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Abstract—The affinity of threads with cores in current chip-

multiprocessor systems has a substantial impact on the execution 
time, latency, and power consumption of multi-threaded 
workloads. Finding an optimal mapping configuration of threads 

is a significant challenge as it requires detailed knowledge of each 
thread’s demands for shared system resources. This paper 
describes a software-based strategy that makes judicious thread 

migration decisions founded on careful inspection of dynamic 
resource utilization. The main novelty of the system reported in 
this paper is the extensive utilization of hardware performance 

counters to develop a set of synthesized metrics that capture 
resource contention among co-running threads. Experimental 
results with a set of contemporary parallel workloads, show that 

the system can achieve significant improvements in power 
consumption and performance over the default scheduling 
heuristics implemented in the Linux kernel. 

Keywords–energy efficiency; thread scheduling; workload 
characterization. 

 

I. INTRODUCTION 

The proliferation of portable wireless devices as well as the 
rapid growth of high-performance server farms and data centers 
have made power consumption a central point of concern for 
the entire computing industry. Excessive and unbalanced power 
consumption of computing systems has a direct economic and 
environmental impact in the form of high energy bills and large 
carbon footprints. Additionally, power consumption impacts 
the computing industry in several indirect ways by adverse 
effect on device reliability, requiring expensive packaging, and 
causing irreversible damage to semi-conductor devices. As the 
industry moves towards the exascale era and the magnitude and 
volume of computing devices continue to grow, it is clear that 
power consumption is a dominant metric in the design of 
computing systems. Several strategies for power-reduction 
have emerged in response to this challenge in recent years. 
Several, researchers have focused on hardware techniques such 
as developing new energy conserving components while others 
have emphasized software strategies that aim to exploit existing 
hardware in an energy-efficient manner. This paper focuses on 
software strategies addressing the problem of determining 
suitable thread placement policies that improve the energy 
efficiency of multi-threaded workloads without a 
commensurate sacrifice in performance. 

Power consumption on current chip-multiprocessor (CMP) 
architectures is influenced by numerous factors including 
number of cores/threads in the implementation, core frequency  

 

application characteristics (e.g., arithmetic intensity), data 
locality, and cache topology. Because CMP architectures share 
resources among processing cores, the placement of threads or 
thread affinity can significantly impact the execution of a multi-
threaded workload. On one hand if two threads contend for a 
particular shared resource (e.g., two floating point (FP) intensive 
threads running on the same hyper-threaded core) it can lead to 
performance degradation and increase power consumption. On 
the other hand, a favorable utilization of a shared resource (e.g., 
shared cache through inter-thread data locality) can result in 
power-performance benefits. Consider the results of running a 
parallel workload on an Intel Quad-core system as presented in 
Figure 1. The workload consists of four parallel applications, 
executed with five different affinity configurations. The numbers 
reported are normalized with respect to the default OS-enforced 
affinity. Significant variations in power-performance are 
observed for the different configurations. Although the best 
choice for power and performance coincides with configuration 
aff1, the choices diverge for subsequent points. This makes it 
imperative that the scheduler considers power-performance 
trade-offs when making thread placement decisions. 
 

 
 

Figure 1. Impact of thread affinity on power, execution time and EDP 

 

Although thread affinity is an important factor in power-
performance-based optimizations, developing a scheduling 
heuristic that works well for different workloads is a 
challenging task. The difficulty arises from three main sources: 

1) Characterization of resource usage: The demand and 
utilization of resources varies across workloads and across 
programs in a given workload. An intelligent scheduler needs a 
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mechanism that allows monitoring resource usage across the 
system and characterizing the utilization as either favorable or 
harmful. Characterization can involve determining inter-thread 
and intra-thread data locality and arithmetic intensity. This 
proves particularly problematic for an OS-level scheduler as it 
needs to extract information without the advantage of source 
code analysis. Furthermore, the scheduler has to relate resource 
usage to overall power consumption, a task that is particularly 
difficult because of the lack of availability of dynamic power 
consumption data. 

