
A′ARAF: An Asynchronous Router Architecture using Four-Phase Bundled
Handshake Protocol

Syed Rameez Naqvi
Department of Computer Engineering

Vienna University of Technology
Vienna, Austria

rnaqvi@ecs.tuwien.ac.at

Abstract—The problem of the global clock distribution on
multicore systems has rightly abandoned the use of syn-
chronous interconnection networks, but increased the design
complexity of the clocked islands. In this work, the design of
a completely asynchronous router, with multiple arbitration
paths, is presented in detail. The data flow between all the
heterogeneous components is based on four-phase handshake
protocol. We simulate two 2D mesh networks of different
sizes, and propose an evaluation methodology for each of the
two important properties: deadlock freedom and reachability.
Simulation results show that our networks satisfy both of these
properties even against a reasonable flit-injection rate. The
inter-router communication is also based on the same single
rail, return to zero protocol.

Keywords-Asynchronous; Networks-on-Chip; Router archi-
tecture; Four-phase bundled; Single rail; Return to zero (RZ);

I. INTRODUCTION

Until recently, the multicore systems made use of the
standard bus architecture to allow communication between
the cores. Although such systems did not pose a great threat
to performance, it is expected that in near future buses are
going to become a bottleneck with a tremendous increase
in the number of processing cores integrated on a single
chip. The Networks-on-Chip (NoC) approach proves to be
an efficient solution to communication problems, reducing
wiring complexity, and thus, power consumption. However,
global clock distribution in NoC, in real time bounds,
may also not be possible with the billion transistor era
approaching fast [1]. The Asynchronous Networks-on-Chip
(ANoC) design, a special case of Globally Asynchronous
Locally Synchronous (GALS) systems, has gained fame in
the recent years. It not only eliminates the need of a global
clock signal, but promises to provide power efficiency and
higher modularity compared to its synchronous counter parts
[2].

The primary job of the NoC, whether clocked or not, is to
provide a communication infrastructure between numerous
cores (may be processors or IP modules). Normally these
cores are clocked, as a result of which, there has to be
an interface between the core and the ANoC. Either this
interface is made a part of the router, resulting in clocked
architecture, or kept separately as a Sync-Async converter

between the core and the network. While AEthereal [3]
is one of the most famous NoCs that adopt the former
approach, Sheibanyrad and Greiner [4] have proposed two
efficient Sync-Async converters for an ANoC. In this work
we assume the latter approach which seems more attractive,
as it significantly reduces the design complexity of the router
by eliminating the need of synchronizer circuits, and thus
minimizes power consumption at the routing level.

Zeferino et al. [5] have proposed SOCIN NoC, which
uses a handshake signal based flow control, where a VALID
signal is sent whenever a new flit is transmitted. In this
work we present the design of an asynchronous router
architecture, which uses the same single rail, return to zero
(RZ) handshake protocol. A 2D mesh network, with 2x2 and
4x4 structures, has been simulated. Our simulation results
show deadlock freedom even with all interconnects being
exercised simultaneously. Furthermore, the novelty of the
design, besides being completely asynchronous, rests with
the deployment of multiple arbiters per tile. While a single
arbiter in a switch would allow only one input port to access
the output port at a time, our scheme allows multiple pairs
of tiles to communicate independently. For instance, data at
the east input port being switched to the west output port,
does not hinder switching between the north and south ports
pair; as well as data at the west input port can proceed to
the east output port simultaneously. This tradeoff between
the wiring complexity and the throughput is made in order
to compensate the slow nature of four-phase handshake
protocol [6], which requires two transitions from each of the
sender (producer) and the receiver (consumer), alternately
for a successful data transfer.

The rest of the paper is organized as follows. The step-
by-step design of the router and network is described in
Section II. Section III presents the evaluation methodology.
The simulation results are given in Section IV. Section V
concludes the paper with future work.

II. ROUTER ARCHITECTURE AND NETWORK
DESIGN

The ultimate aim of our work is to introduce a novel
fault-tolerance/self-repairing mechanism in the ANoC (not

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

the topic of this paper though). Hence, we do not emphasize
much on the performance aspects related to the throughput
of our network. In fact, we intend to keep the network as
simple as possible, so that the issues that the complexity of
the design adjoins may be avoided; such as, livelocks which
may occur even with the state-of-the-art adaptive routing in
place. Having multiple arbiters on our tile also adds to the
simplicity of the design by reducing the number of candi-
dates for arbitration, eventually eliminating the possibility
of a deadlock due to traffic congestion: the primary focus
of this work.

