
Energy-Efficient Thread Migration via Dynamic Characterization of Resource

Utilization

Claudia Alvarado

Intel Corporation Portland, OR

ca1015@txstate.edu

 Dan Tamir and Apan Qasem

Department of Computer Science

Texas State University, San Marcos, TX

{dt19, apan}@txstate.edu

Abstract—The affinity of threads with cores in current chip-

multiprocessor systems has a substantial impact on the execution
time, latency, and power consumption of multi-threaded
workloads. Finding an optimal mapping configuration of threads

is a significant challenge as it requires detailed knowledge of each
thread’s demands for shared system resources. This paper
describes a software-based strategy that makes judicious thread

migration decisions founded on careful inspection of dynamic
resource utilization. The main novelty of the system reported in
this paper is the extensive utilization of hardware performance

counters to develop a set of synthesized metrics that capture
resource contention among co-running threads. Experimental
results with a set of contemporary parallel workloads, show that

the system can achieve significant improvements in power
consumption and performance over the default scheduling
heuristics implemented in the Linux kernel.

Keywords–energy efficiency; thread scheduling; workload
characterization.

I. INTRODUCTION

The proliferation of portable wireless devices as well as the
rapid growth of high-performance server farms and data centers
have made power consumption a central point of concern for
the entire computing industry. Excessive and unbalanced power
consumption of computing systems has a direct economic and
environmental impact in the form of high energy bills and large
carbon footprints. Additionally, power consumption impacts
the computing industry in several indirect ways by adverse
effect on device reliability, requiring expensive packaging, and
causing irreversible damage to semi-conductor devices. As the
industry moves towards the exascale era and the magnitude and
volume of computing devices continue to grow, it is clear that
power consumption is a dominant metric in the design of
computing systems. Several strategies for power-reduction
have emerged in response to this challenge in recent years.
Several, researchers have focused on hardware techniques such
as developing new energy conserving components while others
have emphasized software strategies that aim to exploit existing
hardware in an energy-efficient manner. This paper focuses on
software strategies addressing the problem of determining
suitable thread placement policies that improve the energy
efficiency of multi-threaded workloads without a
commensurate sacrifice in performance.

Power consumption on current chip-multiprocessor (CMP)
architectures is influenced by numerous factors including
number of cores/threads in the implementation, core frequency

application characteristics (e.g., arithmetic intensity), data
locality, and cache topology. Because CMP architectures share
resources among processing cores, the placement of threads or
thread affinity can significantly impact the execution of a multi-
threaded workload. On one hand if two threads contend for a
particular shared resource (e.g., two floating point (FP) intensive
threads running on the same hyper-threaded core) it can lead to
performance degradation and increase power consumption. On
the other hand, a favorable utilization of a shared resource (e.g.,
shared cache through inter-thread data locality) can result in
power-performance benefits. Consider the results of running a
parallel workload on an Intel Quad-core system as presented in
Figure 1. The workload consists of four parallel applications,
executed with five different affinity configurations. The numbers
reported are normalized with respect to the default OS-enforced
affinity. Significant variations in power-performance are
observed for the different configurations. Although the best
choice for power and performance coincides with configuration
aff1, the choices diverge for subsequent points. This makes it
imperative that the scheduler considers power-performance
trade-offs when making thread placement decisions.

Figure 1. Impact of thread affinity on power, execution time and EDP

Although thread affinity is an important factor in power-
performance-based optimizations, developing a scheduling
heuristic that works well for different workloads is a
challenging task. The difficulty arises from three main sources:

1) Characterization of resource usage: The demand and
utilization of resources varies across workloads and across
programs in a given workload. An intelligent scheduler needs a

132Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

mechanism that allows monitoring resource usage across the
system and characterizing the utilization as either favorable or
harmful. Characterization can involve determining inter-thread
and intra-thread data locality and arithmetic intensity. This
proves particularly problematic for an OS-level scheduler as it
needs to extract information without the advantage of source
code analysis. Furthermore, the scheduler has to relate resource
usage to overall power consumption, a task that is particularly
difficult because of the lack of availability of dynamic power
consumption data.

