
Comparison Between Self-Stabilizing Clustering
Algorithms in Message-Passing Model.

Mandicou BA, Olivier FLAUZAC, Rafik MAKHLOUFI, Florent NOLOT
Université de Reims Champagne-Ardenne

CReSTIC - SysCom (EA 3804)
Reims, France

{mandicou.ba, olivier.flauzac, rafik.makhloufi, florent.nolot}@univ-reims.fr

Ibrahima NIANG
Université Cheikh Anta Diop

Laboratoire d’Informatique de Dakar (LID)
Dakar, Sénégal
iniang@ucad.sn

Abstract—Most Ad Hoc networks use diffusion to commu-
nicate. This approach requires many messages and may cause
network saturation. To optimize these communications, one
solution consists in structuring networks into clusters. In this
paper, we present a new self-stabilizing asynchronous distributed
algorithm based on message-passing model. We compare the
proposed algorithm with one of the best existing solutions based
on message-passing model. Our approach does not require any
initialization and builds non-overlapping k-hops clusters. It is
based only on information from neighboring nodes with periodic
messages exchange. Starting from an arbitrary configuration, the
network converges to a stable state after a finite number of steps.
A legal configuration is reached after at mostn+ 2 transitions
and uses at mostn ∗ log(2n+ k + 3) memory space, wheren is
the number of network nodes. Using theOMNeT++ simulator,
we performed an evaluation of the proposed algorithm to notably
show that we use fewer messages and stabilizing time is better.

Keywords-ad hoc networks; clustering; distributed
algorithms;self-stabilizing; OMNeT++ simulator

I. I NTRODUCTION

In Ad Hoc networks, the most frequently used commu-
nication solution is diffusion. This is a simple technique
that requires few calculations. But this method is expensive
and may cause network saturation. In order to optimize this
communication, which is an important source of resource
consumption, one solution is to structure the network in
trees[1] or clusters[2].

Clustering consists in organizing the network into groups of
nodes called clusters, thus giving a hierarchical structure [3].
Each cluster is managed by a particular node called clus-
terhead. A node is elected clusterhead using a metric such
as the mobility degree, node’s identity, node’s density, etc.
or a combination of these parameters. Several solutions of
clustering have been proposed. They are classified into 1-
hop and k-hops algorithms. In 1-hop solutions [4], [5], [6],
[7] nodes are at a distance of1 from the clusterhead and
the maximum diameter of clusters is2. However, in k-hops
solutions [8], [9] nodes can be located at a distance ofk from
the clusterhead and the maximum diameter of clusters is2k.
However, these approaches, generate a lot of traffic and require
considerable resources.

In this paper, we propose a self-stabilizing asynchronous
distributed algorithm that builds k-hops clusters. Dijkstra de-

fined a distributed system to be self-stabilizing if, regardless of
the initial state, the system is guaranteed to reach a legitimate
(correct) state in a finite time [10]. Our approach builds non-
overlapping k-hops clusters and does not require initialization.
It is based on the criterion of maximum identity attached to the
nodes for clusterhead selection and relies only on the periodic
exchange of messages with the 1-hop neighborhood. The
choice of the identity metric provides more stability against
dynamic criteria such as mobility degree and weight of nodes.

The remainder of the paper is organized as follows. In
Section II, we describe some related works of self-stabilizing
clustering solutions. Section III presents our contribution. In
Section IV, we describe the computational model used in
the paper and give some additional concepts. In Section V,
we first present a broad and intuitive explanation of the
algorithm before defining it more formally. In Section VI, we
present performance evaluation conducted with theOMNeT++
simulator. Finally, we conclude and present some future work
in Section VII.

II. RELATED WORK

Several clustering solutions have been done in the litera-
ture [4], [5], [6], [7], [8], [11], [9]. Approaches [6], [7],[11],
[9] are based on state model at opposed of message-passing
model algorithms [4], [5], [8].

Self-stabilizing algorithms presented in [4], [5], [6], [7] are
1-hop clustering solutions.

A metric called density is used by Mitton etal. in [4],
in order to minimize the reconstruction of structures for low
topology change. Each node calculates its density and broad-
casts it to its neighbors located at 1-hop. For the maintenance
of clusters, each node calculates periodically its mobility and
density.