To start-off with, we build our interconnection network as
a 2D-Mesh of sizes 2x2 and 4x4, which might be scaled later
if required. Wormhole switching [7] alongside XY-Routing
[8] has been adopted which allows us to: 1) build completely
independent flow-paths for the header-, body- and tail- flits,
saving power, 2) reduce the design complexity of the Input
Controller, and 3) guarantee deadlock freedom.

Table I presents the packet- size and format for all the
packet types. The two little-endian, most significant bits
(MSBs) indicate the type of flit. “11” represents a header
flit, “10” is reserved for a tail flit, and “0x” for the body flits.
Since we keep an explicit specifier for the tail flit, we do not
need an additional adder to count the number of flits that
have arrived. In addition, this gives a flexibility to transmit
and receive packets of variable sizes. The addressing scheme
that we have adopted is influenced by MANGO [9], in
which each pair of bits, starting from 31 down to 0, in
the header flit, indicates the next hop; and thus each pair
needs to be removed/rotated on every hop so that the next
pair can indicate the next subsequent hop. For instance in
Table 1(A), “00” at positions 31:30 tells the switch that
the incoming data has to be directed to east. Therefore,
“00” after being written into the destination latch, must be
rotated, thus bringing “10” at its positions. Subsequently, at
the next hop, the switch will direct the incoming data to
north corresponding to the pair “10”. In the same manner,
“01” corresponds to the west output port, and “11” to the
south. If the next hop is identical to the input port, then
the packet is assumed to be directed to the core; therefore,
backtracking [10] is not supported.

Fig. 1 presents the block diagram of our fully acknowl-
edged asynchronous router. Primarily, the overall design
is divided into two parts: Input Handler (IH) and Output
Generator (OG). The former one is responsible for capturing
the input data, reserving the appropriate output port arbiter,
guiding the incoming data to the output unit, and providing
the output unit with associated control signals. On the other
hand, the latter guides the incoming data to the appropriate
output port based on the control signals it received from
the IH. In the following we describe each of these modules
briefly.

Table I
PACKET FORMAT AND SIZE: (A) HEADER FLIT, (B) TAIL FLIT, (C)

BODY FLIT

1 1 1 0 ... 0 1 0 0 1 1
Bit-0 1 2 3 ... 28 29 30 31 32 33
Dest-16 Dest-15 ... Dest-2 Dest-1 Flit-Type

(A)
1 0 0 0 ... 0 0 1 0 0 1

Bit-0 1 2 3 ... 28 29 30 31 32 33
Payload Flit-Type

(B)
0 0 0 0 ... 0 0 1 0 x 0

Bit-0 1 2 3 ... 28 29 30 31 32 33
Payload Flit-Type

(C)

Figure 1. Block Diagram of the Async Router

A. Flit Categorization Logic (FCL)

As explained above, the two MSBs indicate the type of
the incoming flit. Depending upon the type, the flit has to
be directed to the appropriate unit. The Flit Categorization
Logic (FCL) is responsible to: i) identify the flit, ii) report its
type to the Input Controller (ICON), and iii) guide it either
to DeBS in case of a header flit, or to the Select Module
otherwise.

B. Destination Bits Shifter (DeBS)

The DeBS module performs two functions: 1) rotates the
bits 31:30 of the header flit to the least significant bit (LSB)
places, so that the new pair at places 31:30 indicates the
output port of the succeeding node, 2) forwards the rotated
bits to the destination latch, fig 2. The latched data then
guides the OG in switching the header and the following flits
to their appropriate destination ports. In case the incoming
flit is not a header flit, DeBS becomes silent (no power
consumption, except for the leakage current).

C. Select Module

The Select Module is nothing but a multiplexer without
an explicit selection line, whose operation is quite simple.
It arbitrates the active input to the output. Therefore, the
data-valid control signal associated with every incoming flit

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 2. DeBS Module Operation Concept

acts as the selection line of the multiplexer itself. Since the
incoming flit can either be a header, body or a tail flit, there is
no possibility at the Select module to have a situation where
two or more inputs could arrive at the same time. Hence it
does not need to comprise any complicated arbitration logic
at all.

