
QoS-Aware Scale Up on IaaS Clouds
Luis Fernando Orleans

Computer Science Department
Universidade Federal Rural do Rio de Janeiro

Rio de Janeiro, Brazil
Email: lforleans@ufrrj.br

Geraldo Zimbrão da Silva
Computer Science Department

Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

Email: zimbrao@cos.ufrj.br

Abstract—For systems hosted in IaaS clouds that target profit,
like blogs and e-commerce systems, the final revenue should be
the most important metric. Balancing the QoS experienced by
clients as a manner to avoid their drop-out against the cost
related to leasing instances forms the basis of a good instance
management for those scenarios. In this paper, we demonstrate
the feasibility of using a Fuzzy Logic Inference System as a tool
for maintaining the QoS. Furthermore, it was created a method
for reducing the overall cost related to instances leasing using
an incremental algorithm, acquiring one computational unit at
a time. Finally, we used hooks to handle unpredictable burst of
requests, called here as noises. Our experiments evidenced that
those methods can keep the response time of all requests below a
deadline, avoiding customer dissatisfaction. At the same time, the
total cost of servers lease is reduced, even when the cost-benefit
among different configurations is not linear.

Index Terms—scale up;PROFUSE;IaaS clouds

I. INTRODUCTION

Elasticity is one of the key foundations of Cloud Computing
[1] [2]. The ability to rapidly increase the number of resources
without the need of service stopping/restarting plus its pay-per-
usage nature opened room for a great number of proposals
for minimizing both requests response time and costs with
instance leasing [3] [4] [5] [6].

Elasticity became particularly important when Quality of
Service (QoS) has turned into a crucial requirement for
internet-based business models. If a customer is willing to
purchase a product or a service, he or she expects the best
treatment possible, which can be partially translated as not
having to wait too long for his/her requests to be processed.
In fact, [7] states that customers’ patience lasts 4 seconds
in average for each request. According to that study, when
requests takes longer than 4 seconds to be processed a phe-
nomena called customer drop-out emerges [8], i.e., clients
begin to abandon the system unsatisfied. Guaranteeing QoS is
important for avoiding customer frustration and the consequent
revenue loss. Several studies have been done in that direction
[5] [6] [9] [10], most of them using some mathematical mod-
eling and targeting efficient workflow execution or minimizing
the number of available instances for reducing the power
consumption.

In this paper, we propose a novel elasticity model (em),
called PROFUSE, that uses a Fuzzy Logic Inference System
to calculate the necessary computing power needed to keep
the QoS for requests processing.

A. Problem characterization

A cloud provider (cp) offers virtualized instances for e-
commerce system providers (sp) to lease. Those instances can
be of one out of a total of t different configurations, having
each configuration a specific cost per hour of rental. Also,
client c uses the system maintained by sp.

Instances already leased by sp form its instances array.
The cloud provider can limit the maximum size of the array,
hence forcing the client who wants to increase overall system
computational power to acquire more expensive types of
instances. The strategy a client uses to (re)lease an instance
forms its elasticity model em. Also, cp provides an API that
sp can use for acquiring new instances, opening room for a
dedicated middleware that automates em.

The system maintained by sp works as follows: while surf-
ing through the application, c issues several requests (product
search, other customers comments about a product, providing
credit card details, etc.). An incoming request is processed
on an idle instance. If all instances are busy upon its arrival,
the request is sent to a First Come First Serve (FCFS) queue.
Also, requests response times should be kept under a threshold
(a deadline) otherwise c becomes unsatisfied and leaves the
system.

The Client Conversion Rate ccr is known and represents the
percentage of system visits that actually become purchases and
is calculated as #purchases

#visits . On a visit, c issues n requests in
average until he or she leaves the system, regardless of whether
a purchase was made. In average, each purchase generates
a revenue rb. Hence, the mean value v of a request can be
computed as

v =

{
rb× ccr × 1

n if deadline not reached
0 otherwise

(1)

Another way to calculate v is

v = rb× ccr × 1

n
× q (2)

where q is the probability of missing the deadline for that
request.

