
Block Algorithm and Its Implementation for Cholesky Factorization

Jianping Chen, Zhe Jin, Quan Shi, Jianlin Qiu, Weifu Liu
School of Computer Science and Technology

Nantong University
Nantong, P. R. China

e-mail: chen.jp@ntu.edu.cn, jin.z@ntu.edu.cn, shi.q@ntu.edu.cn, qiu.jl@ntu.edu.cn, liu.wf@ntu.edu.cn

Abstract—Block algorithm divides a large matrix into small
blocks of submatrices to make full use of computer’s caches.
Blocked smaller submatrices can be directly loaded into the
caches to compute. The efficiency of the computation is hence
improved. The block algorithm for Cholesky factorization is
studied in this paper. Detai1ed derivation and implementation
of the block algorithm are presented. The computations of
modules involved in the block algorithm are discussed. A C++
language program is developed. It is tested and compared with
the standard (unblocked) version of the Cholesky factorization.
The testing results show that the presented block algorithm
outperforms the unblocked one in the cases of large matrices,
with an increase of execution speed of 20%.

Keywords-Numerical computation; Cholesky factorization;
matrix blocking; cache use.

I. INTRODUCTION
Numerical computations of linear algebra problems

including the Cholesky factorization play very important
roles in many scientific researches and engineering
applications. Today's computers are provided with two or
more levels of caches between a high-speed CPU and a
relatively low-speed memory. The caches operate at a speed
close to that of the CPU. If the data computed currently or
used frequently is placed in the caches, the access time of
the data can be reduced significantly. The overall efficiency
of the computation is hence increased greatly. However, the
capacity of the cache memory is much smaller. If the
amount of data being computed is very big, such as the case
of the Cholesky factorization for a large matrix, it is
impossible to load all the data into the cache. The cache can
not be well utilized and the computation is less efficient. To
solve the problem, the method of matrix blocking can be
used [1, 2]. A large matrix is partitioned into blocks of
submatrices of small sizes. The computations of these
smaller submatrices are more likely to be carried out within
caches. Li [3] has discussed the block techniques used in
LAPAK (Linear Algebra PACKage, a software library for
performing numerical linear algebra computations) and
given the testing results on different machines. Andersen et
al. [4] presented a recursive block algorithm for Cholesky
factorization. It uses the technique of recursive blocking,
where a big matrix is blocked recursively (each time split by
half) until the final submatrices are small enough. With this

recursive blocking method, the blocking process can be
made automatically while the block sizes in each level are
different. At outer levels, the block sizes are still quite big,
and at inner levels, the block sizes can be very small. Ng
and Peyton [5] investigated the block algorithm of Cholesky
factorization for the sparse matrix, where many of the
matrix elements are zeros and special measures are taken to
deal with them such as supernodes. The block algorithms
mentioned above including the ones in the LAPACK were
implemented by using the BLAS (Basic Linear Algebra
Subroutine) routines [6], which is an open software library
to perform basic linear algebra operations such as vector and
matrix multiplications. On the other hand, these algorithms
were developed and tested on the machines of more than 10
years ago, at which time the computers had small cache
memories of 64K or 128K. Today’s computers, including
microcomputers, have much greater cache memories of
more than 1M with very big main memories that reach the
order of gigabytes. It is valuable to examine the effects of
the block algorithms on these machines. The block
algorithm of Cholesky factorization for a general matrix
(not the sparse case) is investigated in this paper. The fixed
blocking method is used, that is, a big matrix is divided into
small blocks in a fixed size linearly part by part. Instead of
using the BLAS subroutines, we do the implementation
ourselves by C++ programming and discuss the
implementation techniques involved in the block algorithm.

The remainder of the paper is organized as follows.
Section 2 derives the block algorithm of Cholesky
factorization. Section 3 discusses the implementation of the
block algorithm and the computations of the modules
involved. Presented in Section 4 are testing results and
analysis. Finally, conclusions and considerations for future
work appear in Section 5.

II. BLOCK ALGORITHM FOR CHOLESKY FACTORIZATION
Cholesky factorization is used to solve linear systems of

equations in the case that the coefficient matrix A is
symmetric and positive definite:

 BAX = . (1)

A can be factorized into the product of an upper-
triangular matrix U with a lower-triangular matrix UT (UT is

232Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Numerical_linear_algebra

the transpose of U):

 UUA T= (2)

with



















=

nn

n

n

u

uu
uuu

U
MO

L

K

221

11211

. (3)

According to the standard algorithm of the Cholesky
factorization [7], the matrix U is computed as follows.

