
Minimising Expected Misclassification Cost when using Support Vector Machines
for Credit Scoring

Terry Harris, Curtis Gittens
Dept. of Computer Science, Mathematics & Physics
University of the West Indies - Cave Hill Campus

Bridgetown, Barbados
terry.harris@mycavehill.uwi.edu, curtis.gittens@cavehill.uwi.edu

Abstract— With the gradual relaxation of credit around the
world, the cost of losses experienced when extending credit is
expected to become increasingly important to financial
institutions. In this paper, we offer theoretical and empirical
evidence to support the argument that the minimisation of this
cost should be the primary objective when developing
classification models for credit scoring. This cost can be
referred to as the Expected Misclassification Cost. In addition,
we present and test a system that builds models to minimise
this cost when given varying values for its components.
Moreover, we show that using differing values for the
components of Expected Misclassification Cost can result in
improved performance, in terms of Type I or Type II accuracy,
when Expected Misclassification Cost is used as the prime
evaluation metric by a support vector machine.

Keywords- Credit Scoring; Decision Support Systems;
Expected Misclassification Cost ; Support Vector Machines

I. INTRODUCTION
The assessment of credit risk is a very important task for

financial institutions. This is in part due to the need to avoid
losses associated with inappropriate credit approval or
rejection decisions [1]. In recent years, credit scoring has
emerged as one of the primary ways for financial institutions
to assess credit risk [2]. Credit scoring entails the
classification of potential customers into applicants with
good credit and applicants with bad credit. This is done by
analysing the applicant’s data based on a past pattern of
customer behaviour [3].

Since Fisher’s [4] seminal paper, numerous models have
been proposed, which attempt to differentiate between
“good” and “bad” credit applicants. Many of these
classification models are based on classical statistical
methods such as Discriminant Analysis (DA), Linear or
Polynomial Regression (LPR), Logistic Regression (LR),
Non-Parametric Models (NPMs), Artificial Neural Networks
(ANNs), and Support Vector Machines (SVMs) [5], [6], [7],
[8], [9], and [10].

Whatever its form, many existing credit scoring models
are built on samples of customer historical data, and their
primary objective is to avoid over-fitting while maximising
generalisablity from the samples [5]. As a result, improving
test accuracy, as in (1), which is the measure of how
accurately the model classifies credit applicants from a

withheld dataset, known as the test dataset, is of importance
[5] and [6]. However, this approach alone can lead to
unsatisfactory results if the cost of making one type of error
as opposed to another is not considered. We propose that
credit scoring models can be improved if they are designed
to minimise this type of cost called the Expected
Misclassification Cost [11].

Test Accuracy =

True Positive
True Positive+False Positive

+ True Negative
False Negative+True Negative

 (1)

The remainder of this paper is organised as follows. In

Section II, we discuss some of the problems which emerge
when using test accuracy as the primary model evaluation
metric, before discussing the rationale behind the use of the
Expected Misclassification Cost as the model evaluation
metric. In Section III, the Support Vector Machine
algorithm, which is the classification algorithm
implemented in our system, is discussed. The details of the
dataset chosen as our case study are presented in Section IV.
Described in Section V, is our parameter tuning algorithm
and the methodology of the study. Section VI, discusses the
results of the study, and Section VII highlights the
conclusions and directions for future research.

II. BACKGROUND

A. Skewed Datasets
When a classification model is designed to minimise test

accuracy as its main objective, this can prove problematic if
the training dataset is skewed in favour of one particular
class over another (as is often the case in credit scoring
exercises). This is because it becomes difficult to determine
if higher test accuracy corresponds to an improved quality
classifier. The following example illustrates this point.

Suppose we have a classifier that gives a test accuracy of
99% when determining the creditworthiness of clients. At
first glance, this system seems to be a good classification
model. However, if the probability of a potential customer
being un-creditworthy is 0.5%, it becomes clear that test
accuracy tells us nothing about the quality of the classifier
because 99.5 % test accuracy can be achieved by classifying

225Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

all applicants as creditworthy. Without a doubt, this second
approach is unacceptable, because by simply approving all
applicants, we are not detecting potentially “bad” clients.

