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Abstract—We propose a decentralized, collaborative approach for
area coverage and mapping by means of a swarm of robots.
The approach is hinged on Information Theory, and builds over
a Reinforced Random Walk (RRW) specifically tailored for a
precision agriculture scenario, but general enough to accommo-
date different applications. Here, we improve by considering the
estimated uncertainty about the features present in a target area,
and by the expected reduction in uncertainty that visiting the
target area could provide, that is, the information entropy and
information gain, respectively. The latter is exploited to weight
the random selection of the next area to explore, taking also into
account the presence of nearby agents that could visit the same
target area. The proposed approach features no configuration
parameters related to the number of agents employed and the size
of the field, opening to direct implementation without preliminary
tuning and configuration steps.

Keywords–Swarm Robotics; Entropy; Information Gain; Ran-
dom Walk

I. INTRODUCTION

Many monitoring and mapping applications require to
fully cover a wide region of space detecting the presence of
points of interest and mapping their exact position. This is a
common task, especially for precision agriculture, which has
been approached in many different ways: pheromone-based
approaches [1] [2], evolutionary path planning [3], and random
walk based approach [4] [5] to cite some. In this research, we
rely on Information Theory and propose a new algorithm for
coverage and mapping of large areas. We consider precision
agriculture as the target application, whereas a swarm of
Unmanned Aerial Vehicles (UAVs) is required to detect the
presence of weeds in the field, but the proposed algorithm
is general enough to accommodate a variety of scenarios.
The swarm inspection strategy is informed by a heuristic
computed according to Information Theory concepts such as
Entropy and Information Gain (IG). Moreover, we exploit the
presence of multiple robots scattered throughout the field and
propose a decentralized collaborative approach that improves
accuracy and reduces the time needed for exploration. Indeed,
by quantifying and including the knowledge of an agent about
the area, it is possible to develop a cooperative behavior that
focuses on points of interest and reduce the mapping time, i.e.,

the time needed to recognize all the relevant features within
the field. In this work, we assume the following simplified
world model. The work area is partitioned in a 4-connected
grid which can be configured to represent spaces of different
complexity. Agents are not limited to orthogonal motion and
can move in continuous space. A grid cell ck ∈ C represents a
region of the field, where a robot can move, and might contain
a certain number of points of interest (e.g., weeds). All robots
are identical and each robot is identified by its unique id i and
its position in the environment. The robots move at constant
speed and are able to avoid collision thanks to an on-board
collision avoidance algorithm [6]. Robots can communicate
with each other by using broadcast communication that might
be subject to range limitations.

II. INFORMATION GAIN FOR EXPLORATION

The swarm strategy aims at maximizing the expected infor-
mation that could be gathered from an area after inspection: the
IG, that is, the expected reduction in entropy. When used for
exploration and mapping tasks, the IG can be used to quantify
how much knowledge would be obtained if an observation in
a certain location occurs [7]. To this end, we exploit the IG
to quantify the information that could be gathered from a new
observation performed by the agents in a specific cell ck and
to represent the utility of visiting it. In its simplest form, at a
specific time instant, the agent i can compute the IG of a cell
ck according to the following equation:

IGi(ck) = Hi(ck)−Hi(ck|ok(i)) (1)

where Hi(ck) express the residual uncertainty that robot i has
about cell ck, and Hi(ck|ok(i)) is the conditional entropy of
the same cell given the observation ok performed by robot i
at a specific time instant. The residual uncertainty of a cell is
computed as follows.

Hi(ck) = −
∑

pi(ck)log(pi(ck)), (2)

with pi(ck) representing the knowledge of robot i—i.e., the
current knowledge about the number of points of interest
existing in cell ck, which are in a discrete number and are
represented by a vector that associates to each value c ∈ [0, C]
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the probability of having c points of interest. Lastly, replacing
ok(i) with õk, the conditional entropy is:

Hi(ck|õk) = −
∑
o

pi(õk)
∑
c

[pi(ck|õk) log (pi(ck|õk))] .