 2) Dynamic and fine-grain system monitoring: The scheduler

 This paper makes the following contributions:

 It provides a low-overhead dynamic mechanism for

detecting resource contention, sharing, and under-

utilization on current multicore architectures.
 It provides new insight about power consumption and

utilization of resources and demonstrates how these
relationships can be exploited using a novel affinity-
based power-aware scheduling heuristic.

 It presents the implementation of a portable meta-
scheduler for Linux whose installation requires no
modification to kernel code and no instrumentation
of application binaries.

must collect dynamic measurements at a fine granularity;
generally at an interval that coincides with an OS-enforced
scheduling quanta (referred to as slice). Moreover, this task has
to be performed in a non-intrusive manner in order to reduce
the impact on the execution of the workload.

3) Inferring patterns in execution: In many situations, a small
change in the system does not necessitate a change in the
placement policy. For example, transient processes often
occupy cores for short periods without a major impact on the
overall execution time or energy efficiency of the workload.
The scheduler needs to be aware of such artifacts and make
placement decisions only when a broad pattern change has been
detected. For enforcing such a policy there is a need for
dynamic feedback as well as for a method of maintaining
historical data from which, execution patterns can be inferred.

In this work, we describe an affinity-driven meta-scheduler
that addresses each of the above issues. The scheduler operates
in the user-space as a runtime system and works in concert with
the operating system. Central to our approach is the systematic
and extensive utilization of hardware Performance Monitoring
Units (PMUs). Today’s commodity processors feature a large
collection of PMU counters and registers with advanced
capabilities that can provide a wealth of information about
system performance. Although the use of PMUs is
commonplace in application performance tuning in the high
performance (HPC) domain, their use in operating system tasks
such as mapping and scheduling is very limited. We leverage
these performance counters and construct a set of models that
synthesizes PMU counters values to provide insight into
performance and energy related issues arising from the
execution of a multi-threaded workload. Specifically, we use
our PMU-based synthesized metrics to detect performance
bottlenecks and power anomalies caused by contention of a
shared resource or the under-utilization of a private (exclusive
to a core) resource or computational units. We include, in the
system, a mechanism to probe the PMU counters, derive the
synthesized metrics at fixed intervals, and maintain historical
data. The collected data is used as feedback for a novel greedy
heuristic-based scheduling algorithm that makes dynamic
affinity decisions to improve energy-efficiency and
performance. Additionally, the framework facilitates the
generation of training data and the integration of machine
learning algorithms in scheduling decisions.

The remainder of this paper is organized as follows: Section
II discusses related power-aware thread scheduling work.
Section III provides an overview of the meta-scheduler
framework. Section IV presents the synthesized metrics for
resource characterization. Section V presents experimental
results and Section VI includes conclusions and proposals for
future research.

II. RELATED WORK

Much of the work in scheduling for power has focused on
developing runtime strategies that aim to find an optimal
schedule for a single parallel application [1][5][8][11]. General
strategies for power-aware scheduling are less common [4][7].

Bautista et al. present a power-aware scheduler that aims to
minimize power consumption while respecting task deadlines
in real-time applications [2]. Wierman et al. provide theoretical
bounds on dynamic voltage and frequency (DVFS) based
scheduling techniques [10]. They show that in terms of
performance and power, a static DVFS scheduling strategy
works as well as a dynamic strategy. However, a dynamic
strategy can yield benefits when the objective is to improve
system reliability. Kashif et al. propose a Priority-based Multi-
level Feedback Queue Scheduler (PMLFQS) for mobile
devices. PMLFQS is a work-conserving algorithm that uses
different central processing unit (CPU) speeds to minimize the
overall energy consumed by the CPU for each task [6].