   2) Dynamic and fine-grain system monitoring:  The scheduler

 This paper makes the following contributions: 

 It provides a low-overhead dynamic mechanism for 

detecting resource contention, sharing, and under-

utilization on current multicore architectures. 
 It provides new insight about power consumption and 

utilization of resources and demonstrates how these 
relationships can be exploited using a novel affinity-
based power-aware scheduling heuristic. 

 It presents the implementation of a portable meta- 
scheduler for Linux whose installation requires no 
modification to kernel code and no instrumentation 
of application binaries.

must collect dynamic measurements at a fine granularity; 
generally at an interval that coincides with an OS-enforced 
scheduling quanta (referred to as slice). Moreover, this task has 
to be performed in a non-intrusive manner in order to reduce 
the impact on the execution of the workload. 

3) Inferring patterns in execution: In many situations, a small 
change in the system does not necessitate a change in the 
placement policy. For example, transient processes often 
occupy cores for short periods without a major impact on the 
overall execution time or energy efficiency of the workload. 
The scheduler needs to be aware of such artifacts and make 
placement decisions only when a broad pattern change has been 
detected. For enforcing such a policy there is a need for 
dynamic feedback as well as for a method of maintaining 
historical data from which, execution patterns can be inferred. 

In this work, we describe an affinity-driven meta-scheduler 
that addresses each of the above issues. The scheduler operates 
in the user-space as a runtime system and works in concert with 
the operating system. Central to our approach is the systematic 
and extensive utilization of hardware Performance Monitoring 
Units (PMUs). Today’s commodity processors feature a large 
collection of PMU counters and registers with advanced 
capabilities that can provide a wealth of information about 
system performance. Although the use of PMUs is 
commonplace in application performance tuning in the high 
performance (HPC) domain, their use in operating system tasks 
such as mapping and scheduling is very limited. We leverage 
these performance counters and construct a set of models that 
synthesizes PMU counters values to provide insight into 
performance and energy related issues arising from the 
execution of a multi-threaded workload. Specifically, we use 
our PMU-based synthesized metrics to detect performance 
bottlenecks and power anomalies caused by contention of a 
shared resource or the under-utilization of a private (exclusive 
to a core) resource or computational units. We include, in the 
system, a mechanism to probe the PMU counters, derive the 
synthesized metrics at fixed intervals, and maintain historical 
data. The collected data is used as feedback for a novel greedy 
heuristic-based scheduling algorithm that makes dynamic 
affinity decisions to improve energy-efficiency and 
performance. Additionally, the framework facilitates the 
generation of training data and the integration of machine 
learning algorithms in scheduling decisions. 

 

 
 

The remainder of this paper is organized as follows: Section 
II discusses related power-aware thread scheduling work. 
Section III provides an overview of the meta-scheduler 
framework. Section IV presents the synthesized metrics for 
resource characterization. Section V presents experimental 
results and Section VI includes conclusions and proposals for 
future research. 

II. RELATED WORK 

Much of the work in scheduling for power has focused on 
developing runtime strategies that aim to find an optimal 
schedule for a single parallel application [1][5][8][11]. General 
strategies for power-aware scheduling are less common [4][7]. 

Bautista et al. present a power-aware scheduler that aims to 
minimize power consumption while respecting task deadlines 
in real-time applications [2]. Wierman et al. provide theoretical 
bounds on dynamic voltage and frequency (DVFS) based 
scheduling techniques [10]. They show that in terms of 
performance and power, a static DVFS scheduling strategy 
works as well as a dynamic strategy. However, a dynamic 
strategy can yield benefits when the objective is to improve 
system reliability. Kashif et al. propose a Priority-based Multi-
level Feedback Queue Scheduler (PMLFQS) for mobile 
devices. PMLFQS is a work-conserving algorithm that uses 
different central processing unit (CPU) speeds to minimize the 
overall energy consumed by the CPU for each task [6]. 

Zong et al. have proposed two scheduling algorithms for 
scheduling parallel applications on large clusters. Their 
framework utilizes a precedence-constrained task graph of the 
application to be scheduled and emits a schedule that is 
predicted to be most energy-efficient [11]. Teodorescu et al. 
present a power management algorithm that takes into account 
variations in voltage and frequency among cores and attempts 
to improve performance within a given power envelope [9]. 