D. Input CONtroller (ICON)

The Input Controller (ICON) has been modeled as an STG
in Workcraft [11] and synthesized using Petrify [12]. Two
important functionalities that ICON is made to perform are:
1) on-demand reservation of the mutual-exclusion (MUTEX)
element associated with each output port, 2) generating the
latch-enable signals both for the destination and the data
latches. The destination latch needs to be enabled only with
the header flit, while the data latch needs to be enabled with
every incoming flit. In fig. 3 we have presented its STG
along with explanation of the variables used in Table II.
Realizing the level of difficulty in understanding the STG,
in the following we briefly describe the operation of the
ICON.

At the arrival of the header flit, a request is raised and
sent to the ICON, so as indicated by “rh+” in the STG of
fig 3. The arrival of the header flit must be followed by
the reservation of the MUTEX. As a result, a request is
sent to the arbiter associated with the target output port.
This is indicated by “rm+”. Once the grant from the arbiter
is received “gm+”, the destination bits and the data must
be latched. On confirmation of the data being latched, an
acknowledgement “ah” and a request “ro” are respectively
sent to the previous and the next nodes simultaneously. The
destination latch must not be enabled for the body and tail
flits, since header flit is the only one to contain the routing
information. The body and tail flits proceed similarly except
for the release of the MUTEX with the tail flit. This is done
by lowering the request to the MUTEX “rm-”, on receiving
an acknowledgement from the next node.

E. Arbiter Circuit

We have adopted the conventionally used two-input tree-
arbiter-cell (TAC) [13], fig. 4, to allow sharing among all the
input ports contending for the same output port. Whichever
input port requests (C1req or C2req) first, wins the arbi-
tration (C1gr or C2gr) to access the desired output port. A
four-input arbitration circuit can be built by making use of
two TACs and a MUTEX as shown in fig. 5. Please note that

Table II
VARIABLES USED IN FIG. 3

Signal Input/Output Explanation
rh Input request signal from the header flit
rb Input request signal from the body flit
rl Input request signal from the tail flit

gm Input grant/ack signal from the MUTEX
dest a Input ack signal from the destination latch
data a Input ack signal from the data latch

ao Input ack signal from the output side demux
rm Output req signal to the MUTEX

dest r Output req signal to the destination latch
data r Output req signal to the data latch

ro Output req signal to the output side demux
ah Output ack signal to the header flit
ab Output ack signal to the body flit
al Output ack signal to the last/tail flit

Figure 3. STG of the Input Controller

“r1/r2”, “g1/g2” signals in fig. 4 correspond to respective
request and grant signals to and from each MUTEX element.
An input port keeps hold of the MUTEX until the message
is completely transmitted. Although the structure of the tree
does not guarantee round robin arbitration, the latter can be
achieved by simply replacing a module with priority arbiter
if felt necessary. The tree arbiter however, utilizes fewer
resources.

The XY-routing algorithm naturally limits the number of
permissible switching turns, fig. 6. It is forbidden to switch
the data from the north or the south input port to east and/or
west output ports. This allows us to keep a different sized
arbiter for each output port. For instance, in case of east
output port, the number of contending input ports is only
two, i.e. west and the core. On the other hand, the number
of contending input ports for north and south output ports
would be four. However, keeping the generality of the router
alive, it is possible to have the four input arbiter module on a
reconfigurable partition of the FPGA which allows dynamic

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 4. STG of a Two-Input Tree Arbiter Cell

Figure 5. A Four-input Arbiter made from two TACs

exchange of the arbiter circuits as per the routing algorithm
(not covered in this paper).

In fig. 7 we have presented the complete circuit diagram of
our router with all the important control signals. Some of the
wires (req/ack to other input ports) have been deliberately
removed from the figure keeping in view the limitation of
space. The input demultiplexer together with the three C-
gates make up the unit FCL (please refer to Sec. II-A).
A C-gate [14] is the most fundamental element for any
asynchronous circuit. It works as an AND-gate if the two
inputs share the same logic state, and maintains its previous
state otherwise. In our router, a number of C-gates are used
to ensure the speed independence (SI) [6] property of the
circuit; for instance a C-gate placed between DeBS and
ICON (please refer to Sec. II-B and Sec. II-D respectively)
forces the demultiplexer to keep its output data stable until

Figure 6. Permissible (a, b, c, d) and Forbidden (e, f) Switching

Figure 7. Complete Async Router Architecture

they are acknowledged by both of the receivers. The output
demultiplexer, which is controlled by the destination latch,
acts as a switch, and together with the four select modules
make up the OG module shown in fig. 1. The four select
modules and the arbiters are shared between all the input
ports, whereas, the rest of the circuit needs to be replicated
for each input port to allow parallel execution.

