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Abstract— Inter-agent collisions can occur in otherwise
dynamically-stable (i.e., Lyapunov stable) dual-agent leader-
follower systems. These inter-agent collisions between the leader
and the follower happen during the transient phase of the
system’s evolution, although the steady-state behavior of the
system is asymptotically/exponentially stable. Therefore, to
avoid such inter-agent collisions, it is essential to control the
relative error trajectory between the leader and the follower
during the transient phase of the system’s evolution. In this
paper, we introduce a novel projection operator based model-
reference control architecture that can mitigate impending
inter-agent collisions by modifying the transient dynamics of
relative trajectories. This controller augments the follower’s
baseline controller and consists of two essential components: a
collision-free reference model based on the projection operator
and a model reference tracking controller to guide the follower
to follow the reference-model. This paper defines the concept
of transient-instability in leader-follower systems, introduces
collision mitigation controller architecture, and presents an
illustrative example demonstrating its effectiveness.

Keywords— Inter-agent collision avoidance; Collision mitiga-
tion; Multi-agent systems; Swarms; Interconnected systems;
Motion planning; Projection operator.

I. INTRODUCTION

In a dual agent leader-follower system, the leader is an
independent entity; and the follower, as the name suggests,
follows the leader at a specified separation distance. Relative
position vectors and their associated dynamics are fundamen-
tal to the leader-follower formation maintenance. Therefore,
the dynamic stability of the relative error dynamics is of
paramount importance. We begin our discussion by intro-
ducing the mathematical preliminaries of dual agent leader-
follower systems.

In the figure below, there are two identical agents — linear
time-invariant (LTI) systems — identified by their indices
1, and 2, and their corresponding state vectors x1, and x2,
respectively. They are in a leader-follower arrangement, with
agent 1 as the leader, and agent 2 as the follower.

The trajectories of the agents evolve according to the
dynamics defined in (1). Here, i ∈ I = {1, 2}, is the index
of the two agents, xi is the state vector of the agents that
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Fig. 1. Two Agent Leader-Follower Formation

evolves in the n−dimensional state space X ⊆ Rn, ui ∈
U ⊆ Rm, and yi ∈ Y ⊆ Rp are the m−dimensional input
and p−dimensional output vectors of the agents, respectively.
The tuple (A,B,C) are the set of appropriately sized matri-
ces that model the system dynamics.

ẋi = Axi +Bui (1a)
yi = Cxi (1b)

Although not necessary, assume that in (1), the matrix A
has at least a one-dimensional null space. This assumption
allows for the arbitrary assignment of constraints on a partial
set of an agent’s state vector; without the use of a constant
control effort.

In this formation, agent 1 is an independent entity, and
agent 2, the follower, does not affect its dynamics. Agent 2
merely tracks agent 1 and maintains a spatial separation of
d2 ∈ X using the control law

u2 = G (y1 − y2 − Cd2) = GCξ2. (2)

Here, ξ2 ≡ x1 − x2 − d2 ∈ Rn is the relative error as
measured from agent 2, and G ∈ Rm×p is a stable closed
loop gain matrix that drives the relative error trajectory
ξ2(t)→ 0 as t→∞. Note that d2 is a vector quantity, and it
resides in the null space of the system matrix A (d ∈ ker(A)),
therefore, it can include many more constraints besides
distance. Equation (3) is the relative error dynamics of the
two agent formation, and a suitable value of the gain matrix
G will render the closed loop matrix AC ≡ (A − BGC)
Hurwitz, thereby meeting the formation control objective.
We say that agent 2 is “looking” at agent 1 when it takes
control actions based on its sensor observation of agent 1 —
like in (2).