Merkel et al. develop heuristics that schedule threads 
according to a resource sharing utility. They combine these 
algorithms with DVFS techniques and evaluate their strategy on 
a workload with homogeneous sharing patterns. They 
demonstrate significant reduction in the Energy Delay Product 
(EDP) [7]. Boyd-Wickizer et al. propose a technique that 
operates at the level of objects and migrate threads from core-
to-core depending on the data structures they access [4]. 
Bringing threads closer to the data reduces memory latency [4]. 
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Figure 2. Meta-Scheduler Framework Overview 

III.   The META-SCHEDULER FRAMEWORK 

Figure 2. Provides an overview of the framework. The central 
component is the meta-scheduler, which executes as a run time 
system. We have developed an API for communication between 
the meta-scheduler, the operating system, and the underlying 
hardware. The API allows the scheduler to probe and measure 
PMU counters, perform thread migration, and set core 
frequency. Special attention is given to ensure that each of these 
tasks are accomplished with low overhead. Next, we briefly 
discuss the implementation of each of these interfaces. 

Hardware performance counters can provide detailed sys- 
tem information during workload execution. Software for 
probing this hardware has matured and there are several related 
tools such as Intel Vtune, PAPI, HPCToolkit, and Oprofile. 
Most of these tools, however, are primarily designed for single 
application tuning and those that do system-level profiling (e.g., 
Oprofile) carry significant overhead. Because our scheduler has 
to run at a low overhead we opted to implement our own 
interface that directly reads the PMU register values from 
device files. 

The Linux taskset utility is used to set or change the affinity 
of a particular thread. The utility allows specifying the subset 
of cores that an application can be run on. It enforces a hard 
affinity on thread execution, which means that the OS always 
honors the affinity set by taskset. 

It is difficult to determine dynamically in an inexpensive 
way if there is performance change in power demands. A run-
time system that has access to PMU counters can monitor 
certain trigger effects that provide intuition into performance 
and power issues of running programs. This insight when 
modeled into a scheduling algorithm can yield significant gains. 

In this section, we provide descriptions of three such 
resource-utilization metrics that are employed in our system. In 
the discussion that follows, we use the hardware counter names 
from the Intel Core micro-architecture. Similar counters are 
available on the AMD Barcelona and the IBM Power 7. 

A. Core Utilization 

Utilization of cores by different threads in a parallel system, 
is a key indicator of performance. Generally, a system running 
with a balanced load, where all cores are performing a similar 
amount of work, yields maximum concurrency and 
consequently leads to better performance. The utilization of 
cores has special significance when considering power 
consumption. With core gating it may be beneficial to 
consolidate the load into a subset of the cores while power 
gating the remaining cores. Regardless of the end objective, it 
is important to consider the workload balance while making 
thread mapping and scheduling decisions. These decisions, 
however, require accurate and dynamic measurements of core 
utilization at every time slice. 

Current methods of measuring CPU utilization (e.g., Linux 
top   utility) are not suitable for multicore architectures with 
multi-level caches and non-uniform memory accesses. In our 
framework, we use a set of counters to accurately estimate the 
amount of work done by each core. At each time slice we 
inspect the counters that provide the number of cycles a core is 
busy and the elapsed time (i.e., slice length). The number of 
elapsed cycles is a function of the clock frequency and elapsed 
time. However, because the core frequency can be modified 
during a given slice (e.g., via Intel’s Turboboost), we use the 
cpugovernor to determine the current operating frequency of 
each core. The obtained frequency is used to determine the total 
number of elapsed cycles and the ratio of the busy cycles to 
elapsed cycles provides the core utilization. 

 

B. Cache Behavior 

The quality of cache utilization depends on intra and inter- 
core data locality. Yet, it is difficult to determine program 
locality without a-priori information. Nevertheless, by the 
examination of a set of PMU counters it is possible to determine 
favorable and non-favorable cache behavior.
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V. EVALUATION 

In this section, we present experimental results that 
illustrates the significance of resource characterization metrics 
in the energy-efficient execution of parallel workloads. We then 
show their effectiveness in making thread migration decisions 
with a greedy algorithm. 

