEMENT QoSCriteria (#PCDATA)>

<!ATTLIST QoSCriteria

 Criteriatype (Availability | Delay | Capacity | Reliability)
 ValueType CDATA #REQUIRED

 roleValueType (Conception | Threshold | Current)>

B. Use case description

In order to show a proof of concept of our propositions,
we describe the example indicated in Section II. The goal is
to apply our model to describe a simple distributed
application in the context of cloud computing. The use case
in Fig.4 represents a requested PaaS service defined by three
software components: Apache, Jonas and MySQL. Each
component is installed in a different VM (ApacheVM,
JonasVM and MySQLVM). These VMs are interconnected
throughout two links: AJP and JDBC (Figure 4).

RAR	
Component	

QoS-RAR	
Component	

EAR	
Component	

QoS-EAR	
Component	

QoS-Jonas	
Component	

VM	Jonas	-	1	

RAR	Component	

QoS-RAR	
Component	

EAR	Component	

QoS-EAR	
Component	

QoS-Jonas	
Component	

VM	Jonas	-	2	

QoS-DB	
Component	

VM	MySQL	
VM	APACHE	

dbinfo	

OU
T-C

on
tra
t	

aj
pi
nf
o	

dbinfo	

dbinfo	
dbinfo	

JEEinfo	

h p	
Component	

QoS-HTTP	
Component	

Load	balacer	
Component	

QoS-LB	
Component	

QoS-Apache	Component	

Figure 4. Use Case: Springoo

These components are in their turn composed of others
sub-components. The Apache Server is composed of two
sub-components: Load Balanced and HTTP Server. The JEE
applications are deployed in each Jonas component. They are

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

composed by EAR and RAR components. According to our
model each component is described by its functional and
non-functional (QoS-component) aspects. For example each
EAR component is described by the EAR component
(functional part) and the associated QoS-component (non-
functional part). The QoS component manages the behavior
of each component by controlling the QoS criteria. We also
suppose two ubiquitous Jonas components located in
different cloud environments (VM Jonas-1 and VM Jones-2).

We propose the following two scenarios to show the
QoS-awareness and self-management of the Jonas
component:

 The Jonas component receives more requests than it is

able to treat (peak load). In this case, the QoS

component notifies that the current capacity is exceeded

and sends an Out contract notification. Then, the Jonas

component rejects the request.

 If the Jonas component is not available, the QoSC

interface sends an Out contract. To deal with this, a

ubiquitous Jonas component (VM Jones-2) is demanded

to replace the failed one. We do not describe in this

paper the mechanism how to choose the new

component, it is out of the scope of this paper.

VII. CONCLUSION AND FUTURE WORK

Cloud computing is a new paradigm that provides on-
demand services over the Internet. Cloud services are viewed
as a composition of distributed components. These
components have multiple types: infrastructure (hardware,
storage, network), platform or software. On-demand,
flexibility and availability of computing components are
behind the great success of cloud computing. However, the
QoS requirements of a cloud user are still not guaranteed.

To ensure the QoS requirements, the cloud services must
be able to adapt its behavior dynamically. In this paper, we
considered two important points to reflect the complexity
introduced by the QoS cloud management: the self-
management and the QoS awareness. We present the
mapping of our generic QoS model to deal with these two
aspects. Two principal propositions are presented:

 an integration of our QoS model to conceive a new
QoS-aware cloud component (CSC).

 an extension of a DTD basic grammar in order to
describe our QoS model specification. This DTD is
used to describe the CSC component through the
Fractal ADL language.

We are based on our generic QoS model to propose an
autonomic cloud component that is able to manage its non-
functional aspects. We use our informational model to
maintain the QoS self-management aspects. We present a
QoS component, which is integrated in each cloud
component. This component uses the QoS criteria to control
the current behavior of the CSC component and to inform
the system about the current component's state (“IN/OUT
contract”).