2/11

1

2)(∑
−

=

−=
i

k
kiiiii uau i=1, 2, …, n (4)

ii

i

k
kjkiijij uuuau ∑

−

=

−=
1

1

)(j=i+1, i+2, …, n. (5)

Now, we derive the block algorithm for Cholesky
factorization. Since the matrix A is symmetric, only half of
the data is needed. Here, the upper triangular part is used.
We write (2) in a form of blocked submatrices:

















=









22

1211

2212

11

22

1211

U
UU

UU
U

A
AA

TT

T
. (6)

Assume that the order of A is n×n. If we set the block size
at d, then the order of A11 and U11 are d×d, A12 and U12 are
d×(n-d), and A22 and U22 are (n-d)×(n-d). Among these
blocked submatrices, A11, U11, A22 and U22 are upper
triangular, and A12 and U12 are rectangular. Computing (6)
in the blocked form, we obtain

 111111 UUA T= (7)

 121112 UUA T= (8)

 2222121222 UUUUA TT += . (9)

Eq. (7) is the Cholesky factorization of the submatrix A11. It
can be computed using the standard Cholesky factorization
formulae in (4) and (5). If we properly choose the value of
the block size d, i.e., the order of A11, the computation is
likely to be carried out within the cache. After U11 is solved,
U12 is computed by (8):

 12
1

1112)(AUU T −= . (10)

Let
 12122222 UUAA T−=′ . (11)

Eq. (9) becomes

Figure 1. Blocking process of the block algorithm for Cholesky
factorization

 222222 UUA T=′ . (12)

Eq. (11) denotes a modification or update of A22 through U12.
The updated A22 is expressed as 22A′ . Eq. (12) is the
Cholesky factorization of 22A′ . Usually, 22A′ is still a big
matrix. The same blocking process is then applied to 22A′ .
This process is repeated until the order of the final 22A′ is
less than or equal to d. At this time, the Cholesky
factorization of the final 22A′ is computed using the standard
formulae of Cholesky factorization in (4) and (5). Fig. 1
illustrates the blocking process.

In summary, the block algorithm for Cholesky
factorization can be described as follows.
Step 1: Block matrix A into submatrices A11, A12, A22 with a

block size of d.
Step 2: Cholesky-factorize A11: 111111 UUA T= , yielding U11.
Step 3: Compute the inverse of TU11 , yielding 1

11)(−TU .

Step 4: Compute U12: 12
1

1112)(AUU T −= .
Step 5: Update A22: 12122222 UUAA T−=′ .
Step 6: If the order of 22A′ is less than or equal to d,

Cholesky-factorize 22A′ : 222222 UUA T=′ , yielding U22.
Otherwise, take 22A′ as A and return to Step 1.

III. IMPLEMENTATION OF BLOCK ALGORITHM
According to the description in above section, the

computation of the block algorithm for Cholesky
factorization consists of five modules, which include the
Cholesky factorization of a small submatrix (A11), the
computation of the inverse of a lower-triangular submatrix
(1

11)(−TU), the multiplication of a lower-triangular submatrix

by a rectangular submatrix (12
1

11)(AU T −), the multiplication

of two rectangular submatrices (1212UU T), and the control of
the repeated blocking process.

A22

A11

 A12

233Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

A. Cholesky Factorization of Submatrix
The standard formulae in (4) and (5) are used to compute

the Cholesky factorization of the small submatrix A11. Since
the matrix A11 is upper-triangular, the packed storage method
can be applied to save the memory space. If a two dimension
array is used to store the matrix, the number of the elements
in the ith row of the array is n-i (i=0, 1, 2, …, n-1). The
outcome matrix (U11) is stored in the same way.

As the elements of the matrix are stored in the packed
form, the subscript of each element in the two dimension
array differs from its corresponding numbers of the row and
the column in the original matrix. The new data structure is
shown in Fig. 2.

Since the data structure is changed, the formulae in (4)
and (5) need to be modified accordingly. The modified
formulae are as follows.

2/11

1

2
)(11)(∑

−

=
−−=

i

k
kikii uau i=1, 2, …, n (13)

1

1

1
)()()(i

i

k
kijkkikijij uuuau ∑

−

=
−+−−= j=1, 2, …, n-j (14)

B. Inverse Computation of Lower-Triangular Matrix
It is easy to prove that the inverse of a lower-triangular

matrix is still a lower-triangular matrix and the values of its
diagonal elements are the reciprocals of the values of the
diagonal elements in the original matrix. So, the diagonal
elements can be computed separately.