Zong et al. have proposed two scheduling algorithms for
scheduling parallel applications on large clusters. Their
framework utilizes a precedence-constrained task graph of the
application to be scheduled and emits a schedule that is
predicted to be most energy-efficient [11]. Teodorescu et al.
present a power management algorithm that takes into account
variations in voltage and frequency among cores and attempts
to improve performance within a given power envelope [9].

Merkel et al. develop heuristics that schedule threads
according to a resource sharing utility. They combine these
algorithms with DVFS techniques and evaluate their strategy on
a workload with homogeneous sharing patterns. They
demonstrate significant reduction in the Energy Delay Product
(EDP) [7]. Boyd-Wickizer et al. propose a technique that
operates at the level of objects and migrate threads from core-
to-core depending on the data structures they access [4].
Bringing threads closer to the data reduces memory latency [4].

133Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Dynamic readings from HW performance counters
CO Cl C3 C4

CO C C3 C

l

4

Figure 2. Meta-Scheduler Framework Overview

III. The META-SCHEDULER FRAMEWORK

Figure 2. Provides an overview of the framework. The central
component is the meta-scheduler, which executes as a run time
system. We have developed an API for communication between
the meta-scheduler, the operating system, and the underlying
hardware. The API allows the scheduler to probe and measure
PMU counters, perform thread migration, and set core
frequency. Special attention is given to ensure that each of these
tasks are accomplished with low overhead. Next, we briefly
discuss the implementation of each of these interfaces.

Hardware performance counters can provide detailed sys-
tem information during workload execution. Software for
probing this hardware has matured and there are several related
tools such as Intel Vtune, PAPI, HPCToolkit, and Oprofile.
Most of these tools, however, are primarily designed for single
application tuning and those that do system-level profiling (e.g.,
Oprofile) carry significant overhead. Because our scheduler has
to run at a low overhead we opted to implement our own
interface that directly reads the PMU register values from
device files.

The Linux taskset utility is used to set or change the affinity
of a particular thread. The utility allows specifying the subset
of cores that an application can be run on. It enforces a hard
affinity on thread execution, which means that the OS always
honors the affinity set by taskset.

It is difficult to determine dynamically in an inexpensive
way if there is performance change in power demands. A run-
time system that has access to PMU counters can monitor
certain trigger effects that provide intuition into performance
and power issues of running programs. This insight when
modeled into a scheduling algorithm can yield significant gains.

In this section, we provide descriptions of three such
resource-utilization metrics that are employed in our system. In
the discussion that follows, we use the hardware counter names
from the Intel Core micro-architecture. Similar counters are
available on the AMD Barcelona and the IBM Power 7.

A. Core Utilization

Utilization of cores by different threads in a parallel system,
is a key indicator of performance. Generally, a system running
with a balanced load, where all cores are performing a similar
amount of work, yields maximum concurrency and
consequently leads to better performance. The utilization of
cores has special significance when considering power
consumption. With core gating it may be beneficial to
consolidate the load into a subset of the cores while power
gating the remaining cores. Regardless of the end objective, it
is important to consider the workload balance while making
thread mapping and scheduling decisions. These decisions,
however, require accurate and dynamic measurements of core
utilization at every time slice.

Current methods of measuring CPU utilization (e.g., Linux
top utility) are not suitable for multicore architectures with
multi-level caches and non-uniform memory accesses. In our
framework, we use a set of counters to accurately estimate the
amount of work done by each core. At each time slice we
inspect the counters that provide the number of cycles a core is
busy and the elapsed time (i.e., slice length). The number of
elapsed cycles is a function of the clock frequency and elapsed
time. However, because the core frequency can be modified
during a given slice (e.g., via Intel’s Turboboost), we use the
cpugovernor to determine the current operating frequency of
each core. The obtained frequency is used to determine the total
number of elapsed cycles and the ratio of the busy cycles to
elapsed cycles provides the core utilization.