To solve this problem, many researchers often use the
Precision, as in (2), and Recall, as in (3), evaluation metrics.
Precision is the measure of how accurately we have
classified our positive predictions (what fraction is correctly
categorised), while Recall measures the proportion of the
dataset, which was actually positive, that we predicted as
positive. Given our previous scenario, the algorithm that
simply predicts that the applicant was creditworthy 100% of
the time would continue to score 99.5% on test accuracy;
however, it would score 0% accuracy on the Recall
evaluation metric. As a result, tailoring classification models
to improve Precision and/or Recall can help to improve
classifier quality when the dataset is skewed.

Precision = True Positive

Predicted as Positive
= True Positive

True positive+False Positive
 (2)

Recall = True Positive

Actually Positive
= True Positive

True Positive+False Negative
 (3)

B. Minimising Type I and Type II errors
Another issue that arises when using total test accuracy

as the performance metric to develop credit scoring models,
is the problem of minimising Type I error, as in (4), and
Type II error, as in (5). If we let the null hypothesis on any
credit approval decision be that the credit applicant is un-
creditworthy, then a Type I error occurs when we reject the
null hypothesis that the potential customer is un-creditworthy
and grants them credit when we should have rejected their
application. Conversely, a Type II error occurs when we
accept the null hypothesis (that the applicant is un-
creditworthy) when we should have rejected it, and grant the
client credit. Developing a model to maximise Precision and
Recall using the F1 Score, as in (6), which is a type of
average for Precision and Recall, can assist with minimising
both of these errors. Furthermore, models could be
developed to minimise Type I and Type II errors separately
and/or jointly. However, focusing solely on effectively
minimising Type I and II errors or maximising Precision and
Recall does not take into consideration the misclassification
cost to the institution of making one type of error over
another [11]. We believe that existing credit scoring models
could be enhanced if this expected cost is taken into
consideration when developing the model.

Type I Error = False Positive
True Negative+False Positive

 (4)

Type II Error = False Negative
True Positive+False Negative

 (5)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (6)

The Expected Misclassification Cost, as in (7), is
comprised of two component costs associated with each type
of inappropriate credit granting decision or error. Where the
variable Z, represents the Expected Misclassification Cost, X
the Default Cost, Y the Opportunity Cost, the variable a, the
probability of Type I error, and b the probability of Type II
error.

𝑍 = 𝑋𝑎 + 𝑌𝑏 (7)

The Expected Default Cost is associated with making
Type I errors. This type of error can have the most damaging
effect on the institution as it often leads to the loss of credit
principal and interest. This cost can be quantified as the net
present value of the credit principal and interest (base rate
plus margin*principal), multiplied by the probability of Type
I error. The second error, Type II is associated with the
Expected Opportunity Cost of rejecting a potential client
who would have been creditworthy. As a result, this cost is
simply the net present value of the interest (net interest rate
spread*principal) that could have been made, had credit been
granted, multiplied by the probability of Type II error.

C. Motivation
Intuitively, for credit-granting decisions, Type I errors

should be weighted with higher importance than Type II
errors [10]. This belief is due to the fact that when a
financial institution grants credit to a customer who later
defaults, the financial institution potentially loses 100% of
the principal and interest on the investment. This is often a
higher cost than the opportunity cost of making a Type II
error, which is usually limited to the loss of interest on the
investment. However, to seek to minimise Type I error while
ignoring its impact on Type II error (as they are inversely
related) could lead to increased Expected Misclassification
Cost to the institution. This can be seen by the following
simplified example.

 Suppose an institution seeks to minimise Type I error
while ignoring its impact on Type II. One way of achieving
this would be to simply cease granting credit. However, if
this was done, then the institution would face massive
opportunity costs because it would not be earning interest.
This means that there must be some optimal value for both
Type I and Type II errors such that Expected
Misclassification Cost to the institution is minimised.