For convenience of the description, we use L to
represent a lower-triangular matrix and B to represent its
inverse matrix. Assume L=(lij)d × d and K=(kij)d × d. The
diagonal elements of K can be easily computed as

ii

ii l
k 1

= i=1, 2, …, d. (15)

The other elements can be computed by making use of the
characteristics of the triangular matrix instead of using the
normal method of Gaussian-Jordan elimination that is less
efficient in this case. According to the theorem of linear
algebra, the product of the multiplication of a matrix and its
inverse matrix is a unit matrix, i.e., a matrix with its
elements are zeros except the ones at the diagonal. So, we
have

 0)(=×∑
=

i

jk
ijik kl j<i. (16)

Thus, the other elements of K are computed as follows.

 ∑
−

=

×−=
1

)(
i

jk
kjikij klk i=1, 2, …, d-1; j=1, 2, …, i-1. (17)

Figure 2. The data structure corresponding to the packed storage

C. Multiplication of Lower-Triangular Matrix by

Rectangular Matrix

The order of the lower-triangular matrix (1
11)(−TU) is d×

d and the order of the rectangular matrix (A12) is d×(n-d).
The outcome matrix is a also rectangular matrix of d×(n-d).
The data of the rectangular matrix A12 comes from the initial
input matrix A. The computing result (U12) can be directly
put into the output matrix of the block algorithm. For both of
the two matrices, we need to determine their starting
positions in the arrays.

If it is a normal n×n two dimension array, we just need
to add an offset d to the original starting position of each row.
Assuming that the original matrix is R and the matrix
actually used is P, the relationship is

]][[]][[djiRjiP += . (18)

However, the matrix is now stored in the packed form. The
offset to be added to the starting position of each row need
be modified to d-i, where i is the number of the row.
Therefore, the actual relationship between the two matrices
is

]][[]][[idjiRjiP −+= . (19)

The computation method is simply the sequential
multiplication of the elements of the corresponding row and
column of the two matrices and the summation of the
products.

D. Multiplication of Two Rectangular Matrices

The two rectangular matrices multiplied are TU12 and U12,
where the order of TU12 is (n-d)×d and 12U is d×(n-d) . If n
is very large, n-d is still very large. The two matrices can not
be entirely loaded into the cache. Let S represent TU12 and Y
represent U12. When doing the multiplication, we need to
repeatedly multiply the elements of one row of S with the
elements of a column in Y. In C++ language, the elements of
an array are stored by rows. The fetch of elements in Y
would be across the rows. Each part of data in Y would be

a2 n-1 …

an-1 1

a21 a22

… … …

an-1 2

an 1

a1 n-1 a1 n a11 ….

a12

234Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

loaded in and out constantly between the cache and memory.
This will slow the computation. To avoid the problem, we
apply transposing to the matrix Y before computation. Then
the computation becomes the multiplication of one row of S
with a row in Y successively.

As we know, the matrices S and Y are transposes each
other, i.e., TYS = . After being transposed, the matrix Y
becomes exactly the matrix S. Therefore, just one matrix S is
needed in the computation. In addition, the result of the
multiplication of two mutually transposed matrices is a
symmetric matrix. Only half of the elements need to be
computed. The operations of multiplication can be reduced
by half.

E. Control of Repeated Blocking Process
The function of this part is to control the computing

procedure of the block algorithm. It calls each of the
modules in the algorithm to perform the corresponding
computation. The preliminary work for the computation of
each module, such as the matrix transposing and the matrix
positioning, is also completed in this part. Recursion is used
to implement the repeated blocking processing of the input
matrix.

IV. TESTING RESULTS AND ANALYSIS
Based on the discussion of the previous sections, a C++

language program is developed for the block algorithm of
Cholesky factorization. The program is run and tested on a
microcomputer. Its CPU is Core2 of 2.0GHz with a 2MB L2
cache and the main memory is 2 GB. The compiler used is
Microsoft Visual C++ 6.0. Different block sizes and matrix
orders are tried to test the execution time of the algorithm. A
block size about 50 to 100 turns out to be the best choice for
most cases. To make a comparison, the standard algorithm
of Cholesky factorization is also programmed and run on the
same computer. Table 1 gives the execution times of the
block algorithm and the standard algorithm of Cholesky
factorization for different matrix orders from 500 to 5000.
The data in the fourth row of the table is the speed increase
of the block algorithm over the standard algorithm in
percentage.

TABLE 1. EXECUTION TIMES OF THE BLOCK ALGORITHM
COMPARED THE STANDARD ALGORITHM (IN SECONDS)

Order of
matrix

Standard
Cholesky

Block
Cholesky

Speedup
in %

500 0.26 0.35 -34.6

1000 2.39 2.77 -15.9

2000 24.37 24.05 1.3

3000 88.42 82.16 7.1

4000 226.61 194.38 14.2

5000 474.4 382.13 19.4

As the data in the table shows, the block algorithm is
superior to the standard algorithm in the case of a large
matrix. With the increase of the matrix size, the advantage
becomes more and more remarkable. The increase of the
execution speed is about 20% when the matrix order reaches
5000.

