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Abstract—The management of clouds comprised of hundreds
of hosts and virtual machines present challenging problems
to administrators in ensuring that performance agreements
are met and that resources are efficiently utilized. Automated
approaches can help in managing such environments. Auto-
nomic managers using policy-based management can provide
a useful approach to such automation. We describe different
elements of a cloud system and outline how collections of
collaborating autonomic managers in cloud can be a step
towards better management of clouds. We also give formal
definition of different elements in the managed system and
show a summary of implementation results.
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I. INTRODUCTION

Cloud computing environments often depend on virtu-
alization technology where client applications can run on
separate operating virtual machines (VMs), particularly for
providers of Infrastructure as a Service (IaaS). Such envi-
ronments can consist of many different host computers each
of which might run multiple VMs. As the number of hosts,
virtual machines and client applications grow, management
of the environment becomes much more complicated. The
cloud provider must worry about ensuring that client service
level agreements (SLA) are met, must be concerned about
minimizing the hosts involved, and minimizing power con-
sumption. Our focus is on how to better manage the virtual
machine and system infrastructure of the cloud provider.

In recent years, there has been a lot of research into
Autonomic Computing [1], especially about how to build
autonomic elements and managers [2]. Autonomic man-
agers try to monitor and manage resources in real time by
building systems that are self-configuring, self-optimizing,
self-healing and self-protecting. In the broader vision of
autonomic computing, large complex systems will consist
of numerous autonomic managers handling systems, ap-
plications and collections of services [3]. Some of the
systems and applications will come bundled with their own
autonomic managers, designed to ensure the self-properties
of particular components. Other managers will be part of
the general management of the computing environment. The
complexity of managing a large system will entail a number

of different autonomic managers which must cooperate in
order to achieve the overall objectives set for the computing
environment and its constituents. However, the relationships
between these managers and how they cooperate introduce
new challenges that need to be addressed.

We consider the use of policy-based managers in address-
ing this problem. Our initial focus is on a hierarchy of
autonomic managers where policies are used at each level to
help managers decide when and how to communicate with
each other as well as using polices to provide operational
requirements. The ultimate goal is to automatically monitor
and manage a larger system by a collective of collaborating
local autonomic managers (AMs). In such an environment,
we assume that each local AM has its own set of policies
and is trying to optimize the behaviour of its local elements
by responding to the changes in the behaviour of those
elements.

We assume some managers will also be expected to mon-
itor multiple systems and directly or indirectly to monitor
other local AMs. We also assume that one of the roles of a
higher level manager is to aid other AMs when their own
actions are not satisfactory.

The focus of this paper is on collaboration and commu-
nication between different managers at different levels of
the hierarchy based on the active policies. The core issue
addressed is how these local managers should communicate
with each other and what information they have to exchange
to achieve global performance goals. Finally, we will focus
on how to automate the collaboration process itself.

In the rest of this paper, Section II explains the related
works, Section III focuses on explaining the cloud architec-
ture and challenges that are being addressed, Section IV
gives the formal definitions of our approach towards the
problem and finally, we conclude with the future works in
Section V.

II. RELATED WORK

Some researchers have already begun to study how the
collaboration or cooperation among local autonomic man-
agers can be done in order to achieve a global goal.

A hierarchical communication model for autonomic man-
agers has been used by some researchers. Famaey and
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Latre [4] used a policy-based hierarchical model to show
how it can be mapped to the physical infrastructure of an
organization and how this hierarchy can dynamically change
by splitting and/or combining nodes to preserve scalability.
They also introduced the notion of context that needs to be
accessible in the hierarchy, but do not describe in detail what
this context should be and how it should be communicated.
In this paper, we focus on what this context should be, how it
can be transferred from one manager to the other and when
this should happen.

Aldinucci, et al. [5] described a hierarchy of managers
dealing with a single concern (QoS). They introduce three
types of relationship between components but do not explore
the details of how and when such components should interact
in actual systems. They used a simulator to evaluate the
framework and their main focus was on the concept of a
behavioral skeleton where they used autonomic management
for skeleton-based parallel programs.

