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Abstract—The asymptotic stability problem of Cohen-
Grossberg neural networks with distributed delays is inves-
tigated in this paper. One new uniqueness theorem for the
existence of the unique equilibrium of the class of neural
networks is presented. Based on the new result, using the
Lyapunov stability theory and linear matrix inequality (LMI)
technique, and combining Cauchy’s inequality, some new
conditions for the asymptotic stability of Cohen-Grossberg
neural networks with distributed delays are presented. In our
results, we do not assume the signal propagation functions
to be bounded, differentiable, strictly increasing, and even to
satisfy the Lipschitz condition. Moreover, the symmetry of the
connection matrix is not also necessary. Thus, we improve some
previous works of other researchers. Some examples are also
worked out to validate the advantages of our results.

Keywords-Cohen-Grossberg neural networks; asymptotic
stability; distributed delay.

I. INTRODUCTION

In recent years, there has been increasing interest in
the potential applications of neural networks in many ar-
eas. Many scientists established various types of conditions
for the asymptotic stability, absolute stability, complete
stability and exponential stability of Hopfield neural net-
works (HNN), cellular neural networks (CNN), bidirectional
associative memory (BAM) neural networks and Cohen-
Grossberg neural networks (CGNN) (see [1]–[3] and the
references therein).

The Cohen-Grossberg neural network models, initially
proposed and studied in Cohen and Grossberg [4], have
attracted increasing interest. This class of networks has good
application in associative memory, parallel computation and
optimization problems, which has been an active area of
research and has received much attention. Wang and Zou [5]
presented some sufficient conditions for exponential stability
of delayed CGNN with asymmetric connection matrix and
gave an estimate of the convergence rate. In [6], several
sufficient conditions were obtained to ensure a class of
delayed CGNN to be asymptotically stable. In [7], based
on Lyapunov stability theory and LMI, several sufficient
conditions were obtained to ensure delayed CGNN to be
robustly stable. Yuan and Cao [9] gave an analysis of global
asymptotic stability for a delayed Cohen-Grossberg neural

network via nonsmooth analysis. Lu and Chen [8] provided
criteria for global stability and global exponential stability
with consideration of signs of entries of the connection
matrix by using the concept of Lyapunov diagonally stability
(LDS) and LMI approach. All of these results above are
based on the assumption that the signal propagation func-
tions satisfy either the Lipschitz condition or the bound-
edness. However, in many evolutionary processes as well
as optimal control models and flying object motions, there
are many bounded monotone-nondecreasing signal functions
which do not satisfy the Lipschitz condition [10]. Therefore,
it is important and, in fact, necessary to study the issue of
global stability of such a dynamical neural network with
non-Lipschitzian activation functions.

Although the use of constant fixed delays in models of
delayed feedback provides a good approximation in simple
circuits composed of a small number of cells, neural network
usually has a spatial nature due to the presence of an amount
of parallel pathways of a variety of axon sizes and lengths
[2]. In these circumstances, the transmission of signal is no
longer instantaneous and cannot be modelled with discrete
delays. A more appropriate way is to incorporate distributed
delays. Therefore, the studies of the model with distributed
delays have more important significance than the ones of
model with discrete delays and the distributed delay becomes
a discrete delay when the delay kernel is a 𝛿-function, at
a certain time (see, Remark 4). However, to the best of
our knowledge, few authors [11] have considered Cohen-
Grossberg neural network model with distributed delays.
Furthermore, the asymptotic stability analysis for CGNN
with distributed delays via LMI technique has never been
tackled.

Motivated by the above discussions, our objective in
this paper is to study further the existence and unique-
ness, and global asymptotic stability for the equilibrium
point of CGNN with distributed delays, as in [11], but
we drop the boundness, differentiability, monotonicity and
the Lipschitz condition of the activation functions. More-
over, the symmetry of the connection matrix is not also
necessary and the kernel functions need not satisfy the
hypothesis

∫∞
0

𝑠𝐾𝑗(𝑠)𝑑𝑠 < ∞. Here, a new approach
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based on LMI technique combining Cauchy’s inequality, is
developed to obtain sufficient conditions, which guarantee
the existence, uniqueness and global asymptotic stability for
the equilibrium point of CGNN with distributed delays. The
conditions are less conservative than those [11]. Therefore,
our proposed results are practical and improve some previous
works of other researchers.