Flauzac etal. [5], have proposed a self-stabilizing clustering
algorithm, which is based on the identity of its neighborhood
to build clusters. This construction is done using the identities
of each node that are assumed unique. The advantage of this
algorithm is to combine in the same phase the neighbors
discovering and the clusters establishing. Moreover, thisde-
terministic algorithm constructs disjoint clusters, i.e., a node
is always in only one cluster.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

In [6], Johnen etal. have proposed a self-stabilizing pro-
tocol designed for the state model to build 1-hop clusters
whose size is bounded. This algorithm guarantees that the
network nodes are partitioned into clusters where each one
has at mostSizeBound nodes. The clusterheads are chosen
according to theirweight value. In this case, the node with
the higher weight becomes clusterhead. In [7], Johnen etal.
have extended the proposal from [6]. They have proposed a
robust self-stabilizing weight-based clustering algorithm. The
robustness property guarantees that, starting from an arbitrary
configuration, after one asynchronous round, the network is
partitioned into clusters. After that, the network stays par-
titioned during the convergence phase toward a legitimate
configuration where clusters verify the ad hoc clustering
properties.

Self-stabilizing algorithms proposed in [8], [11], [9] arek-
hops clusters solutions.

In [11], using criterion of minimal identity, Datta etal. have
proposed a self-stabilizing distributed algorithm designed for
the state model that computes a subsetD is a minimal k-
dominatingset of graphG. UsingD as the set ofclusterheads,
a partition ofG into clusters, each of radius k, follows. This
algorithm converges inO(n) rounds andO(n2) steps and
requireslog(n) memory space per process , wheren is the
size of the network.

Datta etal. [9], using an arbitrary metric, have proposed a
self-stabilizingk-clusteringalgorithm base on a state model.
Note thatk-clusteringof a graph is a partition of nodes into
disjoints clusters in which every node is at a distance of at most
k from the clusterhead. This algorithm executes inO(nk)
rounds and requiresO(log(n) + log(k)) memory space per
process, wheren is the network size.

In [8], Miton et al. applied self-stabilization principles
over a clusterization protocol proposed in [4] and presents
properties of robustness. Each node calculates its densityand
broadcasts it to its neighbors located at k-hops. This robustness
is an issue related to the dynamicity of ad hoc networks, to
reduce the time stabilization and to improve network stability.

III. C ONTRIBUTION

We propose a self-stabilizing asynchronous distributed al-
gorithm that builds k-hops clusters. Our approach is based on
a message-passing model as opposed to solutions proposed
in [6], [7], [11], [9]. We use the criterion of maximum identity
that brings more stability compared to metric variables used
in [8], [4], [6], [7]. Our algorithm structures the network
into non-overlapping clusters with a diameter at most equal
to 2k. This structuring does not require any initialization.
It is based only on information from neighboring nodes.
Contrary to other clustering algorithms, we use an unique
message to discover the neighborhood of a node at distance
1 and to structure the network intok-hopsclusters. Starting
from an arbitrary configuration, the network converges to a
legal configuration after a finite number of steps. A legal
configuration is reached after at mostn + 2 transitions and
requires at mostn∗ log(2n+k+3) memory space, wheren is

the number of network nodes. Using theOMNeT++ simulator,
we performed an evaluation of the proposed algorithm and
a comparison with one of the best existing solution based
on message-passing model [8]. We show that we use less
messages than and stabilizing time is better.

IV. M ODEL

We consider our network as a distributed system that can
be modeled by an undirected graphG = (V,E). V = n is the
set of network nodes andE represents all existing connections
between nodes. An edge(u, v) exists if and only ifu can
communicate withv and vice-versa. This means that all links
are bidirectional. In this case, the nodesu andv are neighbors.
The set of neighborsv ∈ V of nodeu is markedNu. Each
nodeu of the network has a unique identifieridu and can
communicate withNu. We define the distanced(u,v) between
nodesu and v in the graphG as the minimum number of
edges along the path betweenu andv.