The arithmetic complexity (total number of float
multiplications and divisions) of the direct computation of
Cholesky factorization using the equation (4) and (5) is
about n3/6 for large values of n where n is the order of the
matrix [7]. The block algorithm blocks the matrix for n/d
times where d is the block size. At each time, the arithmetic
operations contain the direct computation of Cholesky
factorization of a matrix (d×d), the inverse computation of
a lower-triangular matrix (d×d), the multiplication of a
lower-triangular matrix (d×d) with a rectangular matrix (d
×(n-d)), and the multiplication of two rectangular matrices
((n-d)×d and d×(n-d)), where d is fixed and n is reduced by
d each time. It can be counted that the total number of the
float multiplications and divisions is at the order of
n3/6+(n%d+1)n2/2. For a large value of n, the arithmetic
complexities of the two algorithms are parallel.

The above testing results and complexity analysis
indicate that the block algorithm makes a better use of the
cache to improve the computation efficiency for large
matrices. For matrices of small sizes, the block algorithm
does not perform better than the standard algorithm. This is
because the block algorithm is more complicated than the
standard one. It has more control operations, which increase
the overhead. In the case of a small matrix, the overhead
takes a considerable portion of the execution time, making
the blocking algorithm less effective.

On the other hand, comparing with the results of the
earlier researches [3,4,5] that show that the block algorithms
manifest the advantages starting from a matrix order of
several hundreds, our results show that the block algorithm
manifests the advantage starting from a matrix order of
more than a thousand. This implies that with the increase of
the cache memories of today’s computers, larger matrices
can be more easily computed without blocking.

V. CONCLUSION AND FUTURE WORK
The presented block algorithm of Cholesky factorization

makes full use of the caches of today’s computers to
improve the computing efficiency. A considerable increase
of execution speed is achieved in the case of large sizes of
matrices. It indicates that the matrix blocking is an effective
technique for the computation of dense linear algebra.
Further work is considered. As mentioned previously, the
computations of the modules in the block algorithm contain
many loops. The technique of loop unrolling can be used to
reduce the execution time spent on the loop control. The
method of the recursive blocking will be tried and
investigated to make a close comparison of the two blocking
techniques. We shall also make more testing to the
algorithms on different machines.

235Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

ACKNOWLEDGMENT
Financial support from the National Natural Science

Foundation (No. 61171132), the Jiangsu Provincial Natural
Science Foundation (No. BK2010280) and the Nantong
Municipal Application Research Program (No. BK2011026)
of P. R. China are acknowledged. The valuable comments
and suggestions of the reviewers are also appreciated.

REFERENCES
[1] S. Toledo, “Locality of reference in LU decomposition with

partial pivoting,” SIAM Journal of Matrix Analysis &
Application, vol. 18, April 1997, pp. 1065-1081.

[2] J. Dongarra, Numerical Linear Algebra for High Performance
Computers. Philadelphia: SIAM, 1998.

[3] Y. Li, “Block algorithms and their effect in LAPACK,”
Journal of Numerical Methods and Computer Applications,
vol. 22, March 2001, pp. 172-180.

[4] B. S. Andersen, J. Wasniewski, and F. G. Gustavson, “A
recursive formulation of Cholesky factorization of a matrix in
packed storage,” ACM Trans. Math. Softw., vol. 2 , June
2001, pp. 214-244.

[5] E. G. Ng and B. W. Peyton, “Block sparse Cholesky
algorithms on advanced uniprocessor computers,” SIAM
Journal on Scientific Computing, vol. 14, May 1993, pp.
1034-1056.

[6] Y. Li and P. Zhu, “Methods and techniques for speeding up
BLAS,” Journal of Numerical Methods and Computer
Applications, vol. 3, Sep. 1998, pp. 227-240.

[7] R. L. Burden and J. D. Faires. Numerical Analysis (Seventh
Edition). Beijing: Higher Education Press, 2001.

[8] E. Elmroth, F. Gustavson, and I. Jonsson, “Recursive blocked
algorithms and hybrid data structures,” SIAM Review, vol. 46,
Jan. 2004, pp. 33-45.

[9] X. Wang and B. Feng, “Improved algorithm of matrix
multiplication based on memory,” Journal of Northwest
Normal University, vol. 41, Jan. 2005, pp. 22-24.

[10] S. Xu, Program Collection for Commonly Used Algorithms
(in C++ Language). Beijing: Tsinghua University Press，
2009.

[11] K. Ji, J. Chen, Z. Shi, and W. Liu, “Study and implementation
of block algorithm for matrix triangular factorization,”
Computer Application and Software, vol. 27, Sep. 2010, pp.
72-74.

236Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

