
Generic Contract Descriptions for Web Services Implementations

Balazs Simon, Balazs Goldschmidt, Peter Budai, Istvan Hartung, Karoly Kondorosi, Zoltan Laszlo, Peter Risztics
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
Budapest, Hungary

Email: {sbalazs | balage | bucnak | hartungi | kondor | laszlo}@iit.bme.hu, risztics@ik.bme.hu

Abstract—The basic building blocks of SOA systems are web
services. The domain specific language SOAL developed by
the authors has a Java and C#-like syntax for describing web
service interfaces and BPEL processes. The paper introduces
an extended version of the language that supports Design by
Contract. From the service contract specifications software
artifacts are generated that check pre- and post-conditions on
the server side at runtime, applying the delegation pattern.
The proposed solution provides Design by Contract for both
JAX-WS and WCF technologies used in most SOA products
in the industry.

Keywords-SOA; web services; Design-by-Contract; modelling;
DSL.

I. INTRODUCTION

Complex distributed systems are best built from com-
ponents with well-defined interfaces and a framework that
helps connecting them. Web services and BPEL (Busi-
ness Process Execution Language) processes implementing
WSDL (Web Services Description Language) interfaces
represent nowadays the components that both enterprises
and governments use to construct their complex distributed
systems, thus implementing a Service Oriented Architecture
(SOA) [1].

One of the advantages of building on web services tech-
nology is that one can get a vast set of standards from simple
connections to middleware functionalities such as security or
transaction-handling. [2]

The other advantage is that SOA applies classical prin-
ciples of software engineering, like model-based develop-
ment, loosely coupled components, separation of interface
from implementation, etc., at a higher level of abstraction.
Another classical principle is “Design by Contract” (DbC)
introduced by Bertrand Meyer [3]. Contract is a key concept
in SOA, thus it seems to be obvious to apply DbC for
WebServices. Vendor support for it is usually minimal, and
although there are third party solutions, the common draw-
back is their platform-dependency. Heterogeneous systems
like those applied in e-government need a unified description
of contracts that can be generally used in different SOA
products. Having legacy systems the introduction of a new
product or extending an existing product with native contract
support is not an option. This paper shows how a high-
level web service description language and code generating

framework was extended with contract support in order
to enable developers to automatically generate platform-
specific contract-enforcing modules from the general con-
tract specifications.

The activity of our research group aims at developing
principles, recommendations, components and technologies
that make the application of SOA in the e-government
domain easier. Considering the diversity of legacy systems
of different governmental organizations, all the solutions
we elaborate should be platform-independent as far as it
is possible.

The rest of the paper introduces a platform-independent
solution of DbC in SOA systems, which can work in any
SOA environment even it would be a heterogenous one. In
the second section, related work is examined. In the third
section, the contract metamodel, its representation in SOAL
syntax, the architecture and details of code generation, and
an overall evaluation are presented. In the fourth section, the
results are summarized.

II. RELATED WORK

Eiffel [3], [4] is an object-oriented programming language
that supports Design by Contract. The code is either com-
piled to native code or to .NET CLR, where it could be
applied web services written in the .NET framework. The
JVM is not supported, therefore it cannot be used in Java
environments.

D. Florescu et.al. [5] proposed a declarative domain
specific language with pre- and post-condition support for
web services. Their goal is to create web services that can
be executed on any platform. However, instead of generating
code for the different commercial products, they created
a custom execution environment, the XL virtual machine.
Their solution also lacks a metamodel behind the language.

WS-CoL [6] is primarily a monitoring language, however,
it provides pre- and post-conditions on the interactions
between services and it can also be used for BPEL processes,
although it supports only the ActiveBPEL engine. WS-CoL
has an extension with time constraints described in [7].