Our algorithm is designed for the asynchronous message-
passing model following standard models for distributed sys-
tems given in [12], [13]. For this purpose, each pair of nodes
is connected by a bi-directionnal link. Links are asynchronous
and messages transit time is finite but not bounded. Moreover
links are reliable. They do not create, corrupt or lose messages.
Furthermore, each nodeu periodically sends to its neighbors
a message that is received correctly within some finite but
unpredictable time by all its 1-hop neighbors. Each nodeu

maintains a table containing the current state of its neighbors
at distance 1. Upon receiving a message, a nodeu executes
our clustering algorithm.

V. SELF-STABILIZING K -HOPS CLUSTERING ALGORITHM

A. Preliminaries

We give some definitions used in the following.
Definition 5.1: (Cluster) We define ak-hopscluster as a

connected graph in the network, with a diameter less than or
equal to2k. The set of all the nodes of a clusteri is denoted
Vi.

Definition 5.2: (Cluster identifier) Each cluster has an
unique identifier corresponding to the greatest node identity
in its cluster. The identity of a cluster that owns a nodeu is
denotedclu.

In our clusters, each nodeu has a status notedstatusu.
Thus, a node can be clusterhead(CH), a Simple Node(SN)
or a Gateway Node(GN). Moreover, each node selects a
neighborv ∈ Nu, notedgnu, through which it passes to reach
its CH .

Definition 5.3: (Nodes status)
• Clusterhead(CH): a nodeu hasCH status if it has the

highest ID among all nodes of its cluster.
– statusu = CH ⇐⇒ ∀v ∈ Vclu , (idu > idv) ∧

(dist(u,v) ≤ k).
• Simple Node(SN): a nodeu hasSN status ifu and all

its neighbors are in the same cluster.
– statusu = SN ⇐⇒ (∀v ∈ Nu, clv = clu) ∧ (∃w ∈

Vu/(statusw = CH) ∧ (dist(u,w) ≤ k)).

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

• Gateway Node(GN): a nodeu hasGN status if exists a
nodev in neighborhood in a different cluster.

– statusu = GN ⇐⇒ ∃v ∈ Nu, (clu 6= clv).

Definition 5.4: (Node Coherence)
A nodeu is coherent node if and only ifit is in one of the
following states:

• if statusu = CH then (clu = idu) ∧ (dist(u,CHu) = 0) ∧
(gnu = idu),

• if statusu ∈ {SN,GN} then (clu 6= idu) ∧ (dist(u,CHu) 6=

0) ∧ (gnu 6= idu).

status = SN

cl = 2

gn = 1

cl = 1

dist = 0

status = CH status = SN

dist = 2

gn = 1

cl = 0

dist = 0

gn = 2

2 1 0

(a) Incherence nodes

status = SN

cl = 2

dist = 1

gn = 2

cl = 2

status = CH status = SN

dist = 2

gn = 1

dist = 0

cl = 2

gn = 2

2 1 0

(b) Coherence nodes

Fig. 1. Coherent and incoherent nodes

Definition 5.5: (Node stability)
A nodeu is stable nodeif and only if its variables no longer
change, it is coherent and satisfies the following states:

• if statusu = CH then∀v ∈ Nu, (statusv 6= CH) ∧ {((clv =
clu) ∧ (idv < idu)) ∨ ((clv 6= clu) ∧ (dist(v,CHv) = k))}.
(Example of node9 in clusterV9)

• if statusu = SN then∀v ∈ Nu, (clv = clu)∧(dist(u,CHu) ≤
k) ∧ (dist(v,CHv) ≤ k). (Example of node0 in clusterV10 or
node7 in V9).

• if statusu = GN then ∃v ∈ Nu, (clv 6= clu) ∧

{((dist(u,CHu) = k) ∧ (dist(v,CHv) ≤ k)) ∨ ((dist(v,CHv) =

k) ∧ (dist(u,CHu) ≤ k))}. (Example of node2 in clusterV9

or node8 in V10).

Definition 5.6: (Network stability)
The network isstableif and only if all nodes are stable nodes.
(see figure 2)

V
9

10
V

Simple Node

Legend:

Clusterhead Gateway Node

6

9

3

4

70

1

5

210

8

Fig. 2. Stable Nodes - Stable network

B. Basic Idea of Our Solution

Our algorithm is self-stabilizing and does not require any
initialization.