Mukherjee, et al. [6] used a flat coordination of three man-
agers working on three different parts of a system (Power
Management, Job Management, Cooling Management) to
prevent a data center from going to the critical state. They
showed how the three managers can cooperate with each
other to keep the data center temperature within a certain
limit that is suitable for serving the current workload and
at the same time not using more power than required. They
showed how these three managers should cooperate based
on different business policies.

However, these three managers are fixed and adding new
managers to this system will be challenging both in terms
of collaboration and scalability. The same approach as in
[6] is used in [7], [8] to show the collaboration between
a power and a performance manager (only two managers)
to minimize the power usage as well as maximizing the
performance. This method however does not seem to be
generalizable to a larger environment with more autonomic
managers involved because of the complexity introduced in
terms of interacttions between managers.

Schaeffer-Filho, et al. [9], [10] have introduced the inter-
action between Self-Managed Cells (SMCs) that was used
in building pervasive health care systems. They proposed
Role based interactions with a Mission that needs to be
accomplished during an interaction based on predefined
customized interfaces for each role. This approach is very
general and does not address the details of the interactions.
In the work presented in this paper, we will address what
the policies look like and what specific information needs
to be exchanged.

Zhu, et al. [11] has introduced an integrated approach
for resource management in virtualized data centres. Their
approach is similar to the hierarchical approach we used in
our work but the relationship between different controllers
are tightly coupled whereas we suggest a loosely coupled
communication style to better accommodate failures and

heterogeneous autonomic managers. The focus of our work
is on policies and how they affect the relationship between
managers, but it’s not clear how they use policies and if
there is any effect on controller’s communications.

III. CLOUD MANAGEMENT CHALLENGES

In order to describe the challenges, we first explain the
cloud architecture.

A. Cloud Architecture

The infrastructure of IaaS providers, is typically com-
posed of data centers with thousands of physical machines
organized in multiple groups or clusters. Each physical
machine runs several virtual machines and the resources of
that server are shared among the hosted virtual machines.
Therefore, there are a large number of virtual machines
that are executing the applications and services of different
customers with different service level requirements (via
Service Level Agreement (SLA) parameters).

To have a better understanding of cloud provider environ-
ment and architecture, we take a closer look at Eucalyptus
[12] (an open-source infrastructure for the implementation of
cloud computing on computer clusters). In Eucalyptus, there
are three main elements that form the cloud infrastructure
in a hierarchical fashion:

Figure 1. Eucalyptus Hierarchical Design (from [12])

• Cloud Controller (CLC): The CLC is the top level
component for interacting with users and getting the re-
quests. The CLC then talks with the Cluster Controllers
(CC) and makes the top level choices for allocating new
instances of virtual machines.

• Cluster Controller (CC): The CC decides which Node
Controller will run the VM instance. This decision is
based upon status reports which the Cluster Controller
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receives from each of the Node Controllers. CC has
three primary functions: schedule incoming instance
run requests to specific NCs, control the instance virtual
network overlay, and gather/report information about a
set of NCs.

• Node Controller (NC): The NC runs on the physical
machine responsible for running VMs and the main
role of the NC is to interact with the OS and hypervisor
running on the node to start, stop, deploy and destroy
the VM instances. An NC makes queries to discover
the nodes physical resources the number of cores, the
size of memory, the available disk space as well as
to learn about the state of VM instances on the node.
The information thus collected is propagated up to the
Cluster Controller in responses to describeResource and
describeInstances requests.

B. Challenges

All of the specified elements in the cloud architecture
are needed for instantiation of new images or destroy-
ing currently deployed VMs and they have some minimal
management capabilities. However, the main challenges in
managing the cloud environment occur after the VMs start
working and receiving loads:

• How should the system respond to the load changes
inside one or more virtual machines?

• What should happen to maximize the performance of
a specific virtual machine (or an application inside it)
according to the agreed SLA?

• How can we scale the system up and down on the fly
(change VM parameters)?

• How can one enforce specific operational policies for
the entire system?

• How can one make sure that minimum resources are
used to perform a task (e.g. minimizing the power
usage)?