We present a system that produces credit scoring models
which classify credit applicants as either creditworthy or un-
creditworthy, such that the Expected Misclassification Cost
to a financial institution is minimised. In addition, we present
a parameter tuning algorithm which selects the parameters
Gamma and C for the SVM (RBF kernel) such that Type I
and/or Type II errors are optimised when weighted according
to default cost and opportunity cost. We verify our results by
testing our system using the LIBSVM (RBF kernel), which
is a state of the art SVM by Chang and Lin [12].

226Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

III. SVMS AND CREDIT SCORING
The SVM was first developed by Cortes and Vapnik [13]

for binary classification. To do this binary classification,
SVMs attempt to find the optimal separating hyperplane
between classes by maximising the margin (Fig. 1). The
points lying on the boundaries are called support vectors, and
the middle of the margin is referred to as the optimal
separating hyperplane. This margin maximisation
characteristic of SVMs is argued to improve the decision
boundaries and hence lead to better classifier quality.

A. SVM use in Credit Scoring
Over the past decade, SVMs have been successfully used

in many credit scoring systems [14], [15], [16], [17], and
[18]. However, the superiority of the SVM when compared
to other classifiers remains debatable, as Van Gestel et al.
[16] found that even though SVMs showed improved
performance, there was no significant difference between
SVMs, LR and LDAs. This finding supports a widely held
view that modern learning algorithms approximate each
other’s performance when given large datasets [19].
Consequently, although we use SVMs to implement our
credit scoring system we suspect that other classification
techniques may approximate or even outperform our system
once designed to minimise Expected Misclassification Cost.

B. SVMs Development for Credit Scoring
When a financial institution is presented with a new

credit applicant, in order to make the credit approval
decision the institution seeks to classify the applicant as
either “good” or “bad” according to the SVM score. In the
case of a linear SVM this score can be represented as the

linear combination of the applicant’s characteristics
(features) multiplied by some weights, as in (8).

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏 (8)

Where n represents the number of client features, the w’s
and b are learnt parameters, and the x’s are client features.
Transforming the w’s and x’s into column vectors, (8) can
be written more concisely as;

𝑧 = 𝑤𝑇𝑥 + 𝑏. (9)

 The SVM learns the parameters w and b from training
examples of historic client data that the financial institution
collected over time. This training dataset will normally
consist of a number of example clients; as a result, from a
geometric perspective, calculating the value of w and b
means looking for a hyperplane which best separates “good”
clients from “bad”. To do this, the SVM maximises the
margin between the two clouds of data. As a result, when
given a training example (x(i), y(i)

), such that y ∈ {-1,1}, the
functional margin γ� , of (w, b) can be defined with respect to
the training example as;

γ� = 𝑦(𝑖)(𝑤𝑇 𝑥 + 𝑏). (10)

In order to confidently predict the class of the training
example the functional margin needs to be large. Thus, if y(i)
= 1, then for the functional margin to be large wT x + b must
be a large positive number. As a result, if y(i) = -1, then wT
x + b needs to be a large negative number. Accordingly,
given a training set S = {(x(i)

 , y(i)); i = 1,…, m}, the function
margin of (w, b) with respect to S is defined as the smallest
of the functional margins of the training examples, as in
(11).

γ� = min𝑖=1,…,𝑚 γ�(i) (11)

 To find the geometric margin, γ, consider the case of a
positive training example where x(i) corresponds to the label
y(i) = 1. The distance from this point to the decision
boundary, γ(i), is a straight line (vector) orthogonal to the
hyperplane (Fig. 1). To find the value of γ (i) the
corresponding point on the decision boundary is found. This
can be easily determined since w/||w|| is a unit-length vector
pointing in the same direction as w. Therefore, the
corresponding point on the hyperplane is given by the
equation x(i) - γ(i) ∙ w/||w||, and because this point lies on the
decision boundary, it satisfies the equation wT x + b = 0
(Fig. 1), as in (12).