Starting from any arbitrary configuration, with only one
type of message exchanged, the nodes are structured in
non-overlapping clusters in a finite number of steps. This
message is calledhello messageand it is periodically ex-
changed between each neighbor nodes. It contains the fol-
lowing four items information: node identity(idu), cluster
identity (clu), node status(statusu) and the distance to
clusterheaddist(u,CHu). Note that cluster identity is also the
identity of the clusterhead. Thus, the hello message structure is
hello(idu, clu, statusu, dist(u,CHu)). Furthermore, each node
maintains a neighbor tableStateNeighu that contains the
set of its neighboring nodes states. Whence,StateNeighu[v]
contains the states of nodesv neighbor ofu.

The solution that we propose proceeds as follows:
As soon as a nodeu receives a hello message, it executes

Algorithm 1. During this algorithm,u executes these three
steps consecutively. The first step is to update neighborhood,
the next step is to manage the coherence and the last step is
to build the clusters. After this three steps,u sends a hello
message to its neighbors.

After updating the neighborhood, nodes check their co-
herency. For example, as a clusterhead has the highest identity,
if a nodeu hasCH status, its cluster identity must be equal to
its identity. In Figure 1(a), node2 is clusterhead. Its identity
is 2 and its cluster identity is1, so node 2 is not a coherent
node. Similarly for nodes1 and0, because they do not satisfy
definition 5.4. Each node detects its incoherence and corrects
its during the coherence management step. Figure 1(b) shows
nodes that are coherent.

During the clustering step, each node compares its identity
with those of its neighbors at distance1. A nodeu elects itself
as a clusterhead if it has the highest identity among all nodes
of its cluster. If a nodeu discovers a neighborv with a highest
identity then it becomes a node of the same cluster asv with
SN status. Ifu receives again a hello message from another
neighbor that is in another cluster thanv, the nodeu becomes
gateway node withGN status. As the hello message contains
the distance between each nodeu and its clusterhead,u knows
if the diameter of cluster is reached. So it can choose another
cluster.

C. k-hops self-stabilizing algorithm

Each nodeu of the network knows thek parameter value
and executes the Algorithm 1.

VI. PERFORMANCE ANALYSIS

In [14], we have proved that our network is stable after
at mostn + 2 transitions and requires at mostn ∗ log(2n +
k+3) memory space. This reflects the worst case scenario of
a topology where the nodes form an ordered chain. Ad Hoc
networks are often characterized by random topologies.

In order to evaluate the average performance of our solution
in a random topology, we have implemented our algorithm
using theOMNeT++ environment simulation [15]. For gen-
erating random graphs, we have usedSNAPlibrary [16]. All
simulations were carried out usingGrid’5000 platform [17].

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

Algorithm 1: k-hops clustering algorithm
/* Upon receiving message from a neighbor */
Predicates
P1(u) ≡ (statusu = CH)
P2(u) ≡ (statusu = SN)
P3(u) ≡ (statusu = GN)
P10(u) ≡ (clu 6= idu) ∨ (dist(u,CHu) 6= 0) ∨ (gnu 6= idu)
P20(u) ≡ (clu = idu) ∨ (dist(u,CHu) = 0) ∨ (gnu = idu)
P40(u) ≡
∀v ∈ Nu, (idu > idv) ∧ (idu ≥ clv) ∧ (dist(u,v) ≤ k)
P41(u) ≡ ∃v ∈ Nu, (statusv = CH) ∧ (clv > clu)
P42(u) ≡ ∃v ∈ Nu, (clv > clu) ∧ (dist(v,CHv) < k)
P43(u) ≡ ∀v ∈ Nu/(clv > clu), (dist(v,CHv) = k)
P44(u) ≡ ∃v ∈ Nu, (clv 6= clu) ∧ {(dist(u,CHu) =
k) ∨ (dist(v,CHv) = k)}

Macros
NeighCHu = {idv/v ∈ Nu ∧ statutv = CH ∧ clu = clv}.
NeighMaxu =
(Max{idv/v ∈ Nu ∧ statutv 6= CH ∧ clu = clv}) ∧
(dist(v,CHu) = Min{dist(x,CHu), x ∈ Nu ∧ clx = clv}).

