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Abstract—Block algorithm divides a large matrix into small 
blocks of submatrices to make full use of computer’s caches. 
Blocked smaller submatrices can be directly loaded into the 
caches to compute. The efficiency of the computation is hence 
improved. The block algorithm for Cholesky factorization is 
studied in this paper. Detai1ed derivation and implementation 
of the block algorithm are presented. The computations of 
modules involved in the block algorithm are discussed. A C++ 
language program is developed. It is tested and compared with 
the standard (unblocked) version of the Cholesky factorization. 
The testing results show that the presented block algorithm 
outperforms the unblocked one in the cases of large matrices, 
with an increase of execution speed of 20%.  

Keywords-Numerical computation; Cholesky factorization; 
matrix blocking; cache use. 

I.  INTRODUCTION 
Numerical computations of linear algebra problems 

including the Cholesky factorization play very important 
roles in many scientific researches and engineering 
applications. Today's computers are provided with two or 
more levels of caches between a high-speed CPU and a 
relatively low-speed memory. The caches operate at a speed 
close to that of the CPU. If the data computed currently or 
used frequently is placed in the caches, the access time of 
the data can be reduced significantly. The overall efficiency 
of the computation is hence increased greatly. However, the 
capacity of the cache memory is much smaller. If the 
amount of data being computed is very big, such as the case 
of the Cholesky factorization for a large matrix, it is 
impossible to load all the data into the cache. The cache can 
not be well utilized and the computation is less efficient. To 
solve the problem, the method of matrix blocking can be 
used [1, 2]. A large matrix is partitioned into blocks of 
submatrices of small sizes. The computations of these 
smaller submatrices are more likely to be carried out within 
caches. Li [3] has discussed the block techniques used in 
LAPAK (Linear Algebra PACKage, a software library for 
performing numerical linear algebra computations) and 
given the testing results on different machines. Andersen et 
al. [4] presented a recursive block algorithm for Cholesky 
factorization. It uses the technique of recursive blocking, 
where a big matrix is blocked recursively (each time split by 
half) until the final submatrices are small enough. With this 

recursive blocking method, the blocking process can be 
made automatically while the block sizes in each level are 
different. At outer levels, the block sizes are still quite big, 
and at inner levels, the block sizes can be very small. Ng 
and Peyton [5] investigated the block algorithm of Cholesky 
factorization for the sparse matrix, where many of the 
matrix elements are zeros and special measures are taken to 
deal with them such as supernodes. The block algorithms 
mentioned above including the ones in the LAPACK were 
implemented by using the BLAS (Basic Linear Algebra 
Subroutine) routines [6], which is an open software library 
to perform basic linear algebra operations such as vector and 
matrix multiplications. On the other hand, these algorithms 
were developed and tested on the machines of more than 10 
years ago, at which time the computers had small cache 
memories of 64K or 128K. Today’s computers, including 
microcomputers, have much greater cache memories of 
more than 1M with very big main memories that reach the 
order of gigabytes. It is valuable to examine the effects of 
the block algorithms on these machines. The block 
algorithm of Cholesky factorization for a general matrix 
(not the sparse case) is investigated in this paper. The fixed 
blocking method is used, that is, a big matrix is divided into 
small blocks in a fixed size linearly part by part. Instead of 
using the BLAS subroutines, we do the implementation 
ourselves by C++ programming and discuss the 
implementation techniques involved in the block algorithm.  

The remainder of the paper is organized as follows. 
Section 2 derives the block algorithm of Cholesky 
factorization. Section 3 discusses the implementation of the 
block algorithm and the computations of the modules 
involved. Presented in Section 4 are testing results and 
analysis. Finally, conclusions and considerations for future 
work appear in Section 5. 