B. Cache Behavior

The quality of cache utilization depends on intra and inter-
core data locality. Yet, it is difficult to determine program
locality without a-priori information. Nevertheless, by the
examination of a set of PMU counters it is possible to determine
favorable and non-favorable cache behavior.

134Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

100

80

60

40

20

0

100

80

60

40

20

0

Core 0

 1 101 201 301 401 501 601 701 801

Core 2

1 101 201 301 401 501 601 701 801

100

80

60

40

20

0

100

80

60

40

20

0

Core 1

 1 101 201 301 401 501 601 701 801

Core 3

 1 101 201 301 401 501 601 701 801

V. EVALUATION

In this section, we present experimental results that
illustrates the significance of resource characterization metrics
in the energy-efficient execution of parallel workloads. We then
show their effectiveness in making thread migration decisions
with a greedy algorithm.

A. Experimental Setup

1) Platforms: the platform used is an Intel quad-core system
that contains two Core 2 Duo processors sharing an L2 cache.
Each core has a private L1 cache. The system runs Linux kernel
3.0. Under our adaptive thread migration policy the
cpugovernor is set to custom. This eliminates interfere with the
heuristics. When using the Linux strategy the cpugoverner is set
to default.

Figure 3. Per-core utilization for four-program workload broken down by core

If two threads share a cache and they have no shared data
locality, then cache utilization is generally determined by their
respective working-sets i.e., the amount of data accessed by
each thread repeatedly. If the working set of the two programs
exceeds the capacity of the shared cache then threads incur
numerous misses in short succession. Applications do not
necessarily access working sets during the entire execution.
Therefore, the condition that needs to be checked is if both
threads hit their respective working sets during the same time
interval and exceed the capacity of the shared cache. This can
be achieved by tracking per-core cache miss rates for the shared
caches. There is contention in a shared cache if the average miss
rate for shared cache in the last k intervals is significantly
greater than the average miss rate of the same cache for the
previous j intervals. A significant increase is determined by
using a tolerance value as a tunable parameter. Since any
applications can have multiple working sets that correspond to
different caches, it is important to inspect contention at multiple
levels.

Inter-core and inter-thread locality can have an impact on
performance. If two threads have shared access to data and they
are mapped to a set of cores that share cache then both execution
time and power consumption benefits due to reduced cache
misses. On the other hand, if two threads have no locality and
they compete for cache space, then increase in cache misses
reduces performance. Our system utilizes a set of performance
counters to determine both favorable and unfavorable sharing
of cache.

C. Computation Unit Utilization

System units can be shared at the hardware and thread level.
For example, with hyper-threading two software threads
running on the same core can share the FP unit. In this case it
would be prudent to place threads that are FP-intensive onto
different cores. Our system accounts for only one such resource,
namely the on-chip FP units. However, as the system-on-chip
(combined GPU-CPU) architectures become more prevalent,
tracking utilization of other shared computational units will
become more important.

2) Benchmarks: We evaluate our strategy on a variety of
workloads generated from the PARSEC benchmark suite [3]. The
suite includes a collection of multi-threaded programs with
varying demands for system resources and contains data-, task-,
and pipelined parallel applications. Each workload is formed
from a subset of the PARSEC applications.

B. Load Balancing

First, we examine the way that workload characteristics and
their affinity configurations impact the core utilization metric
and the overall load balance of the system. Figure 3 shows the
average core utilization of individual cores for wkld1,
consisting of canneal, streamcluster, blackscholes, and
freqmine [3]. The default migration policy of Linux is used in
executing the workload. Significant variations in utilization of
each core are observed throughout the execution of wkld1. In
particular, cores 0 and 1 exhibit poor utilization during the first
400 time slices, while remaining under-utilized towards the end
of the execution. Figures 4(a) and 4(b) show the average core
utilization and the load balance of the system during four
segments of execution. The system is close to a balanced state
for only a small fraction of the time. More significant, however,
is the fact that the average core utilization metric provides a
clear indication concerning the balance of the system. The low
utilization during times slices 300-400 would be a trigger for a
smart scheduler and adjust the affinity to achieve better balance.
Figures 4(c) and 4(d) present average core utilization and load
balance information for a second workload (wkld2) that consists
of fluidanimate, canneal, streamcluster, and dedup [3].
Interestingly, although wkld2 contains two of the same
applications as wkld1, we observe significant differences in the
average core utilization. Even for this workload the average
core utilization is a good indicator for the system load balance.