ξ̇2 = (A−BGC)ξ2 +Bu1 (3)
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The two agent formation discussed thus far is quite
common in many applications, and it sets the stage for
discussion on transient stability in this paper. Examples of
the formation just described include adaptive cruise control
in vehicles, autonomous convoy or platooning, autonomous
mid-air refueling, and formation flying spacecraft among
others. Whatever the application may be, it is important to
ensure that the dynamics in (3) are dynamically stable (i.e.
Lyapunov stable). In our previous work [1]–[3], we explored
the stability and adaptive control of several general formation
geometries with large number of agents and arbitrary net-
work topologies. In this paper, we use the two-agent leader-
follower formation from Figure 1 to introduce the concept of
transient instability in leader-follower systems, and a novel
control architecture that mitigates transient stabilities. We
define transient instability for the leader-follower formation
as follows:

Definition 1.1 (Transient Stability): The dynamics of a
two agent leader-follower formation is transient-stable if the
relative error trajectory ξ2(t)→ 0 as t→∞, and

‖ξ2(t)‖ ≤ ξmax2 ≡ (1− α)‖d2‖, (4)

for all t ∈ R+. The scalar α ∈ [0, 1) describes a safety
perimeter around agent 2.

In other words, we say that the two agent system is
transient-stable if 1) the relative error trajectory is asymp-
totically stable, and 2) the agent trajectories evolve collision
free. The problem of collision avoidance in formation and
swarms is a thoroughly studied subject in the control and
robotics literature, but many questions, particularly that of
transient stability, still remain unanswered.

When it comes to collision avoidance algorithms in au-
tonomous systems, the paper by Ames et. al [4] is notewor-
thy. They present a control barrier function based Quadratic
Programming (QP) algorithm, that the follower continu-
ously executes to generate collision free trajectories, all the
while meeting asymptotic stability of the relative trajecto-
ries. And, since the control inputs are generated optimally,
we know that the trajectories will be unique. The recent
survey by Rossi et. al [5] offers comprehensive outlook
on the current state-of-the-art multi-agent coordination and
control algorithms. Based on this survey, the vast array of
coordination and control algorithms can be classified into
two broad categories: predictive and reactive algorithms.
In predictive algorithms, optimization based path planning
algorithms determine collision free trajectories for the agents
to follow. Well known predictive algorithms include Optimal
Reciprocal Collision Avoidance (ORCA), and Model Pre-
dictive Control and Sequential Convex Programming (MPC-
SCP). Reactive algorithms, on the other hand, accomplish
collision avoidance on an ad-hoc basis; when a safety-
perimeter violation occurs, imminent collision is avoided by
recomputing the motion planning algorithm. Voronoi-based
[6], and Artificial Potential Functions (APF) [7] are two
examples of reactive algorithms. With regards to stability,
predictive algorithms, in general, can guarantee asymptotic
stability but not collision avoidance, and reactive algorithms,

Fig. 2. Projection Operator in Action

can guarantee collision avoidance, but not asymptotic stabil-
ity. It is worth mentioning that no algorithm mentioned in
[5] can guarantee transient-stability.

Unlike the methods thus described, in this paper, we
introduce a smooth, Lipschitz continuous method for col-
lision avoidance that does not require the controller to solve
optimization problems continuously in realtime. Moreover,
this approach can satisfy dynamic stability and collision
avoidance simultaneously. In the proposed method, we in-
troduce a novel reference model for the follower that uses
the projection operator to modify the drift vector field (A−
BGC)ξ2 + Bu1 in (3) of the relative error vector ξ2(t) to
generate transient-stable relative trajectories. Since directly
differentiating ξ2(t) can induce unwanted noise into the
feedback loop, we instead propose a Luenberger estimator
of the form

˙̂
ξ2 = (A−BGC)ξ̂2 + L(ŷ2 − y2) (5a)

ŷ2 = Cξ̂2 (5b)

to generate an estimate of the drift vector field in (3).
This estimator is embedded within the projection operator
to form the reference model, thereby generating relative
error trajectories that satisfy the constraint (4). Finally, we
augment the baseline control law in (2) with a type-1 track-
ing control law that tracks the transient stable trajectories
generated by the reference model. It is the combination of
the reference model, the reference model tracking controller,
and the baseline relative error regulator that ensures transient
stability in Definition 1.1. Figure 3 shows the proposed
control methodology. We present our results in three sections.
In Section II, we introduce the fundamentals of the projec-
tion operator and a few essential results without proof. In
Section III, we introduce the transient instability mitigation
architecture and discuss its various components, and present
the main theoretical results. Finally, in Section IV, we use an
illustrative example to demonstrate the effectiveness of the
collision mitigation strategy presented in this paper.

