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Abstract—Midline shift detection with high accuracy is crucial 

in quantitatively analyzing the severity of a brain injury in 

clinical environments. Accuracy of the estimated ideal midline 

(IML) significantly affects the accuracy of the computed 

midline shift. In this work, a two-step process, which consists 

of computed tomography (CT) Slice Selection Algorithm (SSA) 

and IML detection, is proposed to automatically estimate the 

IML in brain CT images. SSA is designed for automatic slice 

selection. Skull fracture level and intracranial area are used as 

vital features in the selection. Using skull symmetry and 

anatomical features, IML detection accurately estimates the 

position and rotation angle of the IML before calibrating.  

Experimental results of the multi-stage algorithm were 

assessed on 1762 CT slices of 40 patients. The accuracy of the 

proposed system is 91.6%, which makes it viable for use under 

clinical settings. 
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I.  INTRODUCTION  

In the United States alone, nearly 1.7 million cases of 

Traumatic Brain Injury (TBI) are recorded annually [1]. 

Midline Shift (MLS), which is the shift in the brain’s 
midline, is a common aftermath due to the head injury. It is 

an important index for clinicians to assess the severity of 

TBI. MLS greater than 5 mm can lead to sufalcine 

herniation and possibly death [2]. Ideal midline is the 

symmetric midline of the brain without injury or illness. 

Estimating Ideal Midline (IML) [2] is a vital step in MLS 

calculation. 

Skull symmetry and anatomic features have been widely 

used to detect the IML in last two decades [3, 4, 5].  Ruppert 

et al. extracted the mid-sagittal plane (MSP) based on 

bilateral symmetry maximization [6]. Chen et al. used a 

combination of bone symmetry and anatomical features in 

CT images for detection of IML [7]. This method works 

effectively and accurately on a single CT slice, but does not 

consider the connection among CT slices. Furthermore, all 
the methods above mentioned [3, 4, 5, 6, 7] cannot 

automatically select the proper slices before analysis. In 

practice, dozens of CT images can be acquired in one 

patient’s brain scan. It is crucial to choose a few appropriate 

slices that contain clear anatomical features and limited 

noise, to be used for MLS quantification. Prior to this work, 

no automated method to perform this task existed. 

In this work, we propose a two-step algorithm for 

automated detection of the IML. As the first step, a CT Slice 

Selection Algorithm (SSA) is proposed to select appropriate 

slices from a large number of raw CT images. SSA 

proposed in this work realizes the real automated slice 
selection which is the initial step for automated IML 

detection. We did not find any existing automated method to 

perform this task. The second step focuses on the IML 

detection through anatomical features extracted from the 

selected slices and the consideration of the connection 

among CT slices. A database of 1762 CT slices of 40 

patients with TBI cases were used for this study. As shown 

later, the proposed algorithm yields highly desirable 

accuracy and efficiency when tested against this dataset.  

The rest of this paper is organized as follows: the 

methodology is introduced in Section II. The results are 
presented and discussed in Section III. The work is 

summarized in Section IV. 
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II. METHODOLOGY 

2.1   CT Slice Selection Algorithm (SSA) 

Among the dozens of raw CT images acquired from a 

single patient, only a few are useful for the physician in a 

diagnosis that includes midline estimation. Some images 

taken from the lower section of the head contain too much 

interference/noise from other organs, such as the eye and 

nose in the top image in Figure 1-a. Some images capture a 

small intracranial area because the scan position is too close 

to the calvaria, as seen in Figure 1-b. From the viewpoint of 

anatomical features, the ideal CT slices usually contain 

integrated skull bone and larger intracranial area, such as 
Figure 1-c.  Therefore, CT slice selection should ideally be 

based on the above mentioned features. 

 

 
Figure 1.  Three raw CT slices from one patient’s head CT scan. 

 

 
Figure 2.  Flowchart of CT Slice Selection Algorithm (SSA). 

 

The CT Slice Selection Algorithm (SSA) was designed 

to effectively select a few appropriate CT slices from a large 

number of images. As the flowchart shows in Figure 2, this 

algorithm analyzes every slice by examining multiple 

anatomic features.  

 

 
Figure 3.  Skull detection process. (a) Raw CT slice (b) Detected bones B 

with little bone chips (c) Detected skull.  

