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Abstract— This work focuses on pervasive environmental 

codes that serve as an interface to augmented vision devices 

and provide support for localization and automated navigation. 

We begin with a concise overview of methods for automating 

the localization of humans and autonomous agents including 

mobile robots. Automated localization is based on mapping 

where positions, orientations, and other localization 

parameters are determined either on a plane or in a three-

dimensional space. While various devices such as sonar and 

ultrasound locators, laser scanners, visible light and infrared 

cameras, etc. are considered for gathering of the necessary 

mapping information the focus of our work is on the 

innovative system for environmental semantic encoding that 

we have developed. In this system, we have successfully 

implemented semantic surfaces with embedded marking which 

provide additional information alone, separately and 

independently from all the visual features and properties of the 

surrounding physical surfaces. 

Keywords - position determination; mapping; semantic 

surfaces; navigation; SLAM; surface encoding; CLUSPI. 

I.  INTRODUCTION 

Human activities as well as activities of autonomous 
agents and mobile robots are essentially connected to the 
surrounding environment. An interface layer that is 
responsible for the interactions taking place within such 
activities could therefore be established and maintained. In 
this work we attempt to establish such a layer by introducing 
a special type of environmental semantic encoding that is 
implemented with ubiquitous semantic surfaces [7].  An 
introduction to semantic surfaces and details about our 
environmental semantic encoding approach are given in 
Section II. In this section, we continue with an introduction 
to a more general localization and mapping. For illustration 
of autonomous position determination we will refer to 
robotic mapping, e.g., the building of a map of a local 
environment surrounding a robot.  

The simultaneous robot orientation and map building is 
an estimation problem known as SLAM (Simultaneous 
Localization and Mapping) [12]. SLAM is an essential 
capability for any autonomous agent or a mobile robot 

traveling in unknown environments where globally accurate 
position data is not available [9, 10]. High uncertainty often 
exists in such environments so the capability to map them is 
essential in order to allow a robot to be deployed with a 
minimal infrastructure.  

A variety of sensors such as sonar and ultrasound, laser, 
visible light and infrared as well as digital cameras are 
commonly used to gather information and to “capture” the 
local environment. For now, we assume that maps are static, 
that is, no relative movement of environment features exist 
and no intermittent changes in such features are allowed. 
However, despite this assumption, the uncertainties of the 
robot state can become arbitrarily large [12]. This stresses 
upon the necessity of more reliable tracking of the exact 
positions of landmarks and other environmental features that 
can reduce the uncertainty of the robot state.  The 
environmental codes that we consider in this work are 
specifically designed for environment enhancements 
facilitating such tracking and potential use in SLAM and 
FastSLAM [10, 11]. 

FastSLAM is an efficient SLAM algorithm, which 
decomposes the SLAM problem into two, namely a robot 
localization problem and a collection of landmark estimation 
problems. It uses a modified particle filter for assessing the 
posterior over robot paths instead of the extended Kalman 
filter (EKF), which reduces the running time from linear to 
logarithmical in respect to the number of landmarks [10, 11]. 
Another advantage of FastSLAM over the EFK is its multi-
hypothesis data association. Since each FastSLAM particle 
represents a specific robot path, data association decision can 
be performed on a per-particle basis. High weights will be 
assigned to correct data association in terms of high chances 
for future resampling. If the data association is incorrect, the 
weight will be low and then the association will be removed 
later. 

In Section II, we describe the semantic encoding method 
that we have developed and provide details about the 
implemented software system that employs it. In Section III, 
we present experimental measurements and validation of the 
developed system. In Section IV, we elaborate on the 
approach of 3D mapping with semantics and SLAM. Finally, 
we conclude in Section V with some plans for further work.  

282Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology



II. SEMANTIC SURFACES 

In linguistics, semantics refers to the meaning carried by 
a language. In the case of mapping, we define semantic 
surface as a surface with embedded marking which provides 
additional information alone, separately and independently 
from all the visual features and properties of the surface [7]. 
Such an embedded surface marking can be implemented, for 
example, as a (dense) grid of landmarks with links to nodes 
with specific meaning. We believe that the semantic surfaces 
as defined here, although applicable outdoors, are best 
employed in indoor environment and for small scale 
navigation. In the following sections we discuss in more 
detail various methods and approaches for surface marking 
and creation of semantic surfaces that are suitable for 
position determination of autonomous agents and mobile 
robots. 