Rules
/* Update neighborhood */
StateNeighu[v] := (idv, clv , statusv, dist(v,CHv));

/* Cluster-1: Coherent management */
R10(u) :: P1(u) ∧ P10(u)
−→ clu := idu; gnu = idu; dist(u,CHu) = 0;
R20(u) :: {P2(u) ∨ P3(u) } ∧ P20(u) −→
statusu := CH ; clu := idu; gnu = idu; dist(u,CHu) = 0;

/* Cluster-2: Clustering */
R11(u) :: ¬P1(u) ∧ P40(u) −→
statusu := CH ; clu := idv; dist(u,CHu) := 0; gnu := idu;
R12(u) :: ¬P1(u) ∧ P41(u) −→ statusu := SN ; clu :=
idv; dist(u,v) := 1; gnu := NeighCHu;
R13(u) :: ¬P1(u) ∧ P42(u) −→ statusu := SN ; clu :=
clv; dist(u,CHu) := dist(v,CHv) + 1; gnu := NeighMaxu;
R14(u) :: ¬P1(u) ∧ P43(u) −→
statusu := CH ; clu := idv; dist(u,CHu) := 0; gnu := idu;
R15(u) :: P2(u) ∧ P44(u) −→ statusu := GN ;
R16(u) :: P1(u) ∧ P41(u) −→ statusu := SN ; clv :=
idv; dist(u,v) := 1; gnu := NeighCHu;
R17(u) :: P1(u) ∧ P42(u) −→ statusu := SN ; clu :=
clv; dist(u,CHu) := dist(v,CHv) + 1; gnu := NeighMaxu;

/* Sending hello message */
R0(u) :: hello(idu, clu, statusu, dist(u,CHu));

A. Impact of density and network size on the stabilization time

First, we study the impact of nodes degree and network
size on the stabilization time. In figure 3(a), we have fixed
a hops numberk = 2. For each node degree of3, 5 and 7
we consider a network size from 100 to 1000 nodes. Note
that we generated-regular graphs modelsusingSNAPlibrary,
whered represents node’s degree (number of neighbors for
each node). For each given network size, we compute several
series of simulations. We give the average stabilization time as
the average of all values corresponding to simulation results.
We note that the stabilization time increases as the number
of nodes in the network increases. Furthermore, we note that

for arbitrary topologies, the average stabilization time is below
n + 2, formal value proved in the worst case. Moreover, the
number of transitions needed to reach a legal configuration
appears stable when the network size increases (500 to 1000
nodes).

To observe the impact of the network density as illustrated
in figure 3(b), we consider a network size of 100, 200 and
400 nodes and we vary the nodes degree. We observe that
the stabilization time decreases as the nodes degree increases.
The main reason is due to the fact that each node has more
neighbors, thus during each transition, we have more nodes
that fixed at the same time. With our approach, we have a
better stabilization time with networks of high density.

B. Scalability

To examine the scalability of the proposed solution, we vary
the number of nodes in the network at the same time as the
density of connectivity. Fork = 2, we consider a network size
of 100 to 1000 nodes. For each value of the network size, we
vary the density from10% to 100%. Note that we generate
Erdös-Renyi random graphs modelsusing SNAPlibrary. We
obtain the 3D curve illustrated in figure 4. We note that except
for low densities (10% and20%), the stabilization time varies
slightly with the increasing number of nodes. In case of a low
network density, we observe a peak that is due to longer chains
in the network topology. With these series of simulation, we
can make two remarks. (i) The only determining factor with
our approach is the density of connectivity and our solution
is scalable. (ii) On average, for networks with an arbitrary
topology, the stabilization time is far below that of the worst
case (n+ 2 transitions).

 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

Number of nodes

 10 20 30 40 50 60 70 80 90 100
Density of network

 2

 4

 6

 8

 10

 12

 14

 16

St
ab

iliz
in

g
tim

e

 2

 4

 6

 8

 10

 12

 14

 16

Fig. 4. Scalability

C. Size and number of clusters

As the density of connectivity is the determining factor for
our algorithm, we evaluate the number of clusters obtained
according to the network density. Fork = 2, we consider
a network size of 100, 500 and 1000 nodes. We vary the
node degree from 5 to 100 neighbors. Figure 5(a) shows that
regardless the number of nodes in network, we get less clusters
when the number of neighbors increases. In fact, in denser

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 200 300 400 500 600 700 800 900 1000