As the first step in SSA algorithm, skull detection is 

implemented on every raw CT slice. Using a threshold 

method, potential bone pixels can be extracted from the raw 

image. In this study, based on experimentation, the value for 

the threshold is set to 250 (out of 255), which lies within the 

common range for bone intensity within CT images. Using 
the connected component algorithm (CCA) [8], the discrete 

bone chips can be removed (Figure 3-b). Bone pixels form a 

certain number of connected regions. We choose the one 

containing the largest number of elements as the candidate 

skull  (Figure 3-c).  

 

 
Figure 4.  Skull fracture inspection. The left three images are the raw CT 

images while the right three images show the detected skull.  
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The second step in the SSA algorithm is skull fracture 

inspection to remove slices with either skull fractures or 

partial skull. Such "non-integrated" skull affects IML 

identification since symmetry value calculation, through the 

exhaustive symmetric position search, is sensitive to skull 

contour. We define a new measure, called skull fracture 
level F, to estimate the integrity of the skull. Skull fracture 

level F is defined by the number of isolated regions 

separated by the skull. To prevent any small holes in the 

skull from affecting the calculation, a minimum threshold 

(of 200 pixels in this work) is set for the area of those 

isolated regions. If the computed skull fracture level F is 

equal to 2, it implies that the skull is integrated and ideal for 

the following steps of detection. An example is the middle 

slice in Figure 4. If the skull fracture level is not equal to 2, 

the image cannot be used in detection of IML due to either 

an inappropriate scan position or a serious fracture in the 

skull. Examples are the top and bottom slices in Figure 4. 

After skull fracture inspection, all images with F2 are 
removed from the slice subset. 

Based on clinical experience, CT slices with larger 

intracranial area generally contain more information for 

IML detection. Hence, in the third step of the SSA 

algorithm, the intracranial area is calculated and sorted for 

all remaining slices. After skull fracture inspection, every 

CT image should contain only two dark regions, which are 

separated by the detected skull. An example is the middle-

right image in Figure 4. In order to calculate intracranial 

area, the intracranial region has to be distinguished from the 

region outside of the skull. This can be achieved using the 

coordinate of the skull’s mass-center. The image moment 
mpq of the order p+q can be defined as below,  
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where 
ij  with the value of either 1 or 0 represents the 

intensity of the element at the ith row and jth column in the 

detected skull matrix . The coordinate of the mass center (x, 
y) of the identified skull can be obtained by  
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Thus the region containing the coordinate of the skull mass 

center (x, y) is the intracranial region. The intracranial area 

of all remaining slices is calculated and sorted in descending 

order. The first  slices with larger intracranial areas are 
selected as the candidate slices for IML detection. This 

number of  is a variable that depends on the number of 

slices for one patient or on physician’s requirement. In this 

work, we choose =3 candidate slices for the detection that 
follows. 

 

 

2.2    Ideal midline detection  

 
Figure 5.  Flow chart of ideal midline detection 

After slice selection is performed using SSA algorithm, 

all candidate slices are appropriate for IML detection. Ideal 

midline detection consists of an exhaustive search as well as 

falx cerebri and protrusion detection, as shown in Figure 5.  

To find the approximate IML, we use the exhaustive 

symmetric position search algorithm, which was developed 

in a prior work by our research group [9]. The row 
symmetry is defined as the difference in distance between 

each side of the skull edge and the current approximate 

midline. The CT image is rotated around the mass center of 

the skull, which is calculated by (2). The symmetry cost S 

of the image at each rotation angle  is calculated as the sum 
of all row symmetry in the resulting image as follows.  





m

1i

ii rl=S
                                     (3) 

where m is the number of rows in the image with the 

rotation angle   (in this study ; -45º< <+45º) and measures 
li and ri are the distance between the edge of the skull on the 

left or right side, respectively, and the current approximate 

midline at the ith row. More details can be found in [9]. 