A. Environmental semantic encoding 

In our daily life, we often encounter different codes 
embedded or attached to various products and equipment. 
Such codes usually carry digital information, specific to the 
artifact they are associated with, and are used for its tagging 
and consequent identification. Typical examples are 
barcodes employed in shops for merchandise management 
and control. Although most of the barcodes currently in use 
are still one-dimensional, more advanced two-dimensional 
barcodes such as QR and Datamatrix codes, Color codes, and 
others are being adopted. In addition to their business use, 
both old-type and newer codes are becoming more accessible 
for ordinary people through various gadgets, such as camera 
enabled mobile phones and smart phones, etc. Typical 
applications involve scanning of a code by a mobile device 
camera, decoding and extracting information embedded in it, 
and providing related feedback to the user. This is a very 
powerful application model that allows on-time delivery of 
up-to-date context-dependent information, dynamically 
adjustable to meet the specific need of the current user. It 
takes advantage of the continuous 3G/WiFi connectivity of 
the current mobile devices, of their ability to take snapshots 
of the surrounding environment by a simple press of a button, 
and of the user profiles containing usage history and 
preferences information stored on the device. 

In a similar way, autonomous agents such as mobile 
robots can also take advantage of these codes. Context 
dependent information provided in this way could be further 
extended and even better targeted if localization information 
is available. Standard GPS-based tracking and position 
determination, however, is generally not sufficient for 
reliable precise localization indoors. To address this issue, 
we introduce here our research on ubiquitous environmental 
digital codes for global positioning and navigation [4]. These 
codes are specifically designed to seamlessly blend in the 
surrounding environment by ether being practically 
undetectable by naked human eye due to the size and shape 
of the employed marks or by becoming part of the 
environmental patterns naturally covering walls and other 
surrounding surfaces. Methods for generation of unobtrusive 
surface codes that blend well with existing printed content 
have been reported in [1,8] and our work on direct 

embedding of such codes in surfaces and into the bulk of 
physical objects have been reported in [3].  

In this paper, we focus on larger-scale codes that are 
integrated with various patterns on surrounding surfaces [4]. 
The codes do not interfere with the look and feel of the 
surrounding environment and thus do not disturb the humans. 
Autonomous agents and mobile robots, however, can extract 
the codes from their surroundings and employ them for 
localization (position and orientation) determination.  

 

Figure 1.  A sample human recognizable arrow (a) and algorithmically 

recognizable (b) and non-recognizable (c) “A-shaped” objects 

There are known approaches addressing interior design 
patterns [2], where figures with different distinguishable 
shapes are used for the encoding. As discussed in [2], 
experimental interior design patterns based on 4-figure and 
6-figure digital encoding have been created and consequent 
figure recognition and decoding test have been conducted. 
Reported experimental results suggest that better system 
performance and higher recognition rates would need to be 
secured before its final adoption.  

 

Figure 2.  A sample human recognizable (a) and algorithmically 

recognizable (b) “L-shaped” objects 

In contrast to the above discussed interior design patterns, 
the encoding scheme that we employ in our work uses non-
shape based figure discrimination. Its computational 
complexity is significantly lower than the F-descriptor based 
method employed in [2]. Our method can work with single 
figure type patterns where no figure type discrimination is 
required and digitally encoded data is simply related to the 
figure rotations. In this way various, differently shaped and 
sized graphical objects can serve as figures in our patterns 
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where only their orientation matter. For reliable 
determination of the figure rotational angles, however, 
graphical objects with easily distinguishable main or up 
direction should be used.  

The arrow shaped figure shown in Fig. 1(a) is a good 
example of direction recognition by humans, since its 
pointing direction is unmistakable. But it is also a good 
example of a graphical object with algorithmically-easy 
determinable direction. Simple methods to determine the 
arrow direction would be to find its mass center and to 
connect it to the most distant arrow point, to calculate and 
use moments of higher order, etc. Since the figure orientation 
will be determined algorithmically, it does not necessarily 
have to match the human judgment. We can, therefore, say 
that any figure with easily determinable main direction by 
the employed algorithms could be considered an arrow or an 
A-shaped object. To humans it may not look like or even 
remotely resemble an arrow but it can be treated as an A-
shaped object as long as its main direction is well determined 
by the employed software. Some examples of objects that 
can and cannot be considered as A-shaped are given in Fig. 
1(b) and Fig. 1(c), respectively. 