II. BLOCK ALGORITHM FOR CHOLESKY FACTORIZATION 
Cholesky factorization is used to solve linear systems of 

equations in the case that the coefficient matrix A is 
symmetric and positive definite: 

                                 BAX = .                                            (1) 

A can be factorized into the product of an upper-
triangular matrix U with a lower-triangular matrix UT (UT is 
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the transpose of U): 

                                   UUA T=                                           (2) 

with  
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According to the standard algorithm of the Cholesky 
factorization [7], the matrix U is computed as follows. 
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Now, we derive the block algorithm for Cholesky 
factorization. Since the matrix A is symmetric, only half of 
the data is needed. Here, the upper triangular part is used. 
We write (2) in a form of blocked submatrices: 
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Assume that the order of A is n×n. If we set the block size 
at d, then the order of A11 and U11 are d×d, A12 and U12 are 
d×(n-d), and A22 and U22 are (n-d)×(n-d). Among these 
blocked submatrices, A11, U11, A22 and U22 are upper 
triangular, and A12 and U12 are rectangular. Computing (6) 
in the blocked form, we obtain 

                                 111111 UUA T=                                       (7) 

                                 121112 UUA T=                                       (8) 

        2222121222 UUUUA TT += .                     (9)          

Eq. (7) is the Cholesky factorization of the submatrix A11. It 
can be computed using the standard Cholesky factorization 
formulae in (4) and (5). If we properly choose the value of 
the block size d, i.e., the order of A11, the computation is 
likely to be carried out within the cache. After U11 is solved, 
U12 is computed by (8): 

                                 12
1

1112 )( AUU T −= .                           (10) 

Let  
                           12122222 UUAA T−=′ .                     (11) 

Eq. (9) becomes 

                              

 

    

 

 

 

 
 

Figure 1. Blocking process of the block algorithm for Cholesky 
factorization 

                                222222 UUA T=′ .                                  (12) 

Eq. (11) denotes a modification or update of A22 through U12. 
The updated A22 is expressed as 22A′ . Eq. (12) is the 
Cholesky factorization of 22A′ . Usually, 22A′  is still a big 
matrix. The same blocking process is then applied to 22A′ . 
This process is repeated until the order of the final 22A′  is 
less than or equal to d. At this time, the Cholesky 
factorization of the final 22A′  is computed using the standard 
formulae of Cholesky factorization in (4) and (5). Fig. 1 
illustrates the blocking process.  

In summary, the block algorithm for Cholesky 
factorization can be described as follows. 
Step 1: Block matrix A  into submatrices A11, A12, A22 with a 

block size of d. 
Step 2: Cholesky-factorize A11: 111111 UUA T= , yielding U11. 
Step 3: Compute the inverse of TU11 , yielding 1

11)( −TU . 

Step 4: Compute U12: 12
1

1112 )( AUU T −= . 
Step 5: Update A22:  12122222 UUAA T−=′ . 
Step 6: If the order of 22A′  is less than or equal to d, 

Cholesky-factorize 22A′ : 222222 UUA T=′ , yielding U22. 
Otherwise, take 22A′  as A  and return to Step 1. 

III. IMPLEMENTATION OF BLOCK ALGORITHM 
According to the description in above section, the 

computation of the block algorithm for Cholesky 
factorization consists of five modules, which include the 
Cholesky factorization of a small submatrix (A11), the 
computation of the inverse of a lower-triangular submatrix 
( 1

11)( −TU ), the multiplication of a lower-triangular submatrix 

by a rectangular submatrix ( 12
1

11 )( AU T − ), the multiplication 

of two rectangular submatrices ( 1212UU T ),  and the control of 
the repeated blocking process.  
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A.  Cholesky Factorization of Submatrix 
The standard formulae in (4) and (5) are used to compute 

the Cholesky factorization of the small submatrix A11. Since 
the matrix A11 is upper-triangular, the packed storage method 
can be applied to save the memory space. If a two dimension 
array is used to store the matrix, the number of the elements 
in the ith row of the array is n-i (i=0, 1, 2, …, n-1). The 
outcome matrix (U11) is stored in the same way.  

As the elements of the matrix are stored in the packed 
form, the subscript of each element in the two dimension 
array differs from its corresponding numbers of the row and 
the column in the original matrix. The new data structure is 
shown in Fig. 2. 