A deeper look at the cloud architecture and the manage-
ment needs suggest that providing all these capabilities in
real time through a single centralized manager is almost
impossible, because of the hierarchical layers in the archi-
tecture with different responsibilities at each layer. Also, the
dynamics of load change and the need to react to these
changes in real time with increasing number of VMs and
physical nodes makes it much more difficult to achieve these
goals with a traditional centralized manager.

Therefore, a hierarchical approach towards cloud man-
agement would be a more efficient way to achieve all of the
goals. At the same time, each element in the management
hierarchy should act autonomously and manage part of the
hierarchy on its own.

IV. APPROACH AND DEFINITIONS

Based on the previous discussions, we propose to use
a number of different autonomic managers. By using this

approach, the problem of managing a large system entails a
number of autonomic managers where each one is dealing
with smaller or more localized components, and then each
manager’s job is to focus on managing that component
(or small set of components) efficiently based on certain
policies.

For example, an AM for an Apache web server should
only focus on the behavior of the web server and not the
relationship that the webApp might have with a database
server or, a Node Controller (NC) AM should only focus on
the general performance and the behavior of the VMs inside
that specific node.

The hierarchy of autonomic managers might appear as
in Figure 2. In the lowest level, the AMs are managing
the applications inside the VMs. The AMs at the node
controller (NC) level monitor and manage the VMs. Then
the AMs at cluster controller (CC) level are responsible for
all physical nodes inside that cluster. Similarly the AM at
cloud controller (CLC) level monitors and manages all of
the clusters.

Figure 2. AMs hierarchy based on the cloud architecture

Note that this is a logical organization of autonomic
managers and does not necessarily reflect the physical al-
location of the AMs, i.e., they do not need to be located
on different physical machines. In a large cloud computing
provider they could be located on separate machines or
some may be located on the same machines. These AMs
should then collectively work together to preserve a set of
policies for optimizing performance, minimizing resource
usage, avoiding SLA violations, etc.

Assuming that the management tasks are specified in
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terms of policies, this means that we need policies with
different granularity deployed at different levels of the
infrastructure and we need to ensure that AMs can com-
municate properly with each other to enforce those policies.

A. Managed System

Our managed system is composed of a set of elements
that can be monitored and managed automatically. Each
autonomic manager is typically monitoring and managing
one or more managed elements(ME). The managed elements
will be equivalent to what is found in ordinary cloud
infrastructures such as a virtual machine, a physical node, a
software resource, or a cluster.

We can define the charactestic and operations of each
ME in a definition document called ”ManagedObjectType”
which can later be instantiated several times. For example,
for modeling a virtual machine ME we can put all properties
and metrics of a general VM in the VMManagedObjectType
and later we can instantiate two objects of this type called
vm1 and vm2.

Other possible managed objects types are: ApacheM-
anagedObjectType, NodeManagedObjectType, ClusterMan-
agedObjectType.

Definition 1. MOt=〈P,M,A〉 A ManagedObjectType is a
tuple 〈P,M,A〉, where:

• P is a finite set of properties, P={P1, ..., Pk},
• M is the finite set of metrics, M={M1, ...,Ml}, where:

∀Mi ∈ M,Mi = 〈Ni, ACi〉 | Ni =
MetricName,ACi ∈ A = RefreshingAction

• A is the finite set of actions, A={A1, ..., Am}.
We denote the set of managed object types by
MOT={MOt1, ...,MOtn}

Actions are operations that can be done on that managed
object. For example, actions for a VMManagedObjectType
could be startVM(), stopVM(), getVMIP(), refreshCPUU-
til(), etc.

Properties of a managed object type are set upon instan-
tiating a new managed object. Examples of properties for
VMManagedObject are vmName, vmAllocatedMemory and
vmOSType.

The metrics associated with a managed object are those
properties that change more often and therefore must include
actions specifying how they can be updated/refreshed (e.g.
by connecting to another AM and sending a message to get
the updated values). Examples of these metrics along with
their associated actions are CPUUtil, refreshCPUUtil(), or
MemoryUtil, refreshMemoryUtil(), etc.

The actions, metrics and properties defined inside man-
aged objects types can later be used in policies to evaluate a
specific condition or to perform an action on that managed
object.