III. EVALUATION METHODOLOGY

Any NoC is expected to guarantee three things: i) dead-
lock freedom, ii) livelock freedom, iii) reachability to every
other node. While any deterministic routing protocol would
naturally handle livelocks, we define a methodology to test
A′ARAF NoC on both of the other dimensions. The latter
is rigorously tested for a 4x4 2D mesh, whereas the former
is done for 2x2.

A. Deadlock Freedom

Although a network of size 2x2 does not seem to be
an impressive test case, the analysis, however, can be very
thorough. The point is to ensure that all the 16 nets (34 bit
each) are exercised simultaneously, loading the network with
maximum possible traffic. Our methodology is adopted from
[15] in which Cota et al. have tested the interconnects for
possible faults. Fig. 8, reprinted from the same paper nicely
describes the methodology, where “core 0” communicates
with “core 3” and vice versa, and “core 1” does with “core
2” and vice versa. We maintain two considerations: 1) The
communication pattern remains XY-routing, for example
“core 0” sends its packets to “core 3” via “router00”,
“router01”, and “router11”, and “core 3” sends its packets to
“core 0” via “router11”, “router10”, and “router00”. Please
note that each type of an arrow represents communication
only in one direction, and maintains XY-routing pattern.
For instance, bold arrows represent the packet transfer from
“core 0” to “core 3”, and so on for the rest. 2) The order of
the flits must be header flit to tail flit.

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 8. Deadlock Freedom Evaluation Methodology, reprinted from
[15]

Figure 9. Reachability Evaluation Methodology

B. Reachability

In order to verify that all nodes can access each other,
we propose to forward two test packets header, body, tail
from each corner node to the nodes at the far ends. For
example, “router00” is supposed to forward one packet each
to routers “03” and “30” along x+ and y+ axes respectively.
In the same manner, “router33” forwards packets to routers
“30” and “03” along x- and y- axes respectively. For the
two sandwiched rows and columns, each node forwards one
packet to the far end. For example, nodes “01” and “31”
forward a packet to each other simultaneously, and so on
for the remaining pairs. The overall scheme is presented in
fig. 9.

IV. SIMULATION RESULTS

According to the methodology described above, we per-
form four different simulations to test our NoC. All of
the simulations are done in Modelsim using a test bench
and macro files. We inject 150 packets, one after the other
without halting, on each input of a 2x2 network to verify
deadlock freedom. All of the packets reach their respective
destinations, and are received correctly. Fig. 10 shows the
complete propagation of a packet from the south input port
of “router00” to the north output port of “router33”. Please
note that the header flit changes on every hop, since the two
destination bits keep rotating on every node. For example,
in the header flit “000000053” (hexadecimal representation),

Figure 10. Propagation Path of a Packet

Figure 11. Deadlock Freedom Verification

equivalent to “000...01010011” (34 bits), the last two bits
“11” indicate that it is a header flit. The next two bits “00”
have to be rotated after the first hop, bringing “10” at their
places. So the flit changes to “000...00010111” which is
equivalent to “000000017”. Similarly, the flit keeps changing
on the rest of the hops. However, the body and tail flits
remain the same until they reach the destination. On the
other hand, fig. 11 shows a snapshot of the simulation for
a few of the initial packets during the deadlock freedom
test simulation. It can be seen how packets are correctly
transferred between the routers connected on diagonals.

For the reachability test, once again we inject 150 packets
(3 flits each) on every input. This time however, the network
is 4x4 2D mesh. Two different simulations are performed.
Fig. 12 shows the case where we follow the methodology
described in the last section. All packets correctly reach their
respective outputs. The final simulation, fig. 13, shows the
correct working of the arbitration circuit. We deliberately
force all the nodes to forward packets to one destination,
north output of “router33” (“north out 33d”). Once again,
each node transmits 150 packets to the same target node.
The arbiters give access to all the paths one at a time, and
lead to correct and complete reception of all of them.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented the design and imple-
mentation of A′ARAF, a router for asynchronous NoCs.
Our async router supports wormhole switching, and it has
been made generic to support any deterministic and adaptive
routing algorithm. We have verified two important prop-
erties: deadlock freedom and reachability for XY-routing,
by heavily loading the network of two different sizes.
Simulation results have been presented and discussed in
detail.