II. THE PROJECTION OPERATOR

The projection operator is among several methods in the
convex analysis that can solve constrained convex optimiza-
tion problems. In gradient descent iterations, the projection
operator projects the gradient of the cost function onto the
constraint manifold, limiting the solution to the convex set
defined by the constraints. According to [8], Kreisselmeier
and Narendra [9] were the first to use the projection operator
to bound time-varying gains in adaptive control systems. And
since then, it has been hugely popular in several adaptive
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control algorithms [10] [8] [11]. Let θ ∈ Rn be a state
vector that evolves according to

θ̇(t) = g(θ), (6)

and suppose that we want the trajectory θ(t) to stay within a
convex set with the boundary f(θ) = c. We can accomplish
this by constraining the dynamics in (6) with the projection
operator dynamics

θ̇(t) = Proj(θ, g(θ))

=

{(
I − ∇f(∇f)

T

‖∇f‖2 f(θ)
)
g(θ) if f > 0 and θT∇f > 0

g(θ) otherwise.
(7)

The modification of the dynamics in (6) by (7) guarantees
that θ(t)’s trajectory will stay within the convex set

Θ = {θ ∈ Rn : f(θ) ≤ 0}. (8)

The projection operator achieves this by subtracting from the
drift vector field g(θ), the component of g(θ) that is parallel
to the gradient vector ∇f(θ) (see Figure 2). Therefore, drift
vector Proj(θ, g(θ)) lies on the tangent plane TθM, where
M = {θ : f(θ) = c} is the constraint manifold. The
following is a significant lemma that is useful in stability
proofs involving the projection operator.

Lemma 2.1 (Projection Inequality): Let θ∗ be point in the
interior of the convex set Θ, and let Γ > 0 be some positive
definite and symmetric matrix, then for any other θ(t) ∈ Θ,

(θ − θ∗)T
(
Γ−1Proj (θ,Γg(θ))− g(θ)

)
≤ 0. (9)

For the proof of this inequality, please refer to [8]. In this
section, we have given a concise summary of the application
of the projection operator applied to dynamical systems. For
a more thorough treatment on this subject, we ask the reader
to refer to [12] [11] [8].

III. THE COLLISION AVOIDANCE AND DYNAMIC
STABILITY ARCHITECTURE

As discussed earlier, the follower implements the output
feedback control law (2) to maintain the separation vector
d2 from the leader, resulting in the closed-loop relative error
dynamics (3). Also, as discussed before, we know that the
trajectory ξ2(t) can violate the transient stability criteria in
Definition 1.1, even though the closed-loop matrix Ac ≡ A−
BGC is Hurwitz, and the input u1(t) is bounded. Therefore,
there is a need to manage and modify the transient dynamics
of the vector ξ2(t) to prevent inter-agent collisions, and hence
satisfy the transient stability criterion. One — and possibly
the most straightforward — approach, would be to specify
the transient stability criteria directly in terms of frequency
or time domain specifications. Then, compute the feedback
gain G using an appropriate method from classical/modern
control theory. This approach can work quite well for multi-
agent systems with low cardinalities, like the leader-follower
system discussed in this paper. Still, as the number of
agents gets more substantial, and communication and sensing

Follower + Baseline Controller

+
+

Collision Free Trajectory Estimator

+
+

Collision Free Trajectory Tracker

Fig. 3. Follower Collision Mitigation Architecture

topologies can get complicated, it can be challenging to
compute gains for the individual agents.

Moreover, in [3], we show that eigenvalues of the Lapla-
cian matrix of the network digraph of the formation can
inadvertently scale the baseline feedback gains G, thereby
causing stability issues in the formation geometry, and all
the while degrading the controller performance. Motivated by
these issues, and addressing the problem of transient stability
in formations with a large number of agents, we introduce
the control architecture shown in Figure 3, that can simulta-
neously satisfy dynamic stability as well as avoid inter-agent
collisions. The proposed architecture consists of two essential
controller subsystems: the collision-free (CF) estimator, and
the collision-free (CF) trajectory tracker. Combined, the two
controller subsystems augment the baseline control law (2)
to guarantee transient stability. The CF subsystems generate
the control vector ua2 , and adds to the baseline control law
as

u2 = GCξ2 + ua2 . (10)