Therefore, based on this definition, we can now instantiate
several managed objects from a single type. For example,

vm1 managed object can be instantiated from VMManage-
dObjectType, etc.

Definition 2. Given a set of MOT, a ManagedObject (MO)
is a tuple 〈p,m, a〉 where there is a MOt=〈P,M,A〉 such
that

• a=A,
• p = {〈P1, v1〉 , ..., 〈Pk, vk〉} | P = {P1, ..., Pk} and vi

is value of the property.
• m = {〈N1, V1, AC1〉 , ..., 〈Nl, Vl, ACl〉} | M =

{〈N1, AC1〉 , ..., 〈Nl, ACl〉} and Vi is the measured
value of a metric.

We denote the set of managed object by
MO={MO1, ...,MOn}

In the rest of this document, whenever we use term
managed object, we use this definition.

We assume that inside each AM there is an event handling
mechanism for generating events and notifying the interested
parties inside the AM. For example, there could be an
event bus and different subscribers to certain events (within
the AM) and upon raising those events any subscribers
will get notified. This event handling mechanism is useful
for handling event, condition, action policies and also for
communication between managers (both explained later).
We assume that for a given system and managed objects,
that there are a finite number of event types.

Definition 3. An event type, Et is a pair 〈N,M〉 where: N
is the name of the event type, M={m1, ...,mo}, and mi is
the name of a metric from a managed object. We denote the
set of event types by ET ={Et1, ..., Eto}.

Definition 4. Given a set of ET, an event E is a pair 〈n,m〉
where there is an event type Et = 〈N,M〉, n is the name
of the event n = N, m ={〈m1, v1〉 , ..., 〈mo, vo〉}, where M
={m1, ...,mo}, and vi is its value. We denote the set of
events by Eve ={E1, ..., Eo}.

For a given set of event types, there may be an infinite
number of possible events, depending on the value associ-
ated with the metrics of that event type. In this respect, an
event is an instantiation of an event type with the associated
metrics assigned values.

B. Policies

All of the policies expressed as event, condition, action
(ECA) policies. In general, all of our policies are of the
form:

On event: E
if ( Set of Conditions ) then {

Ordered Set of Actions
}
Upon raising an event inside the autonomic manager, then

any policy which matches the event will get evaluated. If the
conditions in the policy are met, then the policy actions get
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triggered. We provide examples of policies in the following
sections.

Definition 5. A policy is a tuple 〈N,E,C,A〉 where N is
the policy name, E∈ Eve is one of the events defined for the
manager, C is a finite set of conditions, and A is an ordered
set of actions defined in MO actions. Each condition, is
defined by a tuple 〈MName,Operator, T 〉, where MName
is the metric name defined in a MO metrics, Operator is a
relational operator and T is a constant indicating a threshold
value. Therefore, Pl=〈N,E,C,A〉, where:

• E∈ Eve,
• C={C1, ...Cp} and Ci=〈MName,Operator, T 〉 or

”true”,
• A={A1, ..., Aq}, ∀Ai ∈ A∃MOj ∈ MO | Ai =

MOj .ACk

We denote the set of policies by PLS={Pl1, ..., P lr}.

A sample expectation policy for monitoring the Apache
response time is:

Pl1 = 〈 ”apacheRTPolicy”, ManagementIntervalEvent,
apache.responseTime > 500,
apache.increaseMaxClients( +25, 200) 〉

In this policy, ManagedIntervalEvent is an event that gets
triggered in a certain time interval (e.g. 1500ms) and it has
no metrics associated with it. ”apache” is an instance of
ApacheManagedObjectType and responseTime is one of the
metrics defined in ApacheManagedObjectType. ”increase-
MaxClients(value, max)” is one of the actions defined in
ApacheManagedObjectType and will increase the max client
property of the apache web serverby a certain number up to
a max (e.g., will not increase it more than 200).