 

A. Experimental Setup 

1) Platforms: the platform used is an Intel quad-core system 
that contains two Core 2 Duo processors sharing an L2 cache. 
Each core has a private L1 cache. The system runs Linux kernel 
3.0. Under our adaptive thread migration policy the 
cpugovernor is set to custom.  This eliminates interfere with the 
heuristics. When using the Linux strategy the cpugoverner is set 
to default. 

Figure 3. Per-core utilization for four-program workload broken down by core 

 

If two threads share a cache and they have no shared data 
locality, then cache utilization is generally determined by their 
respective working-sets i.e., the amount of data accessed by 
each thread repeatedly. If the working set of the two programs 
exceeds the capacity of the shared cache then threads incur 
numerous misses in short succession. Applications do not 
necessarily access working sets during the entire execution. 
Therefore, the condition that needs to be checked is if both 
threads hit their respective working sets during the same time 
interval and exceed the capacity of the shared cache. This can 
be achieved by tracking per-core cache miss rates for the shared 
caches. There is contention in a shared cache if the average miss 
rate for shared cache in the last k intervals is significantly 
greater than the average miss rate of the same cache for the 
previous j intervals. A significant increase is determined by 
using a tolerance value as a tunable parameter. Since any 
applications can have multiple working sets that correspond to 
different caches, it is important to inspect contention at multiple 
levels. 

Inter-core and inter-thread locality can have an impact on 
performance. If two threads have shared access to data and they 
are mapped to a set of cores that share cache then both execution 
time and power consumption benefits due to reduced cache 
misses. On the other hand, if two threads have no locality and 
they compete for cache space, then increase in cache misses 
reduces performance. Our system utilizes a set of performance 
counters to determine both favorable and unfavorable sharing 
of cache. 

 

C. Computation Unit Utilization 

System units can be shared at the hardware and thread level. 
For example, with hyper-threading two software threads 
running on the same core can share the FP unit. In this case it 
would be prudent to place threads that are FP-intensive onto 
different cores. Our system accounts for only one such resource, 
namely the on-chip FP units. However, as the system-on-chip 
(combined GPU-CPU) architectures become more prevalent, 
tracking utilization of other shared computational units will 
become more important. 

2) Benchmarks: We evaluate our strategy on a variety of 
workloads generated from the PARSEC benchmark suite [3]. The 
suite includes a collection of multi-threaded programs with 
varying demands for system resources and contains data-, task-, 
and pipelined parallel applications. Each workload is formed 
from a subset of the PARSEC applications. 
 

B. Load Balancing 

First, we examine the way that workload characteristics and 
their affinity configurations impact the core utilization metric 
and the overall load balance of the system. Figure 3 shows the 
average core utilization of individual cores for wkld1, 
consisting of canneal, streamcluster, blackscholes, and 
freqmine [3]. The default migration policy of Linux is used in 
executing the workload. Significant variations in utilization of 
each core are observed throughout the execution of wkld1. In 
particular, cores 0 and 1 exhibit poor utilization during the first 
400 time slices, while remaining under-utilized towards the end 
of the execution. Figures 4(a) and 4(b) show the average core 
utilization and the load balance of the system during four 
segments of execution. The system is close to a balanced state 
for only a small fraction of the time. More significant, however, 
is the fact that the average core utilization metric provides a 
clear indication concerning the balance of the system. The low 
utilization during times slices 300-400 would be a trigger for a 
smart scheduler and adjust the affinity to achieve better balance. 
Figures 4(c) and 4(d) present average core utilization and load 
balance information for a second workload (wkld2) that consists 
of fluidanimate, canneal, streamcluster, and dedup [3]. 
Interestingly, although wkld2 contains two of the same 
applications as wkld1, we observe significant differences in the 
average core utilization. Even for this workload the average 
core utilization is a good indicator for the system load balance. 