Another way of describing services is using semantic
web technologies. The major goal of Semantic Web Ser-
vices (SWS) is to create intelligent software agents to pro-
vide automated, interoperable and meaningful coordination

51

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

of web services [8]. The three main directions of SWS
are SAWSDL (Semantic Annotations for WSDL), OWL-
S (Semantic Markup for Web Services) and WSMO (Web
Services Modeling Ontology).

SAWSDL [9] does not introduce a new language. It is
a WSDL extension for referencing ontological concepts
outside WSDL documents. Beyond that it does not define
any execution semantics for the implementation.

The OWL-S [10] profile ontology is used to describe what
a service does, and is meant to be mainly used for the
purpose of service discovery. The service description con-
tains input and output parameters, pre- and post-conditions,
and also non-functional aspects. The OWL-S process model
describes service composition including the communication
pattern. In order to connect OWL-S to existing web service
standards, OWL-S uses grounding to map service descrip-
tions to WSDL. The OWL-S environment provides an editor
to develop semantic web services and a matcher to discover
services. The OWL-S Virtual Machine is a general purpose
web service client for the invocation. OWL-S therefore
requires a custom execution environment and cannot be
used in current commercial SOA products. Its underlying
description logic OWL-DL has also a limited expressiveness
in practice.

The WSMO [11] framework provides a conceptual model
and a formal language WSML for semantic markup of
web services. WSMO is used for modeling of ontologies,
goals, web services and mediators. Ontologies provide for-
mal logic-based grounding of information used by other
components. Goals represent user desires, i.e., the objectives
that a client might have when searching for services. Web
services are computational entities, their semantic descrip-
tion includes functional and non-functional properties, as
well as their capabilities through pre- and postconditions,
assumptions and effects. Mediators provide interoperability
between components at data, protocol and process level.
The reference implementation of WSMO is the WSMX [12]
framework, a custom execution environment. It is designed
to allow dynamic discovery, invocation and composition of
web services. It also provides interoperability with classical
web services.

The main design goals of SWS standards are discovery,
invocation and composition of web services. These standards
are not primarily designed for modeling purposes; they are
not supported by the major SOA software vendors and they
require a custom execution environment.

Other efforts focus on modelling web services in UML.
R. Heckel and M. Lohmann [13] introduce three levels of
contract representations: implementation-level, XML-level
and model-level. Their goal is to derive implementation-
and model-level contracts from the model-level specification.
Our aim is similar, but we think that a domain specific
language and a metamodel for SOA are much more ap-
propriate for this purpose. J. T. E. Timm [14] defines a

UML profile that extends class and activity diagrams. This
profile is used in transformations to automatically construct
OWL-S specifications from diagrams and SWRL (Semantic
Web Rule Language) expressions from OCL. The problem
with this approach is the same as with SWS technologies:
it cannot be applied in current major SOA products.

III. DESIGN BY CONTRACT FOR SOA

This section presents the contract metamodel, its repre-
sentation in SOAL syntax, the architecture and details of
code generation, and finally, the overall evaluation of the
proposed framework.

A. SOAL and SoaMM

In the SOA world, XML is used for interface- and
process-description, and message-formatting. The aim is
interoperability, but the drawback is that handling and
transforming XML documents above a certain complexity
is almost impossible. This is why most development envi-
ronments have graphical tools for helping developers cre-
ating interface-descriptions, connections, process-flows and
message-formats. The problem with the graphical approach
is that it is neither efficient, nor reliably repeatable, nor
sufficiently controllable, nor easily automatable.

On the other hand, the standards usually have a lot of
redundant parts that result in poor readability and manage-
ability. For example the message element in WSDL 1.x
was omitted from WSDL 2.0 because of its redundancy. The
development tools do not support the inclusion of special
extensions in the interface specification (like pre- and post-
conditions, authorization, etc.) Even some tools have special
naming conventions that are to be accepted, otherwise the
generated code is even less readable than necessary. We
have examined a lot of products [15] and have found a
lot of peculiarities, which have to be taken into account
beyond the recommendations of the WS-I Basic Profile.
In BPEL process-descriptions the partnerLinkType-
partnerLink constructs for partners, or the property-
propertyAlias-correlationSet constructs for cor-
relations mean unnecessary redundancy. Unfortunately, the
process designer tools usually map these constructs directly
to the graphical interface instead of hiding them from the
users.