C. Cache Behavior

Figures 5 and 6 show last level cache (LLC) misses for
wkld3, which consists of raytrace, swaptions, streamcluster,
and dedup [3]. We observe that for both affinity configurations
there is considerable fluctuations in the cache miss rates. These
fluctuations, however, do not follow the same pattern for the
two different configurations.

135Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

(a) Average core utilization wkld1

(b) System load balance for wkld1

(c) Average core utilization wkld2

(d) System load balance for wkld2

Figure 4. Variations in average core utilization and load-balance

This demonstrates the way that the cache miss rate can be
impacted by the choice of affinity. The most interesting aspect
of these results are the spikes in cache miss rates observed at
various intervals (e.g., core 3 for wkld2 at interval six). These
sudden spikes can have a negative impact on performance and
power consumption. To ameliorate the ill-effects of these
spikes, the scheduler must have information at time slices
boundaries, as provided by our framework.

D. Computational Units

Figure 7 shows variations in arithmetic intensity for
different affinity configurations for wkld4, which consists of
canneal, streamcluster, facesim and x264 [3]. Considerable
variation in arithmetic intensity exists when different affinity
policies are used. The aff3 strategy shows the most balance in
distribution of FP operations across the cores. Both aff1 and aff2
produce

Figure 5. Core-level breakdown of LLC misses for wkld2 with default affinity

Figure 6. Core-level breakdown of LLC misses for wkld2 with affinity

configuration, aff2

several spikes in FP-activity on core 0. For the default affinity,

most FP operations are packed towards the beginning of the

workload execution; but they are under-utilized later on.

E. Evaluation with a Greedy Algorithm

We have implemented an adaptive thread migration
algorithm that exploits resource characterization metrics and
makes decisions based on a greedy heuristic. At each time slice
the algorithm inspects the system, collects measurements, and
tracks all currently running processes. A history table is used to
store the resource usage data from the last k intervals. At each
time slice the algorithm makes a decision on whether to change
the current affinity in order to improve the load balance, cache
sharing, and FP unit utilization. All decisions are weighed
against the predicted power consumption for the next time slice.

100

80

60

40

20

0

1 101 201 301 401 501 601 701 801

C
o

re
 U

ti
li

z
a

ti
o

n
 (

%
)

C
o

re
 U

ti
li

z
a

ti
o

n
 (

%
)

CoreO corel core2 core3

Workload Execution
Segments

C
o

re
 U

ti
li

z
a

ti
o

n
 (

%
)

C
o

re
 U

ti
li

z
a
ti

o
n

 (
%

)

Core 0 core 1 core 2 core 3

 4
Workload Execution
Segments

136Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

(a) Default Affinity

(b) Affinity 1

(c) Affinity 2

(d) Affinity 3

Figure 7. Variations in arithmetic intensity for different affinity configurations
wkld4

TABLE I. ENERGY EFFCIENCY WITH GREEDY HEURISTICS

Workload Power (W) Exec. Time (s) Energy (K Joules)

 Linux Greedy Linux Greedy Linux Greedy

wkld1 38.37 27.98 355 797 13.62 22.30

wkld2 38.25 32.93 306 277 11.71 9.12

wkld3 39.34 25.26 307 204 12.07 5.15

wkld4 28.16 26.59 10 13 0.28 0.34

Table I presents results of applying our algorithm on the
four different workloads discussed earlier. We observe that in
almost all the cases, the greedy algorithm outperforms the
Linux scheduler in terms of energy dissipation and execution
time. Particularly compelling is the situation with wkld3, where
our greedy heuristic results in a 35% reduction in power
consumption. Overall, on average, the greedy heuristic yields a
2% reduction in energy, 22% reduction in power consumption,
and 32% increase in execution time.