Consider that the system has h visits per day in average
and each visit contains in average r requests, the mean day
revenue can be computed as

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

rbday = h× r × v. (3)

Another variable that might affect daily revenue is the cost
i related to instances leasing per hour, known as instance-
hour. The relationship between q and i occurs as to increase
the probability of processing requests within the deadline is
sometimes necessary to increase the amount of computational
power (instances) in the array. Hence, our goal is to minimize
i without affecting q. A possible solution relies on Queueing
Theory [11] where the following metrics are important: mean
requests arrival rate (λ), mean requests processing time (β)
and mean requests queue size (δ). The first two can be used
to compute the mean system utilization (ρ) as

ρ = λ× β. (4)

Note that 1/β is the mean number of processed request per
time unit. In this paper, β is the mean time a request takes to
be processed by 1 instance core. Thus, (4) becomes

ρ = λ× β × 1

s
(5)

s being the total number of cores contained in the instances
array. An instance may have 1, 2 or 4 cores each and each
configuration has its own price. The computational unit cost is
achieved by dividing the instance hour price by the respective
number of cores (the computational unit used in this work) of
the configuration. A non-linear cost-benefit occurs when the
computational unit cost varies for different configurations.

Finally, with probability z, an unpredictable burst of requests
can increase λ in Zp percent. Those bursts last t seconds in
average and are referred to in this work as noises.

B. Contributions

The main contributions of this paper are:

1) A detailed guide for building a Fuzzy Logic-based
Inference System that can predict workload changes and
detect variations;

2) An efficient strategy for lease instances that aims to
minimize the related cost;

3) A strategy that rapidly detects noises on the workload
preventing deadline miss rate (DMR) increases.

C. Paper organization

The remainder of this paper is structured as follows: Section
II lists the related work, while Sections III, IV and V
present the several proposals of this paper. Section VI lists the
experimental setup, the obtained results and discusses them
thoroughly. Finally, Section VII lists the conclusions and
points for future directions.

II. RELATED WORK

Due to its novelty, scale up automation for systems hosted
on IaaS clouds is an open problem, having several researches
been done in that field.

In [3], authors consider geographically distributed datacen-
ters and each hosted system having its own SLA – which
establishes a maximum percentile of unattended deadlines. A
dynamic ranking algorithm that identifies the most valuable
requests, a gi-FIFO scheduling system and a heuristic-based
task placement algorithm are presented.

Also, [12] modeled the problem of scale up as a predic-
tive stochastic problem. The proposed approach explores the
trade-off between QoS and servers lease cost by categorizing
instances according to their configurations/costs and creating
a cost function that is minimized using a customized Convex
Optimization Solver algorithm, invoked periodically. Mean-
while, the research done in [13] proposes a scheduling algo-
rithm based on jobs hierarchy. Such algorithm differentiates
requests tied to an SLA from requests that do not have time-
constraints and prioritize the processing of the former kind.

IBM presented the SmartScale tool in [4]. That work
proposes a combination of horizontal and vertical scale up
flavors to ensure the system is using the most affordable
configuration and idle resources. It uses Decision Trees to
periodically determine what have to be altered in the array
and keep QoS constant.

Compared to this work, none of the previous mentioned
researches comprises workload noises, neither did they used
Fuzzy Logic to predict workload changes. Also, we focused
solely on horizontal scale up as both [1] and [14] states that
vertical scale up causes a momentary performance loss.