At its core, the CF estimator has a drift vector field

h(ξ̂2, y2, ua2) = Acξ̂2 −Bua2 + L(ŷ2 − y2), (11)

which is the structure of a standard Luenberger observer.
Provided the pair (Ac, C) is observable, and the closed-loop
estimator matrix Ac + LC is Hurwitz, the estimated state
ξ̂2(t) will converge exponentially to the actual state ξ2(t). We
enclose the estimator drift vector field h(ξ̂2, y2, ua2) inside
the projection operator. Therefore, we have

˙̂
ξ2 = Γ−1Proj(ξ̂2, h(ξ̂2, y2, ua2))

= Γ−1

{
(I − ∇f(∇f)

T

‖∇f‖2 f(θ))h , if f > 0 and ξ̂T∇f > 0

h , otherwise.
(12)

Here,

f(ξ̂2) ≡ (1 + ε)‖ξ̂2‖2 − ‖ξ̂max
2 ‖2

ε‖ξ̂max
2 ‖2

, (13)

which is the constraint vector for the projection operator,
and ξmax

2 is the bound on the relative error trajectory from the
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transient stability criterion in Definition 1.1. ε > 0 is a scalar
that creates a smooth boundary by defining two concentric
convex sets

Ω0 ≡ {ξ̂2 ∈ Rn : ‖ξ̂2‖ ≤
‖ξmax

2 ‖√
1 + ε

}, and (14a)

Ω1 ≡ {ξ̂2 ∈ Rn : ‖ξ̂2‖ ≤ ‖ξ̂max
2 ‖}. (14b)

From Lemma 11.4 in [8], for any trajectory ξ̂2(ti) = ξ̂ti ∈
Ω0, the projection operator guarantees that for all t > ti,
ξ̂2(t) ∈ Ω1. Hence, the estimated state vector ξ̂2(t) satisfies
the transient characteristics and generates CF trajectories.
Moreover, in the following result, we show that even though
the estimator dynamics are enclosed within the projection
dynamics, the estimated state ξ̂2(t) exponentially converges
to the actual state vector ξ2(t).

Theorem 3.1 (Collision Free Estimator Stability): The
error trajectory e(t) ≡ ξ̂2 − ξ2, of the estimator dynamics

˙̂
ξ2 = Γ−1Proj(ξ̂2,Γh(ξ̂2, y2, ua2))

ŷ2 = Cξ̂2,
(15)

with h(ξ̂2, ua2 , y2) ≡ Acξ̂2−Bua2 +L(ŷ2−y), is exponen-
tially stable.

Proof: For notational convinence, let z ≡ (ξ̂2, y2, ua2).
Taking the time derivative of e(t), we have

ė(t) =
˙̂
ξ2(t)− ξ̇2(t)

= Γ−1Proj(ξ̂2,Γh(z))− h(z) + (Ac + LC)e.

Let V (e) be the positive definite and decresent Lyapunov
function associated with the estimator error trajectory e(t),
and defined by

λmin(Γ)‖e‖2 ≤ V (e) ≡ 1

2
eTΓe ≤ λmax(Γ)‖e‖2.

By taking the time derivative of V (e) and using Lemma 2.1,
we obtain

V̇ (e) = eTΓė

= eTΓ
(

Γ−1Proj(ξ̂2,Γh(z))− h(z)
)

︸ ︷︷ ︸
≤0

+ eTΓ(Ac + LC)e

≤ eTΓ(Ac + LC)e.

The closed-loop estimator matrix Ac + LC is Hurwitz,
therefore, for a given Q > 0, there exists a matrix Γ > 0
that solves the Lyapunov matrix equation

Γ(Ac + LC) + (Ac + LC)TΓ = −Q.

Therefore,

V̇ (e) ≤ −1

2
eTQe ≤ −1

2
λmin(Q)‖e‖2 ≤ − λmin(Q)

2λmax(Γ)︸ ︷︷ ︸
=µ

V (e)

⇒ V̇ (e) + µV (e) ≤ 0.