At AM startup there are configuration policies that set
up the AM environment, identify the appropriate managed
objects and configure them. A sample configuration policy
would look like:

Pl2 = 〈 ”StartUpConfPolicy”, StartUpEvent, true,
{ system.setFatherIP(”192.168.31.1”),
system.create(vm1, VMManagedObjectType),
vm1.setIP(”192.168.31.3”) } 〉

This policy happens on AM startup and configures the
parents IP of this AM in the hierarchy and also adds one
ManagedObject for managing vm1 (This is happening in
AMNC1 - see Figure 2). This AM will be responsible
for managing physical node 1 which hosts vm1 and will
communicate with the manager inside vm1 if necessary. The
AM hierarchy can be built this way upon system startup but
it can change dynamically throughout their lifetime (e.g. by
migration of a VM to another machine). In this example,
”system” is an instance of SystemManagedObbjectType
which is useful for configuration and management of the
manager itself.

C. Structural Relationship Between AMs

In order to explain the relationship between AMs in this
system we first need to define the AM itself.

Definition 6. An Autonomic Manager(AM) is a tuple
〈MO,Eve, Pol, RI,MI〉 where MO is a finite set of man-
aged objects, Eve is a finite set of events, Pol is a finite set
of policies, RI is the refresh interval which determine the
time interval for updating the managed objects metrics and
MI is the management interval, which determine the time
interval for enforcing active policies. These two thresholds
can be configured for each AM. We denote the set of AMs
by AMS={AM1, ..., AMt}

Based on the cloud architecture, we assume AMs are or-
ganized in a hierarchical manner to reflect different authority
levels in cloud. So, the structural relationship between AMs
consists a tree.

Definition 7. The hierarchy of AMs is a
tuple 〈AMS,Edges〉 where AMS is the set of
autonomic managers as the nodes of the tree and
Edges={(AMi, AMj)|AMi, AMj ∈ AMS} is the set of
edges connecting two AMs to each other. The following
properties exist in this hierarchy:

• ∃AM ∈ AMS|@AMi ∈ AMS, (AMi, AM)
• if(AMi, AMj) ∈ Edges ⇒ @AMk|(AMk, AMj) ∈

Edges
• if(AMi, AMj) ∈ Edges ⇒ (AMj , AMi) /∈ Edges

D. Communication Model

Each manager should be able to receive messages from
other managers or send messages to other managers. In
previous work [13], [14], we suggested the use a message-
based type of communication between AMs. Three different
types of messages (NOTIFY, UPDATE REQ, INFO) were
proposed as sufficient for communication between managers.

Since we are dealing with a hierarchy of managers then
each manager needs to communicate with either its father
or its children. However, it is also possible for an AM to
send NOTIFY messages to another AM in some other part
of the hierarchy based on a request.

The UPDATE REQ message is sent from higher level
managers to lower level ones. INFO messages are sent
in response to the UPDATE REQ message and NOTIFY
messages are sent from one manager to another based on the
need. In the previous work [14] we have shown how one can
use policies to generate these messages for communication
among AMs based on demand.

V. CONCLUSION AND FUTURE WORKS

Based on the previous discussions, we have introduced
an automated collaborative approach towards management
of a cloud infrastructure. So far, we have implemented the
hierarchy of autonomic managers and did some experiments
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Table I
RESULTS OF THREE SCENARIOS

Scenario SLA Violation(%)

1: No collaboration between AMs 72

2: One-Level collaboration in the hierarchy 42

3: Two-levels collaboration in the hierarchy 24

which confirmed the importance of collaboration between
AMs at different layers of the cloud. The complete results
can be found in [14], but Table I shows the summary of
three scenarios with respect to SLA violation rate.

The main contribution of this paper compared to our
previous work is to give formal definition of the managed
system and autonomic managers which lead to a better
understanding of the problem and developing precise algo-
rithms. The ultimate goal is however to design algorithms
that can get the system information (e.g., events, policies
and ManagedObjects) and generate the required communi-
cation messages automatically. Therefore, the collaboration
between AMs will become more automated itself. In this
work, we assumed that policies are defined and delivered to
managers by system administrators, but as a future work we
are planning to make this process more automated.

The next step would then be moving towards developing
and evaluating these algorithms, enabling more efficient
use of the cloud infrastructure as well as meeting SLA
requirements while using fewer resources.
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