The present work represents the first step to study how
the self-management of a QoS-aware cloud component
behavior is achieved. In the further work, we will present

some mechanisms to maintain the autonomic loop principles
in our proposed component.

ACKNOWLEDGMENT

This work is supported by the OpenCloudware project.
OpenCloudware is funded by the French FSN (Fonds
national pour la Société Numérique), and is supported by
Pôles Minalogic, Systematic and SCS.

REFERENCES

[1] ETSI TR 102 805-3 V1.1.1 (2010-04). Part 3: QoS informational
structure. On-line report:
http://www.etsi.org/deliver/etsi_tr/102800_102899/10280503/01.01.0
1_60/tr_10280503v010101p.pdf [retrieved: February, 2013]

[2] http://www.opencloudware.org/bin/view/About/ProjectInfo
[retrieved: January, 2013].

[3] ETSI TR 102 805-1 V1.1.1, Part 1: User’s E2E QoS – Analysis of the
NGN,” On-line report :
http://www.etsi.org/deliver/etsi_tr/102800_102899/10280501/01.01.0
1_60/tr_10280501v010101p.pdf, [retrieved: February, 2013].

[4] N. Simoni, C. Yin, and G. Du Chén, “An intelligent user centric
middleware for NGN: Infosphere and ambient grid,” in Proc.
Communication Systems Software and Middleware and Workshops,
COMSWARE 2008, pp. 599-606.

[5] G. Diaz, K. Chen, N. Simoni, and N. Ornelas, “Spécifications des
composants fonctionnelles de la session UBIS,” May 2010, on-line
report: http://www-l2ti.univ-paris13.fr/~ubis/UBIS-
SITE/FichiersPDF/SP31.pdf [retrieved:February, 2013].

[6] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “Qos–
aware clouds,” in Proc. Cloud Computing, CLOUD 2010, pp. 321–
328.

[7] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds”, in Proc.
European Conference on Computer Systems, EUROSYS 2010, pp.
237–250.

[8] H. Nguyen Van, F. Dang Tran, and J.M Menaud, “Autonomic virtual
resource management for service hosting platforms,” in Proc.
Workshop on Software Engineering Challenges of Cloud Computing,
ICSE 2009, pp. 1–8.

[9] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, “A novel approach
to qos monitoring in the cloud,” in Proc. Data Compression
Communications and Processing, CCP 2011, pp. 45-51.

[10] F.Zambonelli, N.Bicocchi, G.Cabri, L.Leonardi, and M.Puvianil, “On
Self-adaptation, Self-expression, and Self-awareness in Autonomic
Service Component Ensembles,” in Proc. Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2011, pp. 108-113.

[11] H.Liu, M.Parashar, and S. Hariri “A component based programming
model for autonomic applications,” in Proc. International Conference
on Autonomic Computing, ICAC 2004, pp. 10-17.

[12] I. Brandic, “Towards self-manageable cloud services,” in Proc.
Computer Software and Applications Conference, COMPSAC 2009,
Vol 2, pp. 128–133.

[13] M. Maurer, I. Brandic, V. Emeakaroha, and S. Dustdar, “Towards
knowledge management in self-adaptable clouds,” in Proc. Services,
SERVICES 2010, pp. 527–534.

[14] R. Ranjan and R. Buyya, Special section on Autonomic cloud
computing: technologies, services, and applications, in Proc.
Concurrency and Computation: Practice and Experience, 2012, Vol
24, pp. 935-1034.

[15] http://fractal.ow2.org/f4e/, [retrieved: January, 2013].

[16] http://onjava.com/pub/a/onjava/2002/12/11/eclipse.htm, [retrieved:
January, 2013].

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

http://www-l2ti.univ-paris13.fr/~ubis/UBIS-SITE/FichiersPDF/SP31.pdf
http://www-l2ti.univ-paris13.fr/~ubis/UBIS-SITE/FichiersPDF/SP31.pdf
http://eurosys2013.tudos.org/
http://fractal.ow2.org/f4e/