Using the integrating factor eµt, we have∫ τ

0

eµt(V̇ + µV ) ≤
∫ τ

0

eµt 0 ⇒ V (e(τ)) ≤ e−µτV (0)

Further,

V (0) ≤ λmax(Γ)‖e(0)‖2, and

√
λmin(Q) ‖e(τ)‖ ≤ V 1

2 (e(τ)) ≤ e−(µ/2)τ V 1
2 (0).

Therefore,

‖e(τ)‖ ≤

√
λmax(Γ)

λmin(Γ)︸ ︷︷ ︸
=K0

e−(µ/2)τ ‖e(0)‖ = K0e
−(µ/2)τ‖e(0)‖

The CF tracker subsystem generates the input vector ua2
so that the follower can track the transient stable relative error
trajectories produced by the CF estimator. Fundamentally,
the CF tracker is a servomechanism problem, and there are
several options for its structure. A PID/LQR controller based
type-1 tracker is a perfectly reasonable option. With a view
on applying the CF tracker/estimator to more extensive and
complex swarms, we opt for an output-feedback model-
reference based tracking architecture. A model-reference
based approach can readily accept time-varying adaptive
gains, which allows for the automation of gain determination
in complex formation structures.

Assumption: The output state vector ξ̂2(t) of the CF
estimator can be expressed as a linear combination of basis
vectors φi(t) with some coefficient matrix L.

With this assumption, we can write the CF estimator
output in the command generator form

ξ̂2(t) = Lφ(t)

ŷ2 = Cξ̂2(t)
(16)

where, φ(t) = (φ1(t), . . . , φp(t))
T , is a column vector of

tracking signal basis functions. According to [13], (16) is
equivalent to the dynamical system

η̇(t) = Fη(t)

ŷ2 = Cη(t).
(17)

The following result is the stability proof of the CF tracker
subsystem based on the output-feedback model-reference
tracking controller.

Theorem 3.2 (Reference Model Tracking): The follower
LTI system

ẋ2 = Ax2 +Bu2 (18a)
y2 = C(x1 − x2 − d2) = Cξ2, (18b)

with the tracking control law

ua2 = Ge(y2 − ŷ2) + S2ŷ2, (19)
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for appropriately sized gain matrices Ge, and S2, will track
the command generator reference (CGR) system

ξ̂2(t) = Lφ(t) (20a)

ŷ2 = Cξ̂2(t), (20b)

such that, both the output relative error vector ey(t) ≡
ŷ2(t)−y2(t), and the error between the relative error vectors
e(t) ≡ ξ̂2(t) − ξ2(t), are driven to the origin exponentially.
Provided, the transmission zeros and the poles of the relative
error dynamics ξ2(t) are distinct.

Proof: Let ξ∗2 , u∗2, and y∗2 , be the ideal trajectory, ideal
inputs, and ideal output, respectively. The ideal trajectory,
and its associated vectors evolve according to the dynamics

ξ̇∗2 = Acξ
∗
2 +Bu∗2 (21a)

y∗2 = Cξ∗2 = ŷ2. (21b)

That is, the ideal trajectory ξ∗2 evolves so that it tracks the
CGR system output exactly. Let S be a matrix that relates
the ideal trajectories to the CGR system, defined by(

ξ∗2
u∗i

)
= S

(
ŷ2
0

)
=

(
S11 S12

S21 S22

)(
ŷ2
0

)
. (22)

The CGR system can also be expressed in the form of an
equivalent LTI system

η̇(t) = Fη(t) (23a)
ŷ2 = Cη(t) (23b)

Using (21), and (23), and taking the time derivative of (22),
we have matrix equations

(AcS11 −BS21)C = S11CF (24a)
CS11 = I, (24b)

which are the matching conditions for the tracking problem.
The implementation of the tracking control law requires the
solution to the matrices S11 and S21. According to [14], the
solution to the matrices S11 and S21 exists, provided the
transmission zeros of the reference model, and the poles of
the plant are distinct, which by assumption is true. We now
define the tracking error ∆ξ2 ≡ ξ∗2 − ξ2. Taking its time
derivative, we have

∆ξ̇2 = Ac∆ξ2 −B∆ua2 (25a)
∆y2 = C(ξ∗2 − ξ2) = y∗2 − y2 = ŷ2 − y2, (25b)

where, ∆ua2 = u∗a2 − ua2 . Let ∆ua2 = Ge∆y, so that, the
closed-loop tracking error system