II. MODEL DESCRIPTION

In this paper, we consider the following model

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑎𝑖(𝑥𝑖(𝑡))

[
𝑏𝑖(𝑥𝑖(𝑡))−

𝑛∑
𝑗=1

𝑤𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))− 𝐽𝑖

−
𝑛∑

𝑗=1

𝑤𝜏
𝑖𝑗

∫ 𝑡

−∞
𝐾𝑗(𝑡− 𝑠)𝑓𝑗(𝑥𝑗(𝑠))𝑑𝑠

]
, (1)

where 𝑥𝑖(𝑡) corresponds to the state of the 𝑖th unit at time 𝑡;
𝐽𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, denote the constant inputs from outside
of the system and 𝑤𝑖𝑗 represent the connection weights.
𝑎𝑖(𝑥𝑖(𝑡)) and 𝑏𝑖(𝑥𝑖(𝑡)), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are the amplifi-
cation functions and the self-signal functions, respectively,
while 𝑓𝑗(𝑥𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are the activation functions.
𝑊 = (𝑤𝑖𝑗)𝑛×𝑛 and 𝑊 = (𝑤𝜏

𝑖𝑗)𝑛×𝑛 are the normal and the
delayed connection weight matrix, respectively. The delay
kernel 𝐾𝑗 is a real value non-negative continuous function
defined on [0,∞) and satisfies, for each 𝑗,∫ ∞

0

𝐾𝑗(𝑠)𝑑𝑠 = 1.

Throughout the paper, we always assume that
∙ (𝐻1) 𝑎𝑖(𝑥) are continuous and positive, i.e., 𝑎𝑖(𝑥) > 0,

for all 𝑥 ∈ ℝ, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;
∙ (𝐻2) each function 𝑏𝑖(𝑥) is locally Lipschitz continuous

and there exists 𝛾𝑖 > 0 such that

𝑢[𝑏𝑖(𝑢+ 𝑥)− 𝑏𝑖(𝑥)] ≥ 𝛾𝑖𝑢
2,

for all 𝑥 ∈ ℝ, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;
∙ (𝐻3) the functions 𝑓𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) satisfy

𝑣𝑓𝑖(𝑣) > 0 (𝑣 ∕= 0), and there exist positive constants 𝜇𝑖

(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) such that

𝜇𝑖 = sup
𝑣 ∕=0

𝑓𝑖(𝑣)

𝑣
, ∀𝑣 ∈ ℝ.

Remark 1. In [5]–[8], the activation function was required
to be bounded, positive and continuous. However, the upper
bound of amplification function in this paper is not required.
In addition, assumption (𝐻3) in this paper is as same as
that in [5], [9], the condition of differentiability of behaved
function in [6]–[8] is not required.

Remark 2. Note that the assumption (𝐻3) is weaker than
the locally and partially Lipschitz condition which is mostly
used in literature [5]–[9]. The activation functions such as
sigmoid type and piecewise linear type are also the special
case of the function satisfying assumption (𝐻3). Further, if

𝑓𝑗(⋅) for each 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 is a Lipschitz function, then
𝜇𝑗 for each 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 can be replaced by the respective
Lipschitz constant.

Remark 3. The kernel functions need not satisfy the
hypothesis

∫∞
0

𝑠𝐾𝑗(𝑠)𝑑𝑠 < ∞ which is required in [11].
Let 𝒞[𝑋,𝑌 ] be a continuous mapping set from the topo-

logical space 𝑋 to the topological space 𝑌, and ℝ+ =
[0,∞). Especially, 𝒞 ≜ 𝒞[(−∞, 0],ℝ𝑛]. Denote 𝐴𝑇 and
𝐴−1 to be the transpose and the inverse of any square matrix
𝐴. We use 𝐴 > 0 (𝐴 < 0) to denote a positive- (negative-)
definite matrix 𝐴; and 𝐼 is used to denote the 𝑛×𝑛 identity
matrix.