III. PREDICTABLE SCALE UP

For predicting workload changes, a Fuzzy Logic Inference
System (FLIS) [15] was created. We chose a FLIS over other
inference mechanisms because it uses a set of IF-THEN rules
which allows adjustments made by specialists. Prior to FLIS
creation, a requests arrival histogram (RAH) is needed - it
can be an estimate for systems that are not in production yet.
Such histogram describes the number of requests that arrives
per time unit (in this work we used hour as time unit, though it
could be minute, second, etc.). The number of bars presented
on the histogram represents the time window (a day, a week,
a month, a year, or even longer periods). After RAH creation,
the difference of workload (DoW) can be easily calculated
from a time unit to the next through the simple formula:

DoWh = DoWh+1 −DoWh (6)

where h is the current time bar on the histogram and h+1
is the next one.

A. Linguistic variables definition

In order to determine the linguistic variables should be used
in the FLIS, we used the following process: the RAH was
used as input for various rounds of simulations, where some

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

system variables were periodically logged: requests arrival
rate (RAR), requests processing rate (RPR), mean queue
waiting time (MQWT), queue size (QS), system utilization
(SU), deadline miss rate (DMR). The log file served as input
for an attribute selection/reduction analysis, performed on
the WEKA software [16], which is a tool used by Data
Mining professionals mostly because it has many Machine
Learning algorithms implemented in it. Afterwards, the fol-
lowing attributes remained: SU, DMR and QS. Note that those
variables can provide the FLIS its reactive behaviour only. As
the proactive characteristic of the FLIS, we added two more
variables: DoW and time to next interval (TTN), where the
last stands for the number of time units remaining until the
next bar of the histogram is reached.

The output variable was defined as the number of compu-
tational power units (NCPU). In this work we considered a
computational power unit as a computing core, i.e. the number
of cores denotes the computing capacity of an instance.

Finally, also using the WEKA software, we performed a
Cluster Analysis [17] to determine the initial number fuzzy
regions for each linguistic variable, a similar step to that
performed by Google to define task placement strategies [18].
Near clusters were combined to reduce the total number of
rules.

IV. UNPREDICTABLE SCALE UP

The FLIS inside PROFUSE mechanism predicts and reacts
well to workloads that are similar to previous ones, notably
those that were used to build the RAH. However, web systems
can incur into some situations where the difference on the
expected number of requests and the actual number of requests
is very high. In these scenarios, FLIS react speed may not be
fast enough for prevent increasing on the deadline miss rate.
As an example, consider a promotion widely spread on social
networks made by a sales web system. The requests arrival rate
explodes as the promotion announcement gets deeper into the
social networks and people get interested on it. The miss rate
increase is faster than FLIS feedback and should be detected
separately. In this work, those abrupt and unexpected changes
on workloads are denoted as noises and the noise detection
system is called hook. Please note that noises are unusual
and unpredictable events which severely affect workloads.
However they do not last long, which means that once they
are gone workloads return to previous states and FLIS use is
effective again.

Essentially, a hook is a monitoring component and keeps
critical units (e.g. miss rate, queue size, etc.) under close
surveillance. Whenever one of those units behaves unexpect-
edly the expansion routine is called and the system is put back
into a consistent state. The algorithm described on Figure 1
details how PROFUSE uses hooks.

V. LEASING POLICY

From a revenue-centric perspective, only instances with the
cheapest configuration should fill in the array. However, such a
strategy limits the computational power when cloud providers

1: procedure HOOK MONITORING
2: for all incoming request do
3: su←current system utilization()
4: qs←current queue size()
5: mr ←current miss rate()
6: if su, qs, mr exceeds threshold then
7: expand()
8: end if
9: end for

10: end procedure

Fig. 1. Hooks monitoring algorithm

limit the number of instances and causes DMR to increase
as the requests arrival rate increases. In order to assess the
DMR impact, the cost of processing a request on each server
configuration (tx) should be added to (2).

Consider ihx as the instance-hour of a configuration t which
can process tr requests per second. Hence, tx can be calculated
as:

tx =
ihx

tr × 3600
(7)

Equation (7) divides the instance-hour cost of configuration
t by the total number of requests that t can handle in one
hour. Therefore, equation 2 can be rewritten taking into con-
sideration the cost of processing a request using configuration
t

v = rb× ccr × 1

n
× q − tx (8)

Equation (8) computes the aggregated value of a request
being processed on an instance with configuration t and client
remains on the system with probability q.