To solve the above problems, an abstract SOA metamodel
called SoaMM has been developed that can manage both
BPEL and WSDL concepts, and, in order to describe the
model, an extensible language called Service Oriented Ar-
chitecture Language (SOAL) was specified [16], [17] that
can be used for describing webservice interfaces and BPEL
processes, and is more easily readable and manageable by
humans. This model and language also enables automati-
zation, vendor-specific WSDL and BPEL generation, and
compile time type checking.

52

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

The following example illustrates a simple stack web
service description in SOAL. The service has the URL
http://localhost/Stack and can be accessed through SOAP
1.1 over HTTP:

namespace StackSample {
interface IStack {
void Push(int number);
int Pop();
int Top();
bool IsEmpty();

}
binding Soap11HttpBinding {
transport HTTP;
encoding SOAP { Version = "1.1" }

}
endpoint Stack : IStack {
binding Soap11HttpBinding;
location "http://localhost/Stack";

}
}

B. Design by Contract in SOAL

We extended SOAL with contract descriptions. A con-
tract can be specified using the contract keyword and
must implement exactly one interface. The implementation
of an operation has to specify the pre-conditions with
the requires keyword and the post-conditions with the
ensures keyword. After these keywords a textual descrip-
tion has to be included about the condition being checked.
This description is included in the error messages on the
violation of the conditions. Invariants are not yet supported
but they are subject to further investigation. The current
instance of the service can be accessed through the this
keyword and the result keyword represents the return
value of the current operation. In the endpoint declaration the
name of the contract must be specified with the contract
keyword. Here is an example of the contract extension
for SOAL applied to the IStack interface defined in the
previous section:

contract StackContract : IStack {
void Push(int number) {
ensures "stack is not empty"
{ !this.IsEmpty(); }
ensures "top equals to number"
{ this.Top() == number; }

}
int Pop() {
requires "stack is not empty"
{ !this.IsEmpty(); }
ensures "result is the old top element"
{ result == old(this).Top(); }

}
int Top() {
requires "stack is not empty"
{ !this.IsEmpty(); }

}
bool IsEmpty() { }

}
endpoint GuardedStack : IStack {
binding Soap11HttpBinding;
contract StackContract;
location "http://localhost/GuardedStack";

}

The operations may change the state of a stateful web
service. In this case the method calls on this may return
different values after the execution of the current operation
than before. The old expression can be used to access the
state prior to the execution of current operation. The input
parameters of the operations are read-only, therefore there
is no need to use old on them. The expressions in the
requires and ensures clauses have the same syntax as
the expressions in C#. In .NET 3.0 the API introduced the
System.Linq.Expressions namespace with classes
that can be used to construct expression trees in memory.
Our extension to SOAL and the metamodel behind it is based
on these expression tree nodes and supports the following
node types (including lambda expressions) [18]: Add,
And, AndAlso, ArrayLength, ArrayIndex, Call, Coalesce,
Conditional, Constant, Convert, Default, Divide, Equal,
ExclusiveOr, GreaterThan, GreaterThanOrEqual, Lambda,
LeftShift, LessThan, LessThanOrEqual, MemberAccess,
MemberInit, Modulo, Multiply, Negate, UnaryPlus, New,
NewArrayInit, NewArrayBounds, Not, NotEqual, Or, OrElse,
OnesComplement, Parameter, RightShift, Subtract, TypeAs,
TypeIs, Variable.

The semantics of these expressions are defined by the C#
language specification [19].