Definition 1. 𝑥(𝑡) = 𝑥∗ ∈ ℝ𝑛 is called to be an
equilibrium point of system (1), if the constant vector
𝑥∗ = (𝑥∗

1, ⋅ ⋅ ⋅ , 𝑥∗
𝑛)

𝑇 satisfies

𝑏𝑖(𝑥
∗
𝑖 ) =

𝑛∑
𝑗=1

𝑤𝑖𝑗𝑓𝑗(𝑥
∗
𝑗 )+

𝑛∑
𝑗=1

𝑤𝜏
𝑖𝑗

∫ 𝑡

−∞
𝐾𝑗(𝑡−𝑠)𝑓𝑗(𝑥

∗
𝑗 )𝑑𝑠+𝐽𝑖

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.
Definition 2. The set 𝑆 ⊂ 𝐶 is called to he a positive

invariant set of the system (1) if for any initial value 𝜙 ∈ 𝑆,
we have the solution 𝑥(𝑡) ∈ 𝑆, for 𝑡 ≥ 0.

III. EXISTENCE AND UNIQUENESS OF THE EQUILIBRIUM
POINT

In order to study the existence and uniqueness of the
equilibrium point, we rewrite the system (1) as

�̇�(𝑡) = 𝐹 (𝑋(𝑡)), (2)

where
𝑋(𝑡) = (𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))

𝑇 ,

𝐹 (𝑋(𝑡)) = (𝜃1(𝑡), ⋅ ⋅ ⋅ , 𝜃𝑛(𝑡))𝑇 with

𝜃𝑖(𝑡) = −𝑎𝑖(𝑥𝑖(𝑡))

[
𝑏𝑖(𝑥𝑖(𝑡))−

𝑛∑
𝑗=1

𝑤𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))

−
𝑛∑

𝑗=1

𝑤𝜏
𝑖𝑗

∫ 𝑡

−∞
𝐾𝑗(𝑡− 𝑠)𝑓𝑗(𝑥𝑗(𝑠))𝑑𝑠− 𝐽𝑖

]

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.
We consider the initial value problem associated with the

autonomous system (2), in which the initial functions are
given by

𝑥𝑖(𝑡) = 𝜙𝑖(𝑡), −∞ < 𝑡 ≤ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, (3)

where 𝜙𝑖(𝑡) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) are assumed to be bounded
and continuous functions on (−∞, 0]. Let Ω be an open

subset of ℝ𝑛. For any 𝜃 ∈ ℝ𝑛, we define ∥𝜃∥ =
𝑛∑

𝑗=1

∣𝜃𝑗 ∣.
Theorem 1. Let 𝐹 : Ω → ℝ𝑛 be continuous and satisfy

the following condition: corresponding to each point 𝜃 ∈ Ω
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and its neighborhood 𝑈, there exists a constant 𝑘 > 0, and
functions ℎ𝑗 and Ψ𝑙 (𝑗, 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) such that

∥𝐹 (𝜗)−𝐹 (𝜃)∥ ≤ 𝑘∥𝜗−𝜃∥+𝑘

𝑛∑
𝑙=1

∣∣∣Ψ𝑙(ℎ𝑗(𝜗))−Ψ𝑙(ℎ𝑗(𝜃))
∣∣∣

on 𝑈, where each ℎ𝑗 : 𝑈 → ℝ is a continuously differen-
tiable function in 𝜃 satisfying the relation

𝑛∑
𝑗=1

∂ℎ𝑗(𝜃)

∂𝜃𝑖
𝐹𝑖(𝜃) ∕= 0 on 𝑈

and each Ψ𝑙 : ℝ → ℝ is continuous and of bounded variation
on bounded subintervals. Then, there exists a unique solution
for the initial value problem Eq. (1) or Eq. (2) with (3).

IV. GLOBAL ASYMPTOTIC STABILITY OF THE
EQUILIBRIUM POINT

In this section, we consider the global exponential stability
for the system (1). Suppose 𝑥∗ = (𝑥∗

1, ⋅ ⋅ ⋅ , 𝑥∗
𝑛)

𝑇 is any
equilibrium point of the system (1).