Finally, in order to determine whether is more profitable to
process the incoming request on an instance with configuration
x0 or with configuration x1, where x1 is more expensive and
has twice computing power than x0, the outcome of vx1 ≥ vx0
should be evaluated. Thus, when

q ≥

(
2× [cx1 − cx0]

rb× ccr × 1
n

)
(9)

is worth the swapping. Note that i1 has twice the computing
power of i0, hence the ”2×” on (9)

Focusing on system provider financial loss reduction, PRO-
FUSE’s instance allocation works as follows: consider an IaaS
cloud provider that limits the number of instances sp can lease
on MAX instances. Each instance is of a configuration c and
each configuration has an associated cost per hour. Therefore,
each instance is represented as ink, where n is the position
in the array (1 ≥ n ≥ MAX) and k is its configuration
(1 ≥ k ≥ t). Hence, the initial array of instances can be
represented as

a = {i11, i21, ..., in1} (10)

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

1: procedure EXPANSION
2: Start with an instance array with the minimal config-

uration (k = 1)
3: While size(array) <max - 1 acquire instances with

minimal configuration
4: From that point onwards, use formula 9 to decide

whether or not to lease an instance with a superior
configuration. In case of swapping:

5: Start an immediately superior configuration instance.
6: Release an instance with the current configuration

using 9
7: If the array contains only instances of the configuration
k = t, start a new instance of configuration t

8: end procedure

Fig. 2. Expansion algorithm

1: procedure INSTANCE RELEASE(k)
2: for all instances i in array do
3: if i is of type k then
4: Compute remaining time rt until next instance-

hour
5: end if
6: end for
7: Release instance with the least rt
8: end procedure

Fig. 3. Instance release algorithm

In our approach, the initial array has only instances of the
most basic type. For each positive outcome ∆ computed by
either FLIS or Hooks monitoring system, the leasing module
keeps acquiring instances of type k = 1 until size of array
reaches MAX - 1. Note that in case of cp does not impose
an array size threshold, PROFUSE will lease only instances
of that configuration. The remaining spot in the array is used
for swapping instances when additional computing power is
needed. Instance swapping consists on leasing an instance with
a superior configuration and releasing a smaller instance –
needed for future swaps.

Worth mentioning instance swapping only occurs when the
outcome of (9) is positive, which indicates the DMR×profit
balance was unfavorable. All instance swaps keep a free
spot on the array except on the case the array contains only
instances of configuration k = t – when another instance of
type c is acquired. Figure 2 describes the expansion algorithm.

Similarly, Figure 3 details release algorithm, taking into
consideration the release opportunity, i.e. the instance closest
to increase its cost.

In contrast to expansion algorithm, on the shrink algorithm
(Figure 4) an instance of a more expensive configuration is
released prior acquiring an instance with a simpler configura-
tion.

1: procedure SHRINK
2: if array is full then . All instances are of type t
3: Release an instance using algorithm (3)
4: else
5: Find configuration conf = MAX(k)
6: if conf = 0 then . Only small instances in array
7: Release an instance using algorithm (3)
8: else
9: Start an instance with configuration conf − 1

10: Release an instance using algorithm (3)
11: end if
12: end if
13: end procedure

Fig. 4. Array shrinking algorithm

VI. EXPERIMENTS

In order to assess the robustness of PROFUSE, we con-
ducted an exhaustive set of experiments using a simulator that
was built for easily switch among a plethora of environments.