SOAL also supports array types. The .NET 3.0
framework allows arrays to be queried through the LINQ
API, which provides a lot of useful query functions.
Our extension to SOAL supports all of these [20]:
Aggregate, All<TSource>, Any, AsEnumerable<TSource>,
Average, Cast<TResult>, Concat<TSource>, Contains,
Count, DefaultIfEmpty, Distinct, ElementAt<TSource>,
ElementAtOrDefault<TSource>, Empty<TResult>, Except,
First, FirstOrDefault, GroupBy, GroupJoin, Intersect,
Join, Last, LastOrDefault, LongCount, Max, Min,
OfType<TResult>, OrderBy, OrderByDescending, Range,
Repeat<TResult>, Reverse<TSource>, Select, SelectMany,
SequenceEqual, Single, SingleOrDefault, Skip<TSource>,
SkipWhile, Sum, Take<TSource>, TakeWhile, ThenBy,
ThenByDescending, ToArray<TSource>, ToDictionary,
ToList<TSource>, ToLookup, Union, Where.

All of the OCL expressions are covered by the expressions
above, except for the ones dealing with messages, object
states and associations, which themselves are specific to
UML. Since OCL has proved itself to be powerful enough
in practice and its UML independent part is a subset of the
LINQ expressions, it can be stated that our extensions to
SOAL will suffice in most practical cases.

C. Architecture

The grammar for the contract extension in SOAL was
implemented in the M language designed by Microsoft. The
M language is a declarative language for working with data
and building domain models. It is part of the SQL Server
Modeling Services [21] (formerly Oslo) framework, which

53

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Interface and
DbC

description in
SOAL

+3
�

�
	parser +3 SoaMM

object model
+3
�

�
	generator +3

WSDL, C#
code, Java

code

Figure 1. The architecture of the platform independent DbC for SOAL
framework

«interface»
IStack

+ Push(number:int) : void

+ Pop() : int

+ Top() : int

+ IsEmpty() : bool

GuardedStack

StackContract

GuardedStackImplementation

inner

inner

Stack on 9/10/2010

Figure 2. The design pattern of the generated C#/Java classes demonstrated
on the stack example

also includes an editor called IntelliPad for domain specific
languages and a repository for storing data models.

Based on the grammar the M language parser can process
contract descriptions in the SOAL form and can transform
the input into an object model described by the SoaMM
metamodel. The object model is then easily processable from
any .NET language. From this object model the framework
generates directly importable projects for different SOA
products. The projects include web services, which check
the specified pre- and post-conditions automatically; the
programmer only has to insert the implementation of the
services. The code generator is written in the Text Template
Transformation Toolkit for Visual Studio.

The architecture of the platform independent SOAL for
WSDL framework can be seen in Figure 1.

D. Generated code

Our framework generates code for two popular web
service technologies: Windows Communication Foundation
(WCF [22]) and Java API for XML-Based Web Services 2.0
(JAX-WS [23]). The generated classes contain only standard
elements, hence they can be used in any SOA product
implementing these standards (e.g., Microsoft .NET, Oracle
SOA Suite, IBM WebSphere, Apache CXF).

Figure 2 shows the design pattern of the target code
regardless of the target platform (i.e., C# for WCF or Java
for JAX-WS). From the IStack interface in SOAL an
interface with the same name is generated in the target
language. The contract StackContract is mapped to a
class with the same name. The endpoint GuardedStack
is transformed into two classes. The first one is the
class GuardedStack, which is the web sevice end-
point published by the SOA products. The second one

is the class GuardedStackImplementation, which
contains the implementation of the service. Its operations
must be filled by the programmer. The GuardedStack
class uses the delegate design pattern to check the im-
plementation by the specified contract using the following
chain of calls: GuardedStack → StackContract →
GuardedStackImplementation.