S
t
a
b
i
l
i
z
i
n
g

t
i
m
e

Number of nodes

degree=3, k=2
degree=5, k=2
degree=7, k=2

(a) Stabilization time according to the number of nodes

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

S
t
a
b
i
l
i
z
i
n
g

t
i
m
e

Nodes degree

N=100, k=2
N=200, k=2
N=400, k=2

(b) Stabilization time according to nodes degree

Fig. 3. Impact of nodes degree on the stabilization time

 1

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m
b
e
r

o
f

c
l
u
s
t
e
r
s

Degree

N=100, k=2
N=500, k=2

N=1000, k=2

(a) Number of clusters according nodes degree

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Nu
mb

er
of

clu
ste

rs

Nu
mb

er
of

no
de

s

Size of clusters

Number of clusters
 Number of nodes

(b) Size and number of clutsers

Fig. 5. Size and number of clusters

networks, nodes with the largest identity absorb more nodes
into their clusters.

As we have more clusters with low density, we consider a
network size of 1000 nodes with 5 neighbors for each node.
We evaluate nodes distribution between clusters. We note that,
as illustrates in figure 5(b), we have clusters of variable size.
We have 39 singleton clusters, around4% of the total number
of nodes. We also note that the highest identity clusters include
the more nodes its. The main reason is due to the fact that
nodes choose asCH those with the highest identity.

D. Impact of the k parameter

 10

 20

 30

 40

 50

 60

 2 4 6 8 10

S
t
a
b
i
l
i
z
i
n
g

t
i
m
e

k

N=100, degree=5
N=200, degree=5
N=400, degree=5
N=500, degree=5

N=1000, degree=5

Fig. 6. Impact ofk parameter

In order to observe the impact of thek parameter, we fix the
node degree at 5 and we consider a network size of 100, 200,

400, 500 and 1000 nodes. For each network size, we vary thek

parameter from 2 to 10. Figure 6 shows the stabilization time
according to the variation of thek parameter. We observe that
the stabilization time decreases as thek parameter increases.
In fact, if k parameter increases and because the hello message
contains the distance between each nodeu and its clusterhead,
the sphere of influence of the largest nodes increase. Thus,
nodes carrying fewer transitions to be fixed at aCH . In
the end, we have fewer clusters. Nevertheless, in the case
of a small value of thek parameter, we have more clusters
with small diameters. Therefore, it requires more transitions
to reach a stable state in all clusters. Note that regardlessthe
value of thek parameter, the stabilization time is far below
that of the worst case scenario (n+ 2 transitions).

E. Comparison with a well known solution based on message-
passing model

In message-passing model, their exist few solutions. We
compare our approach with a well known existing solution in
message-passing model [8]. We compare these two approaches
in terms of number of messages exchanged (i.e received
messages) and number of clusters. We have implemented
our algorithm and [8] on OMNeT++ environment simulation.
Simulations are made within the same random graph.

In order to evaluate number of exchanged messages, we fix
the node degree at3 and6 and we consider a network size from
100 to 1000 nodes. For each given network size, we compute
several series of simulations. We give the average number of

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

Number of nodes

Our approach: deg=3,k=2
Our approach deg=6,k=2

Mitton et al.: deg=3,k=2
Mitton et al.: deg=6,k=2

(a) Number of exchanged messages

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
e
r

o
f

c
l
u
s
t
e
r
s

Number of nodes

Our approach: deg=3,k=2
Our approach: deg=6,k=2

Mitton et al.: deg=3,k=2
Mitton et al.: deg=6,k=2

(b) Number of clusters

Fig. 7. Comparison with Mitton et al. [8]

exchanged messages in the network to achieve the legal state.
Figure 7(a), show that our approach generates less messages
than [8]. The main reason is due to the fact that our approach
is based only on information from neighboring at distance1
to build k-hopsclusters. As opposed to solution [8], each node
must know{k+1}-Neighboring, computes itsk-densityvalue
and locally broadcasts it to all itsk-neighbors. This is very
expensive in terms of exchanged messages.

We also evaluate the number of clusters obtained by both
approaches. As illustrates in figure 7(b), our approach built
more than clusters. Moreover it generates less messages. This
implies that our clusters are less densely. Therefore, easyto
manage by the clusterhead and consumes fewer resources.
Less densely clusters leads to a decrease communications and
an optimization of resource consumption.