A. Workload types

For defining workloads shapes we used the study presented
in [10]. According to the authors, four kinds of workloads are
typical for systems hosted in IaaS clouds: (i) stable, where
requests arrival rate is almost linear; (ii) normal, presenting
the occurrence of peak situations; (iii) growing, where the
number of incoming requests does not decrease over time; and
(iv) on-and-off, representing some background, administrative
tasks such as log archiving and compacting. Note that those
workloads shapes can be combined and represent different
epochs of the same system through time. Since the objective of
this work is to find a new elasticity model capable of handle
expected and unexpected burst of requests, the experiments
were conducted using normal and growing workload shapes.
The former was extracted from a real system whereas the later
is a synthetic workload.

B. Parameters

Other parameters used on our experiments were extracted
from [19] and are shown in Table I (comma-separated values
indicates more than 1 value was used).

C. Environments

The experiments were conducted starting from the most ba-
sic scenario and then introducing limitations one at a time. To
facilitate referencing the environments, letters were assigned
as follows:

(A) Unlimited instances, workload without noises and
hooks system deactivated;

(B) Limited number of instances, no noises and hooks
system deactivated;

(C) Limited number of instances, noises and hooks sys-
tem deactivated;

(D) Limited number of instances, noises and hooks sys-
tem activated.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

TABLE I
SIMULATOR PARAMETERS

first second

Initial instances array size 5
Instance leasing mean time 97s
Instance releasing mean time 8s
Instances array max size ∞, 20
Single-core instance-hour cost $0.02
Dual-core instance-hour cost $0.34
Quad-core instance-hour cost $2.00
Deadline 4s
Client conversion rate 0.01, 1
Request value $100, $0.001
Request-to-revenue probability 0.05, 1
Mean-time between FLIS feedback 120s

TABLE II
DMR PROFUSE WITH NORMAL WORLOAD

Environment DMR

A 0.00014
B 0.00012
C 8.58581
D 0.00000

Note that environment (A) reflects a linear cost-benefit
between instances configuration, since all computational units
have the same cost.

PROFUSE’s performance was compared against a basic
elasticity model, that aims to keep the system utilization
constant. Such EM is called Fixed Utilization and works by
periodically (using same feedback interval used by PROFUSE)
gathering data and (re)leasing instances in order to keep
system utilization 0.7. Finally, all presented results are the
mean value obtained out of 10 simulation rounds.

D. Results

Tables II and III compare PROFUSE’s performances for all
environments. Note that environment (B) has a slightly better
performance over environment (A) because the boot time of
new instances – the more instances leased, greater is the time
needed to make them available. At environment (B) when the
computational capacity should be increased in 4 units, a quad-
core instance can be leased. On the other hand, at environment
(A) the system has to wait 4 instances to boot up, with small
fluctuations on their boot time.

When environment (C) is used there is a strong performance
drop: approximately 8.6% and 10.8% of DMR for normal and
growing workloads, respectively. Such a poor performance was
expected since a FLIS is incapable of detecting noises and
react to them efficiently. However, when hooks are turned on
(environment(D)), PROFUSE presents an acceptable perfor-
mance – there were no deadlines misses with the normal work-
load and only 0.53% of misses with the growing workload.
Worth mention that PROFUSE’s FLIS was using an aggressive
configuration, trying to keep a system utilization of 0.8 in
average. When we changed to a conservative approach and

TABLE III
DMR PROFUSE WITH GROWING WORLOAD

Environment DMR

A 0.01928
B 0.01691
C 10.79001
D 0.52795
D Conservative 0.00000

TABLE IV
ELASTICITY MODELS COMPARISON

EM Env.A Env.C Env.D

FU 2.57830 97.98622 5.47310
PROFUSE 0.00014 8.58581 0,00000

targeted system utilization to 0.6 in the FLIS, there were no
misses at all (last line of Table III).

For comparisons purpose, Table IV shows DMR of Fixed
Utilization and PROFUSE elasticity models when submitted
to the normal workload on environments (A), (C) and (D). As
expected, PROFUSE outperforms FU model on all scenarios,
being a more secure choice for guaranteeing QoS constraints.