VI. CONCLUSIONS

This work presents an energy-efficient thread migration
strategy that is based on characterization of resource usage. We
have identified a set of synthesized metrics that provide key
insight into the execution behavior of parallel workloads
running on contemporary multicore architectures. The
experimental results show that core utilization, cache
contention, and use of FP units can impact the execution and
power consumption in intricate ways. We develop a greedy
algorithm that exploits these synthesized metrics to
significantly outperform the Linux scheduler both in terms of
performance and energy efficiency.

In the future we plan to further the research and evaluate
several rescheduling mechanisms. Additional avenue is to
include additional shared resources.

VII. ACKNOWLEDGMENTS

Financial support for this work was provided by the
Semiconductor Research Consortium (SRC) under contract no.
2011-HJ-2156 and the National Science Foundation through
awards nos. CNS-1305302 and CNS-1253292.

REFERENCES

[1] I. Ahmad, R. Arora, D. White, V. Metsis, and R. Ingram, “Energy-
constrained scheduling of dags on multi-core processors,” in S. Ranka,
S. Aluru, R. Buyya, Y. C. Chung, S. Dua, A. Grama, S. K. S. Gupta, R.
Kumar, and V. V. Phoha, editors, Contemporary Computing, volume 40
of Communications in Computer and Information Science, pp. 592–603.
Springer Berlin Heidelberg, 2009.

[2] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato “A simple
power-aware scheduling for multicore systems when running real-time
applications,” in the IEEE International Symposium on Parallel and
Distributed Processing, pp. 1-7 2008.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in the
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pp. 72-81, 2008.

[4] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing
scheduling for multicore systems,” in the Proceedings of the 12th
conference on Hot topics in operating systems, pp. 21-22 2009.

[5] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: A scalable locality-
aware adaptive work-stealing scheduler,” in the IEEE International
Symposium on Parallel Distributed Processing, pp. 341-342 2010.

[6] M. Kashif, T. Helmy, and E. El-Sebakhy. “A priority-based mlfq
scheduler for CPU power saving,” in the Proceedings of the IEEE
International Conference on Computer Systems, pp. 130-134, 2006.

[7] A. Merkel, J. Stoess, and F. Bellosa, “Resource-conscious scheduling for
energy efficiency on multicore processors,” in the Proceedings of the 5th
European conference on Computer systems, pp. 153-166, 2010.

[8] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-performance
computing data centers: A cyber-physical approach,” IEEE Transactions
on Parallel and distributed systems, vol. 19, pp. 1458–1472, 2008.

[9] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in the Proceedings of
the 35th Symposium on Computer Architecture, pp. 353-374, 2008.

[10] A. Wierman, L. Andrew, and A. Tang. Stochastic analysis of power-
aware scheduling,” in the proceedings of the 46th Conference on
Communication, Control, and Computing, 2pp. 23-26, 2008.

 [11] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “Two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous
clusters,” IEEE Transactions on Computers, pp. 360-374, 2009.

28
24
20
16
12

8
4
0

core0 core1 core2 core3

32
28
24
20
16
12

8
4
0

1 2 3 4 5 6 7 8 9 10 11

28
24
20
16
12

8
4
0

28
24
20
16
12

8
4
0

F
P

 i
n

te
n

s
it
y

F
P

 i
n

te
n

s
it
y

F
P

 i
n

te
n

s
it
y

F
P

 i
n

te
n

s
it
y

1 2 3 4 5 6 7 8 9 10 11

Time

1 2 3 4 5 6 7 8 9 10 11

Time

1 2 3 4 5 6 7 8 9 10 11

Time

137Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