𝑤𝑇 �𝑥(𝑖) − γ(𝑖) 𝑤
∥𝑤∥
� + 𝑏 = 0 (12)

We can simplify (12) as following:

Figure 1: Simplified Depiction of SVM Classification

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

𝑤𝑇𝑥(𝑖) − γ(𝑖) 𝑤

𝑇𝑤
∥𝑤∥

+ 𝑏 = 0 . (13)

Since, wTw/||w|| = ||w||2/||w|| = ||w||, we solve for γ(𝑖), as is
shown in (14);

γ(𝑖) = (𝑤
∥𝑤∥

)𝑇𝑥(𝑖) + 𝑏
∥𝑤∥

. (14)

 Generalising this representation to account for negative
training examples, we have;

γ(𝑖) = 𝑦(𝑖) [(𝑤
∥𝑤∥

)𝑇𝑥(𝑖) + 𝑏
∥𝑤∥

]. (15)

Here, if ||w|| = 1, then the geometric margin is equal to the
functional margin, In addition, the geometric margin is
invariant to rescaling of the parameters (w, b). As a result,
given a training set S = {(x(i), y(i)), i = 1,…,m}, the
geometric margin is the smallest of the geometric margins
on the individual training examples (16).

γ = min𝑖=1,…,𝑚 γ(i) (16)

 Accordingly, when given a training dataset of past
clients, it seems natural that the financial institution would
want to find a decision boundary that maximises the
geometric margin, since this would reflect a very confident
set of predictions on the training data. Specifically, this will
result in a SVM classifier that separates “good” and “bad”
past clients effectively, thus giving the institution reliable
information with which to make judgments about future
credit applications. As a result, to find the hyperplane that
achieves the maximum geometric margin the following
optimisation problem is posed:

max γ,𝑤,𝑏 γ,

𝑠. 𝑡. 𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ γ, 𝑖 = 1, … ,𝑚, (17)

∥ 𝑤 ∥= 1.

However, because the ||w|| = 1 constraint is non-convex, the
problem is transformed into one more suited for
optimisation, as in (18). Here, if, γ� =1, then γ�/||w|| = 1/||w||,
and maximising this is the same thing as minimising ||w||2.

min γ,𝑤,𝑏 1
2
∥ 𝑤 ∥ 2,

𝑠. 𝑡. 𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ γ� , 𝑖 = 1, … ,𝑚. (18)

At this point, a regularisation term ξ , is added to the
optimisation problem posed in (18) to modify the algorithm
so that it works for non-linearly separable datasets, as is
often the case with credit scoring data. The term C is a

turning parameter which weights the significance of a
classification error to the overall model.

minγ,𝑤,𝑏 1
2

 ∥ 𝑤 ∥2+ 𝐶 ∑ ξ𝑖𝑚
𝑖=1 ,

𝑠. 𝑡. 𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� ≥ 1 − ξ𝑖 , 𝑖 = 1, … ,𝑚, (19)

ξ𝑖 ≥ 0, 𝑖 = 1, … ,𝑚.

 Equation (19) represents the primal from of the
optimisation problem for finding the optimal margin
classifier to separate “good” and “bad” clients. Given that
this equation satisfies the Karush-Kuhn-Tucker (KKT)
conditions, the condition 𝑔𝑖(𝑤) ≤ 0 is an active constraint.
As a result, the constant to the primal problem can be
rewritten as follows:

𝑔𝑖(𝑤) = −𝑦(𝑖)�𝑤𝑇𝑥(𝑖) + 𝑏� + 1 − ξ𝑖 ≤ 0. (20)

 To develop the dual form of the problem, the
Lagrangian for the optimisation problem is constructed, as
in (21). Where the α𝑖 ’s and the ri’s are Lagrangian
multipliers.