Using equation 3, the total revenue loss can be calculated.
Table V presents the results for both scenarios considered here:
e-commerce systems and blogs (see section I-A). PROFUSE’s
robustness is confirmed on those results, such as the usefulness
of hooks to handle workload noises.

Client conversion rate was set to 1% which, as suggested
in [20]. Also, the minimum number of clicks needed to
purchase an item is 7 (initial, item search, add to cart, initiate
check-out, provide username and password or register, insert
payment data, confirm purchase). To simulate a more real
scenario, where users search other items, read opinions, etc.,
we assumed purchases are done after 20 requests in average.
Finally, the mean value for each purchase was $100.00.
Revenue loss on a blog can be calculated in a simpler way, as
all requests generate an income ($0.001).

PROFUSE’s instance rental efficiency was compared against
both the cheapest case (20 single-core instances, fixed number)
and the most expensive case (20 quad-core instances, fixed
number), comprising lower and upper bounds. Table VI shows
the cumulative cost (revenue loss plus cost with instances
rental) for each strategy, where SC, QC, PL and PNL stands for
Single-Core, Quad-Core, PROFUSE-Linear and PROFUSE-
Non-Linear, respectively. From the 10th hour onwards, the
single-core only strategy is incapable of maintain the agreed
QoS becoming the most expensive configuration. From the
results, it becomes clear that PROFUSE is a cheaper alternative
than resource overprovisioning, here denoted as the quad-core
only configuration.

VII. CONCLUSIONS AND FUTURE WORKS

IaaS cloud hosted systems administrators usually face the
problem of deciding the computational power needed to ac-

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

TABLE V
REVENUE LOSS

Environment E-Commerce Blog

A $0.21 $0.00
B $0.18 $0.00
C $18,546.68 $370.93
D $0.00 $0.00

TABLE VI
CUMULATIVE COST

Time SC QC PL PNL

2 $0.80 $80.00 $0.16 $0.28
4 $3.60 $160.00 $0.74 $4.56
6 $8.00 $240.00 $1.32 $8.84
8 $14.00 $320.00 $2.54 $13.76
10 $20,397.31 $400.00 $3.98 $22.18
12 $61,533.23 $480.00 $6.00 $34.94
14 $102,678.31 $560.00 $8.42 $56.34
16 $143,894.43 $640.00 $11.12 $82.28
18 $185,064.57 $720.00 $14.06 $109.44
20 $226,253.46 $800.00 $18.04 $156.60
22 $267,323.94 $880.00 $22.38 $207.22
24 $308,412.46 $960.00 $27.82 $267.12

complish the QoS concerns needed to guarantee users satis-
faction. Finding the cheapest combination among the number
of instances, their configurations and prices is not an easy
task. Also, as workloads varies through time resource over-
provisioning can be a very expensive strategy – particularly
for cases when the number of clients is small.

This paper presented a novel elasticity model called PRO-
FUSE which computes the necessary computing power needed
for keeping requests response times below a threshold. PRO-
FUSE has a Fuzzy Logic Inference System that predicts
workload changes. The processes used for determining FLIS
variables, their fuzzy regions and initial IF-THEN rules were
described in great detail. Also, for handling unpredictable
huge workload changes PROFUSE provides a monitoring
mechanism, called hooks, that keep crucial system metrics
under close surveillance. Whenever an outlier is detected
on one of those metrics, the computing power expansion
routine is called. Finally, PROFUSE also provides a set of
algorithms to lease and release instances using a revenue-
centric approach where computational unit prices for each
instance configuration are taken into consideration.

The experiments were conducted using two types of work-
loads that are typical for web system and four possible
environments, covering from the simplest to the most com-
plete scenario. Analyzing experiments results, PROFUSE’s
robustness is clear with it being able to keep the QoS even
for the most stressful case. Finally, we showed that FLIS
feedback time, called latency, is crucial for a good PROFUSE
performance and should be set according to the mean time for
leasing a new instance from the cloud provider.