Since the data structure is changed, the formulae in (4) 
and (5) need to be modified accordingly. The modified 
formulae are as follows. 
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B.  Inverse Computation of Lower-Triangular Matrix 
It is easy to prove that the inverse of a lower-triangular 

matrix is still a lower-triangular matrix and the values of its 
diagonal elements are the reciprocals of the values of the 
diagonal elements in the original matrix. So, the diagonal 
elements can be computed separately. 

For convenience of the description, we use L to 
represent a lower-triangular matrix and B to represent its 
inverse matrix. Assume L=(lij)d × d and K=(kij)d × d. The 
diagonal elements of K can be easily computed as  

                     
ii

ii l
k 1

=      i=1, 2, …, d.                       (15) 

The other elements can be computed by making use of the 
characteristics of the triangular matrix instead of using the 
normal method of Gaussian-Jordan elimination that is less 
efficient in this case. According to the theorem of linear 
algebra, the product of the multiplication of a matrix and its 
inverse matrix is a unit matrix, i.e., a matrix with its 
elements are zeros except the ones at the diagonal. So, we 
have  

                         0)( =×∑
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Thus, the other elements of K are computed as follows. 
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Figure 2. The data structure corresponding to the packed storage  
 
C.  Multiplication of Lower-Triangular Matrix by 

Rectangular Matrix 

The order of the lower-triangular matrix ( 1
11)( −TU ) is d×

d and the order of the rectangular matrix (A12) is d×(n-d). 
The outcome matrix is a also rectangular matrix of d×(n-d). 
The data of the rectangular matrix A12 comes from the initial 
input matrix A. The computing result (U12) can be directly 
put into the output matrix of the block algorithm. For both of 
the two matrices, we need to determine their starting 
positions in the arrays.  

If it is a normal n×n two dimension array, we just need 
to add an offset d to the original starting position of each row. 
Assuming that the original matrix is R and the matrix 
actually used is P, the relationship is  

]][[]][[ djiRjiP += .                             (18) 

However, the matrix is now stored in the packed form. The 
offset to be added to the starting position of each row need 
be modified to d-i, where i is the number of the row. 
Therefore, the actual relationship between the two matrices 
is  

                         ]][[]][[ idjiRjiP −+= .                        (19) 

The computation method is simply the sequential 
multiplication of the elements of the corresponding row and 
column of the two matrices and the summation of the 
products.  

D.  Multiplication of Two Rectangular Matrices 

The two rectangular matrices multiplied are TU12  and U12, 
where the order of  TU12  is (n-d)×d and 12U  is d×(n-d) . If n 
is very large, n-d is still very large. The two matrices can not 
be entirely loaded into the cache. Let S represent TU12  and Y 
represent U12. When doing the multiplication, we need to 
repeatedly multiply the elements of one row of S with the 
elements of a column in Y. In C++ language, the elements of 
an array are stored by rows. The fetch of elements in Y 
would be across the rows. Each part of data in Y would be 

a2 n-1 … 

an-1 1 

a21  a22  

… … … 

an-1 2 

an 1 

a1 n-1 a1 n a11 ….
 

a12
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loaded in and out constantly between the cache and memory. 
This will slow the computation. To avoid the problem, we 
apply transposing to the matrix Y before computation. Then 
the computation becomes the multiplication of one row of S 
with a row in Y successively.  

As we know, the matrices S and Y are transposes each 
other, i.e., TYS = . After being transposed, the matrix Y 
becomes exactly the matrix S. Therefore, just one matrix S is 
needed in the computation. In addition, the result of the 
multiplication of two mutually transposed matrices is a 
symmetric matrix. Only half of the elements need to be 
computed. The operations of multiplication can be reduced 
by half.  

E.  Control of Repeated Blocking Process 
The function of this part is to control the computing 

procedure of the block algorithm. It calls each of the 
modules in the algorithm to perform the corresponding 
computation. The preliminary work for the computation of 
each module, such as the matrix transposing and the matrix 
positioning, is also completed in this part. Recursion is used 
to implement the repeated blocking processing of the input 
matrix. 