 

C. Cache Behavior 

Figures 5 and 6 show last level cache (LLC) misses for 
wkld3, which consists of raytrace, swaptions, streamcluster, 
and dedup [3]. We observe that for both affinity configurations 
there is considerable fluctuations in the cache miss rates. These 
fluctuations, however, do not follow the same pattern for the 
two different configurations. 
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(a) Average core utilization wkld1 

 
 

 
 

 

 
 

 

 
 

(b) System load balance for wkld1 

 
 

 

 
 

 
 

 

 
 

(c) Average core utilization wkld2 
 

 

 
 

 

 
 

 

 
 

(d) System load balance for wkld2 

 
Figure 4. Variations in average core utilization and load-balance 

 

 
This demonstrates the way that the cache miss rate can be 
impacted by the choice of affinity. The most interesting aspect 
of these results are the spikes in cache miss rates observed at 
various intervals (e.g., core 3 for wkld2 at interval six). These 
sudden spikes can have a negative impact on performance and 
power consumption. To ameliorate the ill-effects of these 
spikes, the scheduler must have information at time slices 
boundaries, as provided by our framework. 

 
D. Computational Units 

Figure 7 shows variations in arithmetic intensity for 
different affinity configurations for wkld4, which consists of 
canneal, streamcluster, facesim and x264 [3]. Considerable 
variation in arithmetic intensity exists when different affinity 
policies are used. The aff3 strategy shows the most balance in 
distribution of FP operations across the cores. Both aff1 and aff2 
produce  

 

 
Figure 5. Core-level breakdown of LLC misses for wkld2 with default affinity 

 

 
Figure 6. Core-level breakdown of LLC misses for wkld2 with affinity 

configuration, aff2 
 

several spikes in FP-activity on core 0. For the default affinity,  

most FP operations are packed towards the beginning of   the 

workload execution; but they are under-utilized later on.  
 

E. Evaluation with a Greedy Algorithm 

We have implemented an adaptive thread migration 
algorithm that exploits resource characterization metrics and 
makes decisions based on a greedy heuristic. At each time slice 
the algorithm inspects the system, collects measurements, and 
tracks all currently running processes. A history table is used to 
store the resource usage data from the last k intervals. At each 
time slice the algorithm makes a decision on whether to change 
the current affinity in order to improve the load balance, cache 
sharing, and FP unit utilization. All decisions are weighed 
against the predicted power consumption for the next time slice. 
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(a) Default Affinity 
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(d) Affinity 3 

 
Figure 7. Variations in arithmetic intensity for different affinity configurations 
wkld4 

 

TABLE I. ENERGY EFFCIENCY WITH GREEDY HEURISTICS 

 

Workload Power (W) Exec. Time (s) Energy (K Joules ) 

 Linux Greedy Linux Greedy Linux Greedy 

wkld1 38.37 27.98 355 797 13.62 22.30 

wkld2 38.25 32.93 306 277 11.71 9.12 

wkld3 39.34 25.26 307 204 12.07 5.15 

wkld4 28.16 26.59 10 13 0.28 0.34 

 

 

Table I presents results of applying our algorithm on the 
four different workloads discussed earlier. We observe that in 
almost all the cases, the greedy algorithm outperforms the 
Linux scheduler in terms of energy dissipation and execution 
time. Particularly compelling is the situation with wkld3, where 
our greedy heuristic results in a 35% reduction in power 
consumption. Overall, on average, the greedy heuristic yields a 
2% reduction in energy, 22% reduction in power consumption, 
and 32% increase in execution time. 

VI. CONCLUSIONS 

This work presents an energy-efficient thread migration 
strategy that is based on characterization of resource usage. We 
have identified a set of synthesized metrics that provide key 
insight into the execution behavior of parallel workloads 
running on contemporary multicore architectures. The 
experimental results show that core utilization, cache 
contention, and use of FP units can impact the execution and 
power consumption in intricate ways. We develop a greedy 
algorithm that exploits these synthesized metrics to 
significantly outperform the Linux scheduler both in terms of 
performance and energy efficiency. 

In the future we plan to further the research and evaluate 
several rescheduling mechanisms.  Additional avenue is to 
include additional shared resources. 
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