Theorem 2. Suppose Theorem 1 hold for the functions
𝑓𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), and assumptions (𝐻1) − (𝐻3) are
satisfied. The equilibrium point 𝑥∗ for the system (1) with
(3) is globally asymptotically stable, if there exist a matrix
𝑃 > 0, and two diagonal matrices 𝑅 > 0, 𝑄 > 0, such that

Ω =

⎡⎣−2𝑃Γ +𝑅 𝑃𝑊 𝑃𝑊 𝜏

𝑊𝑇𝑃 −𝑅𝐿−2 +𝑄 0
(𝑊 𝜏 )𝑇𝑃 0 −𝑄

⎤⎦ < 0, (4)

where Γ = diag[𝛾1, 𝛾2, ⋅ ⋅ ⋅ , 𝛾𝑛], 𝐿 = diag[𝜇1, 𝜇2, ⋅ ⋅ ⋅ , 𝜇𝑛].
Theorem 3. Suppose Theorem 1 hold for the functions

𝑓𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), and assumptions (𝐻1) − (𝐻3) are
satisfied. The equilibrium point 𝑥∗ of the system (1) with
(3) is globally asymptotically stable if there exist a matrix
𝑃 > 0, and two diagonal matrices 𝐷 > 0, 𝑄 > 0, such that

Θ =

⎡⎣−𝑃Γ− Γ𝑃 𝑃𝑊 𝑃𝑊 𝜏

𝑊𝑇𝑃 Ξ 𝐷𝑊 𝜏

(𝑊 𝜏 )𝑇𝑃 (𝑊 𝜏 )𝑇𝐷 −𝑄

⎤⎦ < 0 (5)

where
Ξ = −2𝐷Γ𝐿−1 +𝐷𝑊 +𝑊𝑇𝐷 +𝑄,
Γ = diag[𝛾1, 𝛾2, ⋅ ⋅ ⋅ , 𝛾𝑛], 𝐿 = diag[𝜇1, 𝜇2, ⋅ ⋅ ⋅ , 𝜇𝑛].
Remark 4. If delay kernel functions 𝑘𝑗(𝑡) are of the form

𝑘𝑗(𝑡) = 𝛿(𝑡− 𝜏𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, (6)

then system (1) reduces to CGNN with discrete delays which
has been lucubrated in many literatures. And many crucial
results for dynamics of this class of neural networks have
been obtained. Therefore the discrete delays can be included
in our models by choosing suitable kernel functions.

Remark 5. We can see that the LMI criterion (4)
is similar to condition (27) of Corollary 1 in Ref. [7].
However, it should be noted that our result contain that in
Ref. [7], because the discrete delays can be included in

our models by choosing suitable kernel functions as said in
Remark 4. Moreover, the signal propagation functions need
not to be bounded and satisfy the Lipschitz condition in
this paper, while the assumptions are required in Ref. [7].

Remark 6. For system (1), when 𝑎𝑖(𝑥𝑖(𝑡)) = 1,
𝑏𝑖(𝑥𝑖(𝑡)) = 𝑏𝑖(𝑡)𝑥𝑖(𝑡) (in which 𝑏𝑖(𝑡) is not only differ-
entiable but also bounded on interval (−∞,+∞), and its
maximal lower bound is denoted as 𝛾𝑖 > 0) and let 𝑊 ≡ 0,
the system (1) reduces to a class of pure-delay models with
distributed delays which has been studied in [12], but the
results derived in this paper are less conservative than those
in [12] because of the loose restrictions on the activation
functions; when the delay kernel is a 𝛿-function based on
the case above, i.e., the distributed delay becomes a discrete
delay, system (1) has been briefly indicated in [2].

Remark 7. If the activation functions are bounded and
satisfy the Lipschitz condition, Theorem 2 is equivalent to
Corollary 1 in Ref. [7]; Theorems 2-3 extend and improve
Theorem 3 in Ref. [6].

If the model (1) is simplified to cellular neural networks
with time delay, that is, let 𝑎𝑖(𝑥) = 1, 𝑏𝑖(𝑥) = 𝑥, 𝑓𝑖(𝑥) =
0.5(∣𝑥+1∣ − ∣𝑥− 1∣), then we have Γ = 𝐼, 𝐿 = 𝐼. We can
have the following corollaries.