A simple extension of this idea would be considering L-
shaped objects. Same as for A-shaped objects, the main 
direction of the L-shaped objects should be well defined and 
easily determined algorithmically. In addition to this, L-
shaped objects and their mirror images should be easily 
distinguishable. For illustration, examples of human 
recognizable L-shapes and their mirror images are shown in 
Fig. 2(a). Further examples of algorithmically recognizable 
L-shaped objects and their respective mirror images are 
shown in Fig. 2(b). 

B. Software system 

We have developed an experimental software system 
(Fig. 3) for basic figure management, for design, generation, 
and printing of environmental semantic codes, and for code 
extraction, analysis, and consequent localization in 
semantically encoded environments.  

 
Figure 3.  A schematic representation of the developed experiment 

software system 

The system is quite flexible and allows creation of a vast 
variety of environmental encoding patterns. Depending on 
the choice of code components or figures, impressive 
wallpaper patterns close to real artworks could be created. 

The elementary figures used by our system are initially 
organized in a figure database.  Employed figures are 
essentially images in different formats which fall into one of 
the following two categories: 

• raster images: these images are stored in files with 
extensions bmp, tiff, gif, jpeg, etc. that store arrays 
of image pixels, and 

• vector images: these images are stored in files with 
extension svg, wmf, etc. and contain drawing 
information. 

Raster images do not scale well, i.e., they get jagged 
under large magnification, which makes it difficult to use the 
same designed pattern for differently sized wallpaper codes. 
Vector images on the other hand scale very well although 
some standard image processing techniques cannot be 
directly applied to them. 

 
Figure 4.  Figure management component of the system 

In our system, we support both types of images and we 
always attempt to employ the most suitable type for the task 
in question. For example, required figure characteristics such 
as center of gravity, mass distribution, moments, etc. are 
calculated based on a raster image file of the figure. If such 
file is not available, it is automatically generated by scan-
conversion (rendering) of the corresponding vector file. In 
the designed patterns, on the other hand, we use vector 
representations of the employed figures whenever available.  

1) Figure management 

The process of building the figure database is 
schematically represented in Fig. 4. First copyright free 
publicly available, commercial, and private image sources 
are searched and images that are judged as potentially 
suitable for environmental semantic encoding are fed into the 
Figure Analysis Program (FAP). The program accepts all 
most popular image formats for both raster and vector 
images. Raster images supplied to the program are 
immediately evaluated [4] and those found unsuitable are 
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rejected.  For positively assessed raster images an attempt is 
made to locate and download a vector version of the same 
figure if available.  If a vector image is supplied to the 
program FAP first renders it and then proceeds with its 
evaluation. For all positively evaluated figures FAP 
calculates and stores the necessary figure parameters in the 
database. Once the database is populated with sufficient 
number of suitable figures the code generation process can 
be initiated. 

2) Pattern design 

At this stage (Fig. 5), the visual appearance of the 
environmental semantic code is chosen. As earlier discussed, 
figures of various shapes, sizes and colors can be employed 
in the environmental code.  Depending on the fundamental 
code parameters the pattern designer may or may not be 
limited to certain types of figures, e.g., A-shaped, L-shaped, 
etc. This, however, is completely transparent to the pattern 
designer since the software will allow him to use only 
suitable figures in his design [4]. Figures are arranged on a 
predetermined grid where the selection of figures for the grid 
positions is controlled by the pattern designer. Note that 
other placement parameters of the figures such as figure 
rotations and small displacements from the grid positions are 
controlled by the encoding engine. The pattern designer can 
arrange figures interactively, programmatically, and by 
combining the previous two methods. This way a fine artistic 
arrangement can be done interactively and then 
programmatically replicated to cover large areas. 