𝐿(𝑤, 𝑏, ξ,α, 𝑟) 1

2
∥ 𝑤 ∥2− 𝑐 ∑ ξ𝑖 −𝑚

𝑖=1 ∑ α𝑖�𝑦(𝑖)�𝑤𝑇𝑥(𝑖) +𝑚
𝑖=1

𝑏) − 1 + ξ𝑖� − ∑ r𝑖𝑚
𝑖=1 ξ𝑖 (21)

Equation (21) is minimised with respect to w and b by
taking partial derivatives with respect to w and b and setting
them to zero. The equations derived are as follows:

𝜕
𝜕𝑤
𝐿(𝑤, 𝑏, ξ,α, 𝑟) = 𝑤 − ∑ α𝑖𝑦(𝑖)𝑥(𝑖) = 0𝑚

𝑖=1 , (22)

𝜕
𝜕𝑏
𝐿(𝑤, 𝑏, ξ,α, r) = ∑ 𝛼𝑖𝑦(𝑖) = 0𝑚

𝑖=1 . (23)

Solving (22) for w produces;

𝑤 = ∑ α𝑖𝑦(𝑖)𝑥(𝑖)𝑚
𝑖=1 . (24)

Therefore, substituting the definitions of w (24) and b (23)
in (21) and including the constraints 0 ≤ αi ≤ C and
∑ α𝑖𝑦(𝑖) = 0𝑚
𝑖=1 the dual optimisation problem is derived as;

𝑊(α) = ∑ α𝑖𝑚

𝑖=1 − 1
2
∑ 𝑦(𝑖)𝑦(𝑗)α𝑖α𝑗 < 𝑥(𝑖), 𝑥(𝑗)𝑚
𝑖 ,𝑗=1 >,

𝑠. 𝑡. 0 ≤ α𝑖 ≤ 𝐶, 𝑖 = 1, … ,𝑚, (25)

∑ α𝑖𝑦(𝑖) = 0𝑚
𝑖=1 .

This dual form (25) can be solved in lieu of the primal
problem, in order to derive the parameters αi's that maximise
W (α) subject to the constraints. These parameters can then

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

be used in (24) to find the optimal w's. Having found w*, the
primal problem can be used to find the optimal value for the
intercept term b.
 Accordingly, after the classification model has been
trained, when presented with a new credit applicant the
equation wT x + b, would calculate and predict y = 1 if and
only if this quantity is bigger than zero.

(𝑤𝑇 𝑥 + 𝑏) = (∑ α𝑖𝑦(𝑖)𝑥(𝑖)𝑚
𝑖=1)𝑇𝑥 + 𝑏 (26)

Equation (26) can be rewritten as;

∑ α𝑖𝑦(𝑖) < 𝑥(𝑖),𝑚
𝑖=1 𝑥 > +𝑏. (27)

This representation allows for the inclusions of kernels to
deal more effectively with datasets which have multiple
dimensions. Kernels map attributes to higher order feature
spaces, and this is represented by replacing the x’s in the
equation with the feature vector ϕ(x), as shown in (28).

∑ α𝑖𝑦(𝑖)𝐾(𝑥(𝑖),𝑚
𝑖=1 𝑥) + 𝑏 (28)

Where,

𝐾�𝑥(𝑖), 𝑥(𝑗)� =< ϕ(𝑥(𝑖)),ϕ(𝑥(𝑗)) > . (29)

IV. DATA
A German credit scoring dataset was taken from the UCI

Machine Learning Repository [20]. This dataset was
provided by Prof. Hofmann of Hamburg University and
consists of 700 examples of creditworthy applicants and 300
un-creditworthy applicants. This dataset has been widely
used in credit scoring research to evaluate the performance
of classification models. The dataset measured twenty (20)
features for each credit applicant comprising the following
categories: the status of the client’s existing checking
account, the duration of the credit period in months, the
client’s credit history, the purpose for the credit, the credit
amount requested, the client’s savings account/bonds
balance, the client’s present employment status, the client’s
personal (marital) status and sex, whether the client is a
debtor or guarantor of credit granted by another institution,
the number of years spent at present residence, the type of
property possessed by the client, the client’s age in years,
whether the client has other installment plans, the client’s
housing arrangements (whether they own their home, rent, or
live for free), the number of existing credits the client has at
the bank, the client’s job, the number of people for whom the
client is liable to provide maintenance for, whether the client
has a telephone, and whether the client is a foreign worker.