∆ξ̇2 = (Ac −BGeC)∆ξ2 = Ãc∆ξ2 (26a)
∆y2 = C∆ξ2 (26b)

is exponentially stable. Therefore, ∆ξ2 → 0 as t → ∞,
which implies ξ2(t)→ ξ̂2(t) as t→∞. Also, since

∆ua2 = Ge∆y

⇒ u∗a2 − ua2 = Ge(ŷ2 − y2)

⇒ ua2 = Ge(y2 − ŷ2) + S21ŷ2

The proposed CF tracking controller tracks the collision-free
trajectory generated by the CF estimator. But, only if the
follower dynamics are deterministic. In practice, an adaptive
control law would determine the gain matrices Ge and S21,
which would result in robust tracking performance similar or
better to that of integral action in type-1 servomechanisms.

IV. SIMULATION RESULT

We use the two simulation runs: Run 1 with CF tracker
disabled, and Run 2 with CF tracker enabled, to demonstrate
the functioning, and also highlight a few limitations of the
CF estimator and tracker subsystem. For the two simulation
runs, the leader and follower are double integrator agents
with the model ẍ = u. The leader and the follower initially
rest at their specified separation of 5 meters. After a specified
time of about 20 seconds, a position and velocity disturbance
is applied to the leader using the input vector ud, as shown in
Figure 5. ẋ1 = Ax1+Bu1+ud is the structure of the leader’s
dynamics with the disturbance vector input ud. In Figures 6
and 7, the solid horizontal lines named Relative Error Upper
limit, and Relative Error Lower limit, reflect the relative error
bounds in (3). The dashed lines represent the beginning of the
soft constraint boundary for the projection operator; the esti-
mates from the projection operator are allowed to exceed the
soft boundary temporarily. Figure 4 shows timed sequence
of the leader and follower positions for the two simulation
runs. Stiffness in the Ordinary Differential Equations (ODEs)
can arise from the projection-based dynamics in the follower
reference model, and it can lead to slow convergence when
using popular explicit ODE solvers such as the Dormand-
Prince RK5(4) [15]; usually, an implicit solver is a better
solution. For the simulation runs in this paper, we used the
LSODA solver (which is roughly equivalent to ode15s in
MATLAB) from SciPy [16], which is a scientific library for
Python, and it can automatically switch between implicit and
explicit methods to handle stiff ODEs.

Figure 6 shows the results for the simulation run with the
CF tracker turned off. There are two important outcomes.
First, as expected, the relative error trajectory violates the
upper and lower limits for collision avoidance. Second, the
CF estimator generated trajectory saturates and never exceeds
the transient stability bounds. However, when the actual
relative error is within the bounds, the estimator perfectly
tracks the actual trajectory. The outcomes of this simulation
demonstrate the predictions of Theorem 3.1.

Figure 7 shows the results for the simulation run with
the CF tracker turned on. Right away, we see that both
the true and the estimated relative trajectories never exceed
the transient instability bound; therefore, no collisions occur.
Since the CF estimator on the follower does not have access
to the leader’s input information, whenever the vector ud is
non-zero, a near constant bias/DC component exists between
the actual and estimated relative trajectories. The magnitude
of the disturbance vector components is deliberately limited
to 2 [m] or [m/s]. If the magnitude of the disturbance is any
higher, the bias between the actual and estimated trajectories
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increases and degrades the tracking performance, which can
result in inter-agent collisions. It can be shown that the
sharing of control information (i.e., u1(t)) from the leader
to the follower will resolve the aforementioned issues.
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V. CONCLUSION

We have developed a novel controller architecture that
addresses the problem of transient instabilities in dual-agent
formations. We also presented the preliminary theoretical

results on the stability of the collision-free estimator and the
tracker subsystems. The proposed controller is particularly
attractive due to its simplicity and its ability to guarantee
both dynamic and transient stability. Future work will focus
on 1) developing a comprehensive analytical framework that
will investigate robustness to external noise and disturbances.
And 2) on generalizing the architecture to larger and more
complex formation structures.
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