A. Future works

As future works, we intend to investigate a way to identify
workload patterns at runtime, giving PROFUSE the ability to
handle different workloads with different FLIS and compare
the approaches (single FLIS PROFUSE x multiple FLIS
PROFUSE). In the same direction, we intend to investigate
a method for automatize FLIS feedback times. Finally, we
intend to build an incremental version of PROFUSE, without
the need of historical data to create the FLIS.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, p. 5058, Apr. 2010.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.

[3] K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo, “Dynamic request
allocation and scheduling for context aware applications subject to a
percentile response time SLA in a distributed cloud,” in 2010 IEEE
Second International Conference on Cloud Computing Technology and
Science (CloudCom), Dec. 2010, pp. 464 –472.

[4] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “SmartScale: au-
tomatic application scaling in enterprise clouds,” in 2012 IEEE 5th
International Conference on Cloud Computing (CLOUD), Jun. 2012,
pp. 221 –228.

[5] A. L. Freitas, N. Parlavantzas, and J.-L. Pazat, “An integrated approach
for specifying and enforcing SLAs for cloud services,” in 2012 IEEE
5th International Conference on Cloud Computing (CLOUD), Jun. 2012,
pp. 376 –383.

[6] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, “Cost-
efficient and application SLA-Aware client side request scheduling in
an infrastructure-as-a-service cloud,” in 2012 IEEE 5th International
Conference on Cloud Computing (CLOUD), Jun. 2012, pp. 213 –220.

[7] G. McGovern. Selfish, mean, impatient customers:
New thinking: Gerry McGovern. [Online]. Available:
http://www.gerrymcgovern.com/nt/2008/nt-2008-07-14-selfish.htm

[8] M. Mazzucco, D. Dyachuk, and M. Dikaiakos, “Profit-aware server
allocation for green internet services,” arXiv:1102.3059, Feb. 2011, 18th
Annual IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2010, pp 277-
284.

[9] I. Goiri, F. Juliı́, J. O. Fitó, M. Macı́as, and J. Guitart, “Supporting cpu-
based guarantees in cloud slas via resource-level qos metrics,” Future
Gener. Comput. Syst., vol. 28, no. 8, pp. 1295–1302, Oct. 2012.

[10] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in High Performance Com-
puting, Networking, Storage and Analysis (SC), 2011 International
Conference for, Nov. 2011, pp. 1 –12.

[11] P. Bocharov, C. D’Apice, A. Pechinkin, and S. Salerno, Queueing
Theory. Walter de Gruyter, 2004.

[12] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai,
“Optimal autoscaling in a IaaS cloud,” in Proceedings of the 9th
international conference on Autonomic computing, ser. ICAC ’12.
New York, NY, USA: ACM, 2012, p. 173178. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371567

[13] R. Rajavel and T. Mala, “Achieving service level agreement in cloud
environment using job prioritization in hierarchical scheduling,” ser.
Advances in Intelligent and Soft Computing, S. Satapathy, P. Avadhani,
and A. Abraham, Eds. Springer Berlin / Heidelberg, 2012, vol. 132,
pp. 547–554.

[14] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti,
“Scalability patterns for platform-as-a-service,” in 2012 IEEE 5th Inter-
national Conference on Cloud Computing (CLOUD), Jun. 2012, pp. 718
–725.

[15] R. C. Berkan and S. L. Trubatch, Fuzzy systems design principles:
building Fuzzy IF-THEN rule bases. IEEE Press, Apr. 1997.

[16] U. of Waikato, “WEKA,” http://www.cs.waikato.ac.nz/ml/weka, 2016,
[Online; accessed 31-May-2016].

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

[17] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis
and implementation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 24, no. 7, pp. 881–892, 2002.

[18] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 3.

[19] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), Jun. 2012, pp. 423 –430.

[20] D. Felipini, “Plano de negcios para empresas da internet,” Jun. 2003.

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-483-1

ICAS 2016 : The Twelfth International Conference on Autonomic and Autonomous Systems