The data was pre-processed so as to transform all
categorical data into numerical data for analysis. In addition,
the data was normalised so as to improve the performance of
the SVM.

V. ALGORITHM AND METHODOLOGY

A. Parameter Tuning Algorithm
Begin
1. Randomly sort sample applicant dataset.
2. Split sample dataset into 3 sub datasets.

a. Sub-dataset 1: Training (60%)
b. Sub-dataset 2: Cross Validation (20%)
c. Sub-dataset 3: Test (20%)

3. For the # of parameters conduct grid-search
 Select the pair of parameters (C and

Gamma) based on how well they minimise
expected misclassification cost on the
Training dataset using the CV dataset.

End for
4. Use the pair of parameters from part 3 to train the

model using Training dataset.
5. Test the model for overall Test, Type I, and Type II

accuracies using the Test dataset (reported results).
6. Re-train the model using the full dataset and the

pair of parameters selected in part 3.
End

B. Method
Our empirical testing began by randomly sorting the

dataset before splitting it into 3 sub-datasets; the training
dataset, the cross validation dataset, and the test dataset. The
initial step of randomly sorting the dataset was done in order
to increase the probability of an equal distribution of clients
across the 3 sub-dataset. To train for the minimisation of the
components of the Expected Misclassification, we further
subdivided the cross validation dataset into two data-files,
each only containing positive or negative examples. To test
for Type I and Type II accuracy the test dataset was also
subdivided into two data-files, one with all positive and
another with all the negative test examples.

We implemented our system in OCTAVE 3.2.4 and used
it to repeatedly train models using the LIBSVM package
fitted with a RBF Kernel. These models where built using
the training dataset and certain values for the parameters
Gamma and C. We used a grid search technique to find the
parameters Gamma and C which minimised Expected
Misclassification Cost using the cross validation dataset.
When deciding on the search ranges for C and Gamma care
was taken to ensure that ∃ C and ∃ Gamma, within the
search ranges, which produced models that have zero Type I
error, and zero Type II error (on two separate models). This
was an important step to ensure that each component of
Expected Misclassification Cost could be minimised to zero.
The usual approach when selecting the parameter ranges is to
use known benchmarks. However, these ranges may not be
well-suited to every dataset and do not guarantee perfect
Type I or Type II accuracy on any of the possible models.

Having found the pair of parameters which minimised
the Expected Misclassification Cost on the cross validation
dataset, we used them to build our models. Three models
were built using varying assumptions for Default Cost and
Opportunity Cost. This was done in order to illustrate the

229Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

dynamic nature of our system. The results are presented in
TABLE I.

VI. RESULTS AND ANALYSIS
The first model shown in the TABLE I was built

weighting Default Cost and Opportunity Cost equally. As a
result, the minimisation of Expected Misclassification Cost
equated to the minimisation of overall test accuracy. We use
this model as a control to illustrate the variations in
performance achievable if different weights are used when
setting Default Cost and Opportunity Cost. This first model
surpassed most contemporary classifiers in terms of Type I
accuracy on this dataset (TABLE II). This performance is
interesting because many existing SVM classifiers that have
reported results on this dataset were highly optimised for
performance while our system is not. The reason for our
relatively superior performance could be attributed to the fact
that we selected the parameter ranges to ensure that errors on
both Type I and Type II error metrics could be minimised as
low as possible. However, further investigation into this
hypothesis needs to be conducted to confirm our intuition.