 
Figure 5.  Pattern design, code generation, and code printing components 

of the system 

3) Code generation 

At this stage (Fig. 5) the Pattern Encoding Engine (PEE) 
is invoked to calculate the figure rotations that will carry the 
localization and other semantic information. Some encoding 
options may also introduce small relative displacement of the 
figures in respect to their predefined grid positions. Our PEE 
is based on the Cluster Pattern Interface (CLUSPI) class of 
codes [5,6]. These codes have no physical margins, blocks, 
or any other features that may fragment their appearance. 

CLUSPI encoded semantic surfaces and environmental 
encoding based on them is a powerful mechanism for 
creating ubiquitous environments where humans (through 
specialized devices), autonomous agents, and mobile robots 
can reliably determine their positions, orientations, and also 
obtain environment related semantic information. 

4) Code printing 

The environmental semantic codes created by our 
software are stored in PostScript files that can be directly 
send to a printing device (Fig. 5). If all images (figures) 
embedded in the file are of vector type, the code from the file 
looks well when printed both on small A4 sized and on large 
A0 sized sheets. This feature of the code is extremely 
convenient for experimental work. Proofs for visual 
inspection of the developed codes, for example, can be 
conveniently printed on A4 sheets. Same proofs can then be 
used for code consistency checking and structural 
verification. While the real code is to be used as wall paper 
(A0 printouts) by using the A4 proof and a digital 
microscope we are able to verify all essential properties of 
the printed code. 

 
Figure 6.  Code extraction, analysis, and localization components of the 

system 

5) Code extraction 

Typical applications of CLUSPI codes are for digital 
enhancement of printed materials. In such cases the code 
reader can be easily tuned to retain a predetermined distance 
from the encoded surface, e.g., by installing a spacer, which 
greatly simplifies the code extraction process. However, for 
large-scale codes embedded in wall paper, for example, 
positions and orientations of the camera in respect to the 
encoded surface may vary significantly. With the change of 
distance, optical parameters of the camera may need 
adjustment (depending on the focus depth). To tackle this 
issue we employ an autofocus camera (SONY HDR-
CX520V). Another problem is the changing size of the 
viewing area and thus the total number of figures that can be 
analyzed which will be discussed in following works. In all 
cases each frame of the camera video stream is first 
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converted to grayscale with its brightness and contrast 
normalized (Fig. 6). Then zones containing figures are 
identified and the figures are separated from the background 
through standard image processing techniques [15]. Then the 
barycentre, the orientation (rotational angle), and other 
parameters (e.g., L-shape mirroring parameters, etc.) are 
computed for each extracted figure. The obtained data is 
finally organized in a 2D array corresponding to the figure 
arrangement on the surface. 

6) Code analysis 

The data contained in the 2D array with extracted figure 
parameters obtained at the previous step is first converted to 
short sequences of bits. As shown in Fig. 6, an angle derived 
from the figure orientation within the pattern carries four bits 
of information (see the angle encoding table). The first two 
bits are allocated for encoding the X-coordinate and the 
remaining two ones are used for encoding the Y-coordinate. 
The bits for each coordinate from the figures forming a 
virtual block [4] are arranged in two 8-bit sequences, one for 
each of the coordinates.   

7) Localization 

Localization information is calculated on the basis of the 
bit-sequences derived at the previous step (Fig. 6). The 
CLUSPI scheme encodes coordinates with a global binary 
sequence having special properties, namely such that any 
subsequence with a predetermined length (which is a 
parameter of the code) is unique [1]. Based on that, we can 
determine the positional coordinates of a set of figures by 
matching the subsequences that they encode with the global 
CLUSPI encoding sequence [5,6]. The implementation of 
this decoding is, of course, more complex and includes 
redundancy management and error recovery procedures 
which will be discussed in future works. 

III. EXPERIMENTS AND EVALUATION 

As shown in Fig. 3 and discussed in Section II, generated 
environmental semantic codes are first printed on A4-sized 
paper for visual inspection, code consistency checking, and 
structural verification.  

 
Figure 7.  Recognition rate vs. distance (Bars show average; overlaid 

segments show minimum and maximum values.) 