IV. TESTING RESULTS AND ANALYSIS 
Based on the discussion of the previous sections, a C++ 

language program is developed for the block algorithm of 
Cholesky factorization. The program is run and tested on a 
microcomputer. Its CPU is Core2 of 2.0GHz with a 2MB L2 
cache and the main memory is 2 GB. The compiler used is 
Microsoft Visual C++ 6.0. Different block sizes and matrix 
orders are tried to test the execution time of the algorithm. A 
block size about 50 to 100 turns out to be the best choice for 
most cases. To make a comparison, the standard algorithm 
of Cholesky factorization is also programmed and run on the 
same computer. Table 1 gives the execution times of the 
block algorithm and the standard algorithm of Cholesky 
factorization for different matrix orders from 500 to 5000. 
The data in the fourth row of the table is the speed increase 
of the block algorithm over the standard algorithm in 
percentage.  

TABLE 1. EXECUTION TIMES OF THE BLOCK ALGORITHM 
COMPARED THE STANDARD ALGORITHM (IN SECONDS) 

Order of 
matrix 

Standard 
Cholesky 

Block 
Cholesky 

Speedup 
in % 

500 0.26 0.35 -34.6 

1000 2.39 2.77 -15.9 

2000 24.37 24.05 1.3 

3000 88.42 82.16 7.1 

4000 226.61 194.38 14.2 

5000 474.4 382.13 19.4 
 

As the data in the table shows, the block algorithm is 
superior to the standard algorithm in the case of a large 
matrix. With the increase of the matrix size, the advantage 
becomes more and more remarkable. The increase of the 
execution speed is about 20% when the matrix order reaches 
5000. 

The arithmetic complexity (total number of float 
multiplications and divisions) of the direct computation of 
Cholesky factorization using the equation (4) and (5) is 
about n3/6 for large values of n where n is the order of the 
matrix [7]. The block algorithm blocks the matrix for n/d 
times where d is the block size. At each time, the arithmetic 
operations contain the direct computation of Cholesky 
factorization of a matrix (d×d), the inverse computation of 
a lower-triangular matrix (d×d), the multiplication of a 
lower-triangular matrix (d×d) with a rectangular matrix (d
×(n-d)), and the multiplication of two rectangular matrices 
((n-d)×d and d×(n-d)), where d is fixed and n is reduced by 
d each time. It can be counted that the total number of the 
float multiplications and divisions is at the order of 
n3/6+(n%d+1)n2/2. For a large value of n, the arithmetic 
complexities of the two algorithms are parallel.  

The above testing results and complexity analysis 
indicate that the block algorithm makes a better use of the 
cache to improve the computation efficiency for large 
matrices. For matrices of small sizes, the block algorithm 
does not perform better than the standard algorithm. This is 
because the block algorithm is more complicated than the 
standard one. It has more control operations, which increase 
the overhead. In the case of a small matrix, the overhead 
takes a considerable portion of the execution time, making 
the blocking algorithm less effective. 

On the other hand, comparing with the results of the 
earlier researches [3,4,5] that show that the block algorithms 
manifest the advantages starting from a matrix order of 
several hundreds, our results show that the block algorithm 
manifests the advantage starting from a matrix order of 
more than a thousand. This implies that with the increase of 
the cache memories of today’s computers, larger matrices 
can be more easily computed without blocking. 

V. CONCLUSION AND FUTURE WORK 
The presented block algorithm of Cholesky factorization 

makes full use of the caches of today’s computers to 
improve the computing efficiency. A considerable increase 
of execution speed is achieved in the case of large sizes of 
matrices. It indicates that the matrix blocking is an effective 
technique for the computation of dense linear algebra. 
Further work is considered. As mentioned previously, the 
computations of the modules in the block algorithm contain 
many loops. The technique of loop unrolling can be used to 
reduce the execution time spent on the loop control. The 
method of the recursive blocking will be tried and 
investigated to make a close comparison of the two blocking 
techniques. We shall also make more testing to the 
algorithms on different machines.  
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