TABLE I. MODELS AND ACCURACIES

Model Parameters Accuracies (%)

 Gamma C Train CV Type
 I

Type
II

Test

1

2-50

257

74.83

73.13

66.66

73.24

71.36

2

2-50

249

71.16

69.84

75.45

66.20

68.84

3

2-50

241

76.66

76.12

40.35

90.14

75.88

TABLE II. PERFORMANCE COMPARISONS

Models Accuracies (%)

 Type I Accuracy Type II Accuracy Total Accuracy

Model 1

66.66

73.24

71.36

Model 2

75.45

66.20

68.84

Model 3

40.35

90.14

75.88

 Yu et al. [10]

53.57

90.33

78.46

Wang et al. [15]

45.62

89.44

76.30

Ahmad et al .[21]

66.66

88.08

81.42

The second model (TABLE I) was built with the

objective of reducing Expected Default Cost (weighted Type
I error), while placing less emphasis on Expected
Opportunity Cost (weighted Type II error). To achieve this,
Default Cost was set to one while Opportunity Cost was set

to one-half. As a result, when the system selected parameters
to minimise Expected Misclassification Cost, the Expected
Default Cost was weighted twice as significant as the
Expected Opportunity Cost. This process successfully
achieved better performance (75.45%). As shown in TABLE
II, this result surpassed the performance in terms of Type I
accuracy of many of the known published SVM systems on
this dataset, while still remaining relatively generalisable at
68.84% test accuracy. We attribute this performance to the
fact that when given the input values for Default Cost and
Opportunity Cost our system selected parameters for the
model which placed more emphasis on the reduction of
Expected Default Cost which is calculated based on Type I
error. Focus was placed on Expected Default Cost because it
was the primary contributor to Expected Misclassification
Cost in this model.

The third model presented in TABLE I was built with the
intention of reducing Expected Opportunity Cost (weighted
Type II error), while weighting the impact of Expected
Default Cost (weighted Type I error) with less importance.
To achieve this, Default Cost was set to one-half, while
Opportunity Cost was set to one. As a result, this model
showed a 16.9% improvement in terms of Type II accuracy
when compared to the control (Model 1). In addition, this
model showed an improvement of 4.52% over the Model 1
in terms of test accuracy (75.88%). However, this model
resulted in a 26.31% fall in terms of Type I accuracy. We
attributed this occurrence to the fact that the model is
weighted to select those parameters for C and Gamma which
minmise the Expected Opportunity Cost since it had a
greater impact on Expected Misclassification Cost in this
model.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a system for the minimisation

of the expected cost to financial institutions when making
credit granting decisions. We showed that the minimisation
of this cost, which is referred to as the Expected
Misclassification Cost, can be achieved by considering its
components when building classifier models. In addition, we
showed that this approach can lead to performance gains by
increasing Type I and Type II accuracy.

Future work will consider the generalisablity of this
approach to other classifiers and classification problems. In
addition, other studies will investigate the advantages and
disadvantages of using Expected Misclassification Cost as
the primary model evaluation metric in combination with
ensembles, bagging, boosting and other SVM performance
enhancing techniques.

ACKNOWLEDGMENT
This research was partially funded by a Graduate

Scholarship from the University of the West Indies, Cave
Hill Campus. In addition, we would like to acknowledge
fellow members of our research group (Sequitur), Mr. Gamal
Crichton and Mr. Xavier Caddle, for their valuable
comments and suggestions. Finally, we would like to thank
the anonymous reviews, who helped to improve the
readability of this paper.

230Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

REFERENCES
[1] L. Yu, S. Wang, and K. K. Lai, "Credit risk assessment with a

multistage neural network ensemble learning approach,"
Expert Systems with Applications, vol. 34, pp. 1434-1444,
2008.

[2] C. L. Huang, M. C. Chen, and C. J. Wang, "Credit scoring
with a data mining approach based on support vector
machines," Expert Systems with Applications, vol. 33, pp.
847-856, 2007.

[3] L. Thomas, R. Oliver, and D. Hand, "A survey of the issues in
consumer credit modelling research," Journal of the
Operational Research Society, vol. 56, pp. 1006-1015,
2005.

[4] R. A. Fisher, "The use of multiple measurements in
taxonomic problems," Annals of Human Genetics, vol. 7, pp.
179-188, 1936.