Finally, the rotation angle  with the minimum symmetry 

cost S determines the rotation direction of the midline of 
the brain on each particular CT slice.  
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where k is the rotation angle of the midline on the kth slice 

and 
kl

S
is the symmetry cost of the kth slice at the rotation 

angle kj. Then, the kth candidate slice is calibrated to the 

vertical direction by rotating the skull by -k angle. 
In addition, the accuracy of approximate IML can be 

improved by utilizing other features of the skull and the 

brain. Thus, following the approximate IML estimation 

using exhaustive search, brain anatomical features, such as 
the position of the falx cerebri and protrusion of skull bone, 

are used to refine the position of the IML. Here, we use the 

algorithm proposed in our previous work [9, 10]. The falx 

cerebri is a strong arched fold of dura mater that descends 

vertically in the longitudinal fissure between the left and 

right cerebral hemispheres. In this work, we use edge 
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detection method and Hough transform to execute the 

detection. Additionally, a bone protrusion located in the 

anterior section of the skull is used in the refinement. To 

locate the lowest point of the protrusion curve, the 

derivative of the curve is calculated in a limited 

neighborhood area (10-15 pixels in this work). The local 
minimum point a is determined by  

)]x()wx()wx([maxargx
x

a  2      (5) 

where the function )x(  is the extracted curve of the 

interior bone edge and w is the neighborhood width. Using 

the detected falx cerebri and the bone protrusion, we can 

obtain the refined rotation angle φk of the midline in the kth 
slice. Therefore, the rotation angle for the kth slice should 

be k=k+φk.  
It is worth notice that those obtained rotation angles may 

be different for different slices. However, since the patient 

usually keeps the same gesture during CT scan, the slices in 

one CT scan should have the same rotation angle. In order 

to fully consider the connection among slices, we use a 

global rotation angle  given by (6). 

  ],,,,[median   21
                      (6) 

As shown in (6), it is the median value of the rotation angles 

of all  slices after CT slice selection. 
Lastly, each slice is calibrated to the vertical direction. 

Therefore, during the IML detection process, the IML is 

centered by the mass center of the skull and rotated by an 

angle of – from the original position in the slice. 

III. RESULTS AND DISCUSSION 

The SSA algorithm is primarily based on the 

anatomical characteristics of the skull and closely simulates 

the process of manual CT slice selection and decision 

making in IML by physicians. In our database, all CT slices 

selected by the SSA algorithm have been found to be 

acceptable for IML detection by physician’s approval. 

Result of the IML detection is displayed in Figure 6. It can 

be noticed that the detected IML is accurately located in the 

middle of the skull. Additional, the direction of the skull is 

calibrated by moving the IML to vertical direction. 

 

 
Figure 6.  The ideal midline detection on a candidate slice selected by the 

SSA algorithm. (a) Original CT slice, (b) ideal midline is detected and the 

skull direction is calibrated. 

This database contains original 1762 axial CT scan 

slices acquired across 40 patients with cases of both mild 

and severe Traumatic Brain Injuries (TBI). Collaborating 

physicians manually labeled the IML. With a strict 

definition of accuracy, which is an allowed error of three 

pixels in the horizontal direction and 2 degrees of the 
rotation angle, accuracy of our algorithm is 91.6% and the 

mean value of the error  in horizontal direction is only 2.4 
pixels as shown in TABLE I. 

We have evaluated our method using a previous work 

designed by some authors of this paper [9] as baselines. 

With the same criteria, the accuracy of this work is 6% 

higher and the mean value of horizontal error is 17% 

smaller than the method in [9].  

 
TABLE I.  COMPARISON ON THE ACCURACY OF IML ESTIMATION 

Method Our method Method in [9] 

Number of patients 40 40 

Accuracy 91.6% 85.7% 

Mean value of error δ 2.4 2.9  

 

The improvement on accuracy shows that the 

implementation of global rotation angle after IML detection 

greatly enhances the accuracy on skull rotation calibration 

by fully considering the connection among slices. 

IV. SUMMARY AND FUTURE WORK 

In this work, we developed a system with the 
combination of the SSA algorithm and the ideal midline 

(IML) detection process to identify the IML using CT scans 

of patients with head injuries. The proposed SSA algorithm 

is used to closely simulate the process of manual selection 

of CT slice by physicians. Fully considering the symmetry 

of the skull and anatomical features, IML detection 

algorithm with the adjustment of global rotation can 

accurately identify the IML on the candidate CT slices 

selected by the SSA algorithm. The obtained results show 

high accuracy (91.6%) and a potential for the system to be 

implemented in clinical settings. In the future, more work 
can focus on the actual midline detection which is the 

shifted midline after brain injury or illness. Then IML 

detection can be used the midline shift estimation which is 

one of the key index in TBI assessment in clinical practice. 
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