Using such proof pages, we have conducted a range of 
experiments and measurements of the recognition rates for 
specific codes at various distances and viewing angles. 
Obtained results are directly applicable to full-sized 
environmental encoding patterns by appropriate scaling. The 
detailed measurement results that we report here are based 
on a sample coded pattern for position determination with 
minimal sequences of four figures as shown in Fig. 6. A 
compact group of four figures (e.g., 2x2) can be viewed with 
the employed digital microscope from a minimum distance 
of about 33 cm.  

Results for six sets of measurements starting with the 
minimum distance and incrementing by 12 cm are shown in 
Fig. 7. At each distance, five spots on the patterned sheet 
have been randomly chosen and 10 measurements have been 
done at each spot (50 measurements altogether for each 
distance). As shown in Fig. 7, no position determination 
errors have been detected for the distances within the 33-69 
cm range and the average success rate remains over 95% for 
the 69-93 cm range. Above that distance, the recognition rate 
becomes too low for practical use.  

 
Figure 8.  Recognition rate vs. angle (Bars show average; overlaid 

segments show minimum and maximum values.) 

Similarly, results for six sets of measurements at angles 
from 0° to 25° (in 5° increments) from the vertical are shown 
in Fig. 8. Again, 10 measurements at 5 random spots have 
been taken for each of the angles. As shown in Fig. 8 average 
success rate stays over 95% for all angles up to 20°. Above 
that angle, recognition rate becomes too low for practical use. 

IV. 3D MAPPING WITH SEMANTICS 

We consider the pervasive environmental codes in the 
framework of autonomous position determination as a tool 
for localization support. The main purpose of a semantic 
surface in respect to a typical geometric map is to provide 
“some type of reasoning based on individual entities in the 
map and/or their classes” [13]. For instance, robots with 
rescue systems are often designed to assist rescuers to locate 
victims in various disaster environments such as an 
earthquake scene. Those systems require reliable maps with 
specific and detailed object information.  In order to identify 
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and properly report the precise localization of injured victims, 
all available degrees of freedom (e.g., 6DOF) need to be 
used on top of the available 3D maps.  This is an issue that 
can be addressed by the 6D SLAM method. For real-time 
applications, however, the time that simple SLAM takes for 
pose (position and orientation) estimates often becomes a 
problem. In such situations semantic knowledge could be 
extracted from the surrounding environment and used to 
improve the efficiency and to speed up the 6D SLAM 
method. “A semantic 3D map for mobile robots is a metric 
map that contains in addition geometric information of 3D 
data points and assignments of these points to known 
structures or object classes.” [12,13] Semantic knowledge 
could, therefore, be provided, through semantic maps 
implemented as semantic surfaces. The process of 3D 
mapping with semantics could be divided into four major 
steps:  

• 3D scanning by 6D SLAM, 

• 3D scene interpretation, 

• objects detection and localization, and 

• semantic map presentation. 
However, “Prior to the mapping, the object database 

needs to be initialized and filled with object descriptions 
both for the 2D and 3D representations” [12,13]. Therefore, 
due to the 3D nature of such semantic maps, all the data need 
to be rendered before it can be employed in 6D SLAM 
computations. 

Symbolic level robot planning often relies on such 
rendered semantic maps and takes advantage of the specific 
background knowledge embedded in them. Extracted 
semantic knowledge is then used for reasoning about objects 
or object classes present in the map. As reported in [14] 
using semantically labeled points results in a speedup with 
no loss of quality in computing time for matching of two 3D 
scans. 

V. CONCLUSION 

In this work, we discussed various approaches for 
autonomous agent localization identifying their advantages 
and drawbacks. After a concise review of the existing 
methods, we drew reader’s attention to the benefit of using 
semantic surfaces consisting of embedded marking with 
predefined links to specific semantic nodes. Semantic 
surfaces are especially useful for indoor and small scale 
navigation where the other methods have some deficiencies.  

An experimental software system for environmental 
coding generation, analysis and processing has been 
developed providing flexibility and allowing creation of a 
vast variety of environmental encoding patterns some of 
which are close to artworks and applicable as decorative 
wallpaper patterns. 

Our intention is using the system for generating semantic 
surface environments which will be employed in real 
applications with autonomous agents. In particular, our plans 
for further work include carrying out thorough experiments 
to investigate how the recognition will be influenced in an 
environment where the semantic surfaces will be subjected 
to wear and tear. 
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