Although all the deterministic routing algorithms guaran-
tee deadlock freedom, their major drawback is their inability

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 12. Reachability Verification

Figure 13. All-to-one Arbitration

to tolerate faults. XY-routing for instance, would immedi-
ately result in a complete deadlock once a node fails to
forward a packet in the desired direction, or the channel itself
becomes permanently fault due to electromigration effect.
In future, we aim to address both transient and permanent
faults within our routers architecture and the interconnects
as well, keeping in view the outstanding problems with the
state-of-the-art fault-tolerant NoC designs.

REFERENCES

[1] A. Agarwal, C. Iskander, and R. Shankar, “Survey of NoC
Architectures and Contributions,” Engineering, Computing
and Architecture, vol. 3, no. 1, 2009.

[2] Y. Shi, S. B. Furber, J. Garside, and L. A. Plana, “Fault
tolerant delay insensitive inter-chip communication,” in Proc.

15th IEEE Symp. on Asynchronous Circuits and Systems
(async 2009), ser. ASYNC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 77–84.

[3] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal net-
work on chip: concepts, architectures, and implementations,”
Design Test of Computers, IEEE, vol. 22, no. 5, pp. 414 –
421, sept.-oct. 2005.

[4] A. Sheibanyrad and A. Greiner, “Two efficient synchronous
<–> asynchronous converters well-suited for networks-on-
chip in gals architectures,” Integr. VLSI J., vol. 41, no. 1, pp.
17–26, Jan. 2008.

[5] C. A. Zeferino and A. A. Susin, “SoCIN: A Parametric
and Scalable Network-on-Chip,” in Proc. 16th Symp. on
Integrated Circuits and Systems Design, 2003, pp. 169–175.

[6] J. Sparso and S. B. Furber, Principles of Asynchronous Circuit
Design: A Systems Perspective. Springer, 2001.

[7] K. M. Al-Tawil, M. Abd-El-Barr, and F. Ashraf, “A Survey
and Comparison of Wormhole Routing Techniques in Mesh
Networks,” IEEE Network, vol. 11, pp. 38–45, 1997.

[8] C. Neeb, M. Thul, and N. Andwehn, “Network On-Chip-
Centric Approach to Interleaving in High Throughput Chan-
nel Decoders,” in Proc. IEEE Int. Symp. on Circuits and
Systems, 2005, pp. 1766–1769.

[9] T. Bjerregaard and J. Sparso, “A router architecture for
connection-oriented service guarantees in the mango clockless
network-on-chip,” in Proc. the conf. on Design, Automation
and Test in Europe - Vol. 2, ser. DATE ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 1226–1231.

[10] M. Koibuchi, H. Matsutani, H. Amano, and T. Mark Pinkston,
“A lightweight fault-tolerant mechanism for network-on-
chip,” in Networks-on-Chip, 2008. NoCS 2008. Second
ACM/IEEE Int. Symp. on, april 2008, pp. 13 –22.

[11] I. Poliakov, V. Khomenko, and A. Yakovlev, “Workcraft — A
Framework for Interpreted Graph Models,” in Proc. 30th Int.
Conf. on Applications and Theory of Petri Nets, ser. PETRI
NETS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
333–342.

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L.
Lavagno, and A. Yakovlev, “Petrify: A Tool for
Manipulating Concurrent Specifications and Synthesis of
Asynchronous Controllers,” 1996. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.8484

[13] D. L. Dill, “Trace theory for automatic hierarchical verifica-
tion of speed-independent circuits,” in Proc. 5th MIT conf.
on Advanced research in VLSI. Cambridge, MA, USA: MIT
Press, 1988, pp. 51–65.

[14] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32,
no. 6, pp. 720–738, Jun. 1989.

[15] E. Cota, F. Kastensmidt, M. Cassel, P. Meirelles, A. Amory,
and M. Lubaszewski, “Redefining and testing interconnect
faults in mesh nocs,” in Test Conf., 2007. ITC 2007. IEEE
Int., oct. 2007, pp. 1 –10.

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