Corollary 1. The equilibrium point 𝑥∗ of the system (1)
with (3) is globally asymptotically stable if there exist a
matrix 𝑃 > 0, and two diagonal matrices 𝑅 > 0, 𝑄 > 0,
such that

Ω =

⎡⎣−2𝑃 +𝑅 𝑃𝑊 𝑃𝑊 𝜏

𝑊𝑇𝑃 −𝑅+𝑄 0
(𝑊 𝜏 )𝑇𝑃 0 −𝑄

⎤⎦ < 0. (7)

Corollary 2. The equilibrium point 𝑥∗ of the system (1)
with (3) is globally asymptotically stable if there exist a
matrix 𝑃 > 0, and two diagonal matrices 𝐷 > 0, 𝑄 > 0,
such that

Θ =

⎡⎣ −2𝑃 𝑃𝑊 𝑃𝑊 𝜏

𝑊𝑇𝑃 −2𝐷 +𝐷𝑊 +𝑊𝑇𝐷 +𝑄 𝐷𝑊 𝜏

(𝑊 𝜏 )𝑇𝑃 (𝑊 𝜏 )𝑇𝐷 −𝑄

⎤⎦ < 0.

(8)
Remark 8. The common feature for the asymptotic sta-

bility of CGNN with distributed delays is that the conditions
are expressed in terms of some nonlinear inequalities, which
involve the tuning of some scalar parameters. Although the
suitability of these criteria is improved due to these adaptable
parameters, it is not easy to check the availability of the
scalars since we have no a systematic tuning procedure by
now. The criteria in Theorems 2-3 are LMI conditions, which
do not require the tuning of parameters.

V. NUMERICAL SIMULATIONS

In the previous sections, some new sufficient criteria
for the global asymptotic stability of the Cohen-Grossberg
neural networks with distributed delays have been derived.
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In the following examples, for simplicity, some Cohen-
Grossberg models with only two neurons are simulated and
analyzed.

Example 1. Consider the following CGNN with dis-
tributed delays:⎧⎨⎩

𝑑𝑥1(𝑡)
𝑑𝑡 = −(2 + sin(𝑥1(𝑡))

[
2𝑥1(𝑡)

−1
4 ∣𝑥1(𝑡)∣ − 1

4 ∣𝑥2(𝑡)∣
−1

4

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)∣𝑥1(𝑠)∣𝑑𝑠
−1

4

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)∣𝑥2(𝑠)∣𝑑𝑠+ 2
]
,

𝑑𝑥2(𝑡)
𝑑𝑡 = −(3 + cos(𝑥2(𝑡))

[
2𝑥2(𝑡)

−1
6 ∣𝑥1(𝑡)∣ − 1

3 ∣𝑥2(𝑡)∣
−1

3

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)∣𝑥1(𝑠)∣𝑑𝑠
−2

3

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)∣𝑥2(𝑠)∣𝑑𝑠− 2
]
,

(9)

with initial values{
𝜙1(𝑠) = 0.8, 𝑠 ∈ (−∞, 0],
𝜙2(𝑠) = 0.5, 𝑠 ∈ (−∞, 0].

(10)

One can check (𝐻1)− (𝐻3) are satisfied. In this example,

𝑊 =

[
1
4

1
4

1
6

1
3

]
, 𝑊 𝜏 =

[
1
4

1
4

1
3

2
3

]
,

𝐽 =

[−2
2

]
, Γ =

[
2 0
0 2

]
, 𝐿 =

[
1 0
0 1

]
.

For numerical simulation, we choose the delay kernel as
𝐾(𝑟) = 𝑒−𝑟. Applying our Theorem 2, by solving the LMI
(4) using the Matlab LMI Toolbox, a feasible solution is

𝑃 =

[
0.9813 −0.0423
−0.0423 0.9311

]
> 0,

𝑄 =

[
1.2750 0

0 1.2750

]
> 0,

𝑅 =

[
2.5499 0

0 2.5499

]
> 0.

Therefore, the conditions of Theorem 2 in this paper are
satisfied, which implies system (9) has a unique equilibrium
point, which is asymptotically stable. Figure 1 shows the
time responses of the state variables 𝑥1(𝑡) and 𝑥2(𝑡) with
10 initial states. They have confirmed that by fulfilling the
proposed conditions, the existence of a unique equilibrium
point 𝑥∗ = [−0.5218, 1.9131]𝑇 , and the global asymptotic
stability of system (9) are guaranteed.

Since 𝑓1(𝑥) = 𝑓2(𝑥) = ∣𝑥∣ here, we can easily verify
that the assumptions of boundedness, monotonicity, and
differentiability for the activation functions is not available,
so the results in [11] and the references cited therein can
not be applicable to system (9).