(3)
The knowledge vector is calculated by means of the prob-
ability of having a certain observation as pi(ck|õk) =
pi(ck)pi(õk|ck)/pi(õk), where pi(ck|õk) is the probability of
robot i performing an observation o for the cell ck. Thus,
each new observation increases the confidence about the points
of interest present in a cell. When the uncertainty decreases
below a fixed threshold, the cell is considered as mapped and
no further observation is required. Note that observations can
also be shared by neighbouring robots, allowing to update the
residual uncertainty about a cell also when others have visited
it. In this way, the robots keep a local model of the entire area
exploiting both own and others’ observations.

III. INFORMATION THEORY ENRICHED RANDOM WALK

The IG of a cell can now be used as a proxy of the expected
quantity of information gathered from a new observation of a
cell. This is computed separately from each agent in the swarm
and in a completely decentralized way since the units in the
swarm only rely on their local knowledge for the computation
of these values—e.g., the knowledge vector p(ck). Computed
values are then used for next target selection. In particular,
we propose a distance-aware collaborative strategy that assigns
higher probabilities of inspection to closer cells—avoiding big
jumps that proved to be detrimental for exploration [4]—and
that weights the decisions according to other agents expected
behaviors. We start by assigning probabilities to each cell
thanks to (1):

Pi(ck) =
IGi(ck)∑
z IGi(cz)

(4)

where Pi is the probability of selecting cell ck computed from
the perspective of agent i with respect to all cells considered
for inspection at this stage. Nonetheless, (4) alone is not
enough since it does not consider the presence of other agents,
hence, collaboration. To this end, we rewrite (1) has:

Pi(ck) =
IGi(ck)∑
z IGi(cz)

∏
j 6=i

[
1− IGj(ck)∑

z IGj(cz)

]
(5)

where, the probability Pi(ck) is now weighted by the proba-
bility that the cell ck will be selected by inspection by another
agent j 6= i. This allows for direct inclusion of other agents
operations and in a completely decentralized way since all
the probabilities in the right-most term are computed relying
only on the local knowledge of agent i. Lastly, we introduce
distance and upgrade (5) as:

Pi(ck) =
di(ck)

−1IGi(ck)∑
z di(cz)

−1IGi(cz)

∏
j 6=i

[
1− dj(ck)

−1IGj(ck)∑
z dj(cz)

−1IGj(cz)

]
(6)

with the terms di(ck) representing the euclidean distance
between agent i and the cell ck. From a computational point of
view, (5) is expensive and does not scale well with hundreds of
agents. To mitigate this issue, the choices are constrained to the
local neighbourhood of the agent (see Figure 1). At first, the
algorithm computes the probabilities only for immediate neigh-
bors cells—i.e., those composing the 3× 3 neighbourhood. If

Figure 1. Graphical illustration of cells consideration for random selection
based on IG.

no valid cell is found—i.e., all cells are already mapped or
targeted by other agents—the algorithms proceeds with the
5 × 5 neighbourhood. In case there is still no valid cell, a
random choice is made among the cells of the outer border that
are not targeted by other agents. Note that the set of agents
taken into account in (6) is constrained to those agents that
can potentially move to the target cell ck, hence those that are
within a 5× 5 neighbourhood of ck.

IV. CONCLUSION AND FUTURE WORK

We presented an algorithm for area inspection that relies on
IG to chose the next area to inspect. It does not present free
parameters, exempting the user from pre-operational tuning
and making it suitable for application such as search and rescue
and precision agriculture, where the deployment speed is an
important requirement. Next, it is completely decentralized,
robust to failure and noisy communication since the cell se-
lection procedure relies only on local knowledge. Nonetheless,
the latter is built over information received during operation
and local communications are required for good performance.
To this end, we are currently working on introducing direct
sharing of the IG through belief propagation. We believe that
this would help reducing the overall communication overhead
and will greatly boost the performances. Last, the algorithm
scales up to swarm size of hundreds and, if limiting the agents
considered in (6) to local neighbors, even more.
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