[5] Z. Huang, H. Chen, C. J. Hsu, W. H. Chen, and S. Wu,
"Credit rating analysis with support vector machines and
neural networks: a market comparative study," Decision
support systems, vol. 37, pp. 543-558, 2004.

[6] Y. Wang, S. Wang, and K. Lai, "A new fuzzy support vector
machine to evaluate credit risk," Fuzzy Systems, IEEE
Transactions on, vol. 13, pp. 820-831, 2005.

[7] H. Li and J. Sun, "Predicting business failure using multiple
case-based reasoning combined with support vector machine,"
Expert Systems with Applications, vol. 36, pp. 10085-10096,
2009.

[8] L. Yu, S. Wang, and J. Cao, "A modified least squares
support vector machine classifier with application to credit
risk analysis," International Journal of Information
Technology & Decision Making, vol. 8, pp. 697-710, 2009.

[9] L. Zhou, K. K. Lai, and L. Yu, "Least squares support vector
machines ensemble models for credit scoring," Expert
Systems with Applications, vol. 37, pp. 127-133, 2010.

[10] L. Yu, X. Yao, S. Wang, and K. Lai, "Credit Risk Evaluation
Using a Weighted Least Squares SVM Classifier with Design
of Experiment for Parameter Selection," Expert Systems with
Applications, pp. 15392-15399, 2011.

[11] D. J. Hand and W. E. Henley, "Statistical classification
methods in consumer credit scoring: a review," Journal of the
Royal Statistical Society: Series A (Statistics in Society), vol.
160, pp. 523-541, 1997.

[12] C. C. Chang and C. J. Lin, "LIBSVM: a library for support
vector machines," ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 2, p. 27, 2011.

[13] C. Cortes and V. Vapnik, "Support-vector networks,"
Machine Learning, vol. 20, pp. 273-297, 1995.

[14] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.
Suykens, and J. Vanthienen, "Benchmarking state-of-the-art
classification algorithms for credit scoring," Journal of the
Operational Research Society, vol. 54, pp. 1082-1088,
2003.

[15] G. Wang, J. Hao, J. Ma, and H. Jiang, "A comparative
assessment of ensemble learning for credit scoring," Expert
Systems with Applications, vol. 38, pp. 223-230, 2011.

[16] T. Van Gestel, B. Baesens, J. A. K. Suykens, D. Van den
Poel, D. E. Baestaens, and M. Willekens, "Bayesian kernel
based classification for financial distress detection," European
journal of operational research, vol. 172, pp. 979-1003, 2006.

[17] Y. C. Lee, "Application of support vector machines to
corporate credit rating prediction," Expert Systems with
Applications, vol. 33, pp. 67-74, 2007.

[18] T. Bellotti and J. Crook, "Support vector machines for credit
scoring and discovery of significant features," Expert Systems
with Applications, vol. 36, pp. 3302-3308, 2009.

[19] E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng, "Data-
intensive question answering," 2001.

[20] A. Frank and A. Asuncion. UCI Machine Learning
Repository [Online]. Available: http://archive.ics.uci.edu/ml
[retrieved: January 21, 2012]

[21] G. Ahmad, R. Manoj, P. Dhirendra, S. Ugrasen, G. Neelesh,
G. Roopam, K. Verma, K. K. Brajesh, S. Raghuvir, and S.
Pushpa, "A Hybrid Support Vector Machine Ensemble Model
for Credit Scoring," 2011.

231Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

http://archive.ics.uci.edu/ml�

	I. Introduction
	II. Background
	A. Skewed Datasets
	B. Minimising Type I and Type II errors
	C. Motivation

	III. SVMs and Credit scoring
	A. SVM use in Credit Scoring
	B. SVMs Development for Credit Scoring

	IV. Data
	V. Algorithm and Methodology
	A. Parameter Tuning Algorithm
	B. Method

	VI. Results and Analysis
	VII. Conclusion and Future work
	Acknowledgment
	References