Note that we have made comparisons fork = 2. In fact,
if k parameter increase, the broadcast area of solution [8]
increases. Whereas our approach is based only on a neigh-
borhood of a node at distance1 to structure the network into
non-overlappingk-hopsclusters.

VII. C ONCLUSION

We presented a self-stabilizing asynchronous distributed
algorithm based on a message-passing model. The proposed
solution structures the network into non-overlapping clusters
with diameter at most equal to2k. This structuring does not
require any initialization. Furthermore, it is based only on
information from neighboring nodes at distance1. Contrary to
other clustering algorithms, we have used an unique message
to discover the neighborhood of a node at distance1 and to
structure the network into non-overlappingk-hopsclusters.

Starting from an arbitrary configuration, the network con-
verges to a legal configuration after at mostn+ 2 transitions
and requires at mostn ∗ log(2n+ k + 3) memory space. Ex-
perimental results show that for arbitrary topology networks,
the stabilization time is far below the worst case scenario.A
comparison with one of the best existing solution based on
message-passing model show that we use fewer messages and
stabilizing time is better.

As future work, we plan to implement mechanisms to
balance clusters and maintaining the formed ones in case of

topology change.

VIII. A CKNOWLEDGEMENTS

This work is supported in part by Regional Council of
Champagne-Ardenne and European Regional Development
Fund. The simulation are executed on Grid’5000 experimental
testbed, hosted at the ROMEO HPC Center.

The authors wish to thank the reviewers and editors for their
valuable suggestions and expert comments that help improve
the contents of paper.

REFERENCES

[1] L. Blin, M. G. Potop-Butucaru, and S. Rovedakis, “Self-stabilizing
minimum degree spanning tree within one from the optimal degree,”
JPDC, 2011, pp. 438 – 449.

[2] A. Datta, L. Larmore, and P. Vemula, “Self-stabilizing leader election
in optimal space,” in SSS, 2008, pp. 109–123.

[3] C. Johnen and L. Nguyen, “Self-stabilizing weight-based clustering
algorithm for ad hoc sensor networks,” in ALGOSENSORS, 2006, pp.
83–94.

[4] N. Mitton, A. Busson, and E. Fleury, “Self-organizationin large scale
ad hoc networks,” in MED-HOC-NET, 2004.

[5] O. Flauzac, B. S. Haggar, and F. Nolot, “Self-stabilizing clustering
algorithm for ad hoc networks,” ICWMC, 2009, pp. 24–29.

[6] C. Johnen and L. Nguyen, “Self-stabilizing construction of bounded size
clusters,” ISPA, 2008, pp. 43–50.

[7] C. Johnen and L. H. Nguyen, “Robust self-stabilizing weight-based
clustering algorithm,” TCS, 2009, pp. 581 – 594.

[8] N. Mitton, E. Fleury, I. Guerin Lassous, and S. Tixeuil, “Self-
stabilization in self-organized multihop wireless networks,” in ICDCSW,
2005, pp. 909–915.

[9] E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore, “A self-
stabilizing k-clustering algorithm for weighted graphs,”JPDC, 2010,
pp. 1159–1173.

[10] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, 1974, pp. 643–644.

[11] A. K. Datta, S. Devismes, and L. L. Larmore, “A self-stabilizing O(n)-
round k-clustering algorithm,” in SRDS, 2009, pp. 147–155.

[12] H. Attiya and J. Welch, Distributed computing: fundamentals, simula-
tions, and advanced topics. John Wiley & Sons, 2004.

[13] G. Tel, Introduction to Distributed Algorithms. Cambridge University
Press, 2000.

[14] M. Ba, O. Flauzac, B. S. Haggar, F. Nolot, and I. Niang, “Self-stabilizing
k-hops clustering algorithm for wireless ad hoc networks,”in ACM
IMCOM, 2013.

[15] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Simutool, 2008, pp. 60:1–60:10.

[16] SNAP: Stanford Network Analysis Platform. http://snap.stanford.edu
[17] F. Cappello etal., “Grid’5000: A large scale and highly reconfigurable

grid experimental testbed,” in GRID, 2005, pp. 99–106.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