0 1 2 3 4 5
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−1.5

−1

−0.5

0
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st
at
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Figure 1. Transient response of state variables 𝑥1(𝑡) and 𝑥2(𝑡) for
Example 1.

Example 2. To illustrate Theorem 3, we consider the
following Cohen-Grossberg model with distributed delays:⎧⎨⎩

𝑑𝑥1(𝑡)
𝑑𝑡 = −(2 + sin(𝑥1(𝑡))

[
2𝑥1(𝑡)

−1
4𝑓1(𝑥1(𝑡))− 1

4𝑓2(𝑥2(𝑡))

−1
4

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)𝑓1(𝑥1(𝑠))𝑑𝑠

−1
4

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)𝑓2(𝑥2(𝑠))𝑑𝑠+ 1
]
,

𝑑𝑥2(𝑡)
𝑑𝑡 = −(3 + cos(𝑥2(𝑡))

[
2𝑥2(𝑡)

−1
6𝑓1(𝑥1(𝑡))− 1

3𝑓2(𝑥2(𝑡))

−1
3

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)𝑓1(𝑥1(𝑠))𝑑𝑠

−2
3

∫ 𝑡

−∞ 𝐾(𝑡− 𝑠)𝑓2(𝑥2(𝑠))𝑑𝑠− 1
]
,

(11)

with initial values{
𝜙1(𝑠) = −0.5, 𝑠 ∈ (−∞, 0],
𝜙2(𝑠) = 0.5, 𝑠 ∈ (−∞, 0],

(12)

where 𝑓1 and 𝑓2 are exponentially weighted time averages
of the sampled pulse

𝑓𝑗(𝑥𝑗(𝑠)) =

∫ 𝑠

−∞
𝑥𝑗(𝜃)𝑒

𝜃−𝑠𝑑𝜃, 𝑗 = 1, 2, (13)

the functions 𝑥1 and 𝑥2 equal one when a pulse arrives at
time 𝑠 and zero when no pulse arrives. Obviously, 𝑓𝑗 satisfy
(𝐻3) with 𝜇𝑗 but it does not satisfy the Lipschitz condition.

In this example,

𝑊 =

[
1
4

1
4

1
6

1
3

]
, 𝑊 𝜏 =

[
1
4

1
4

1
3

2
3

]
,

𝐽 =

[−1
1

]
, Γ =

[
2 0
0 2

]
, 𝐿 =

[
1 0
0 1

]
.

By taking 𝐾𝑗(𝑟) = 2
𝜋(1+𝑟2) , 𝑗 = 1, 2. Then we have∫∞

0
𝐾𝑗(𝑠)𝑑𝑠 = 1. Clearly, the kernel functions 𝐾𝑗 (𝑗 =

1, 2) do not satisfy the hypothesis
∫∞
0

𝑠𝐾𝑗(𝑠)𝑑𝑠 < ∞.
Applying our Theorem 3, by solving (5) using the Matlab
LMI Toolbox, a feasible solution is

𝑃 =

[
0.4038 −0.0174
−0.0174 0.3832

]
> 0,
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Figure 2. Transient response of state variables 𝑥1(𝑡) and 𝑥2(𝑡) for
Example 2.

𝑄 =

[
1.4488 0

0 1.4488

]
> 0,

𝐷 =

[
0.8481 0

0 0.8481

]
> 0.

Therefore, the conditions of Theorem 3 in this paper are
satisfied, which implies system (11) has a unique equilibrium
point. It is easy to verify that 𝑥∗ = [−0.4000, 0.8001]𝑇 is
the unique equilibrium point which is asymptotically stable.
Figure 2 shows the time responses of the state variables
𝑥1(𝑡) and 𝑥2(𝑡) with 10 initial states. However, it is very
difficult to obtain the result by using the technique in [11] for
system (11) with the non-Lipschitzian activation functions.

VI. CONCLUSIONS

In this paper, using the Lyapunov stability theory and
LMI technique, and combining Cauchy’s inequality, we have
derived some new sufficient conditions in term of LMI for
the existence and uniqueness, and global asymptotic stability
for the equilibrium point of CGNN model with distributed
delays. The results presented here are more general and
easier to check than those given in the related literature
because the restrictions of sufficient conditions are less
restrictive than those in [5]–[9]. Two examples are provided
to illustrate our results.
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