The following C# interface annotated with WCF attributes
is generated from the IStack interface:

[ServiceContract(...)]
public interface IStack {
[OperationContract(...)]
void Push(int number);
[OperationContract(...)]
int Pop();
[OperationContract(...)]
int Top();
[OperationContract(...)]
bool IsEmpty();

}

The generated Java interface is similar, but of course
it uses JAX-WS annotations, i.e., @WebService instead
of [ServiceContract] and @WebMethod instead of
[OperationContract].

From the StackContract contract specification the
following C# class is produced (the attribute named inner
will contain the implementation of the service and every call
is delegated to this object):

public class StackContract : IStack {
private IStack inner;
public StackContract(IStack inner) {
this.inner = inner;

}
public void Push(int number) {
this.inner.Push(number);
if (!(!this.IsEmpty())) {
throw new PostConditionViolationException(

"stack is not empty");
}
if (!(this.Top() == number)) {
throw new PostConditionViolationException(

"top equals to number");
}

}
public int Pop() {
if (!(!this.IsEmpty())) {
throw new PreConditionViolationException(

"stack is not empty");
}
int temp1 = this.Top();
int result = this.inner.Pop();
if (!(result == temp1)) {
throw new PostConditionViolationException(

"result is the old top element");
}
return result;

}
public int Top() {
if (!(!this.IsEmpty())) {
throw new PreConditionViolationException(

"stack is not empty");
}
int result = this.inner.Top();
return result;

54

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

}
public bool IsEmpty() {
bool result = this.inner.IsEmpty();
return result;

}
}

As it can be seen, the old expressions are evaluated
into temporary variables before the call is delegated to the
implementation. After the execution of the implementation
the post-conditions are checked correctly. The Java version
of this class is similar. The expressions specified in Section
III-B are translated to Java as well: the LINQ Standard
Query Operators are backed up by a custom utility class, the
lambda expressions are transformed into anonymous classes.

The GuardedStackImplementation class:
public class GuardedStackImplementation : IStack {
public void Push(int number) {
throw new NotImplementedException();

}
public int Pop() {
throw new NotImplementedException();

}
public int Top() {
throw new NotImplementedException();

}
public bool IsEmpty() {
throw new NotImplementedException();

}
}

This code is very clean, since the pre- and post-conditions
are generated into the StackContract class. The pro-
grammer has to fill in the missing implementations in order
to have a functioning web service.

The service endpoint class GuardedStack has to be
published. It is also very simple; it builds up the delegation
chain and delegates the calls to the other classes:
public class GuardedStack : IStack {
private IStack inner;
public GuardedStack() {
this.inner =

new StackContract(
new GuardedStackImplementation());

}
public void Push(int number) {

this.inner.Push(number);
}
public int Pop() {
return this.inner.Pop();

}
public int Top() {
return this.inner.Top();

}
public bool IsEmpty() {
return this.inner.IsEmpty();

}
}

The Java versions of the generated classes are similar to
the C# examples above.

E. Evaluation
SOAL is a human readable domain specific language for

SOA with a metamodel called SoaMM behind it. It provides

much cleaner syntax than an XML based WSDL document.
From a SOAL description a SoaMM object model can be
constructed and from this object model WSDL files and
program code can be automatically generated. This is a
powerful tool in the top-down development process where
the task is to create interoperable web services based on
WSDLs, while it is as simple as the less interoperable
bottom-up development process primarily supported by SOA
products. The C#-Java-like textual syntax of SOAL is easier
to maintain than the XML or graphical WSDL representa-
tions provided by the products.

Although Design by Contract is a key concept in SOA,
the major software vendors do not provide any tools to
make this task easier. In this paper we proposed a con-
tract extension to SOAL. This extension offers the same
maintainability and readability as the original version of
the language. Pre- and post-conditions can be specified for
each operation. These conditions are then woven as aspects
into the generated code, while the programmer has only a
single task: provide the implementation of the web service
by filling in the methods of the implementation class. Every
other configuration and source files for the SOA products are
automatically produced by our framework. Currently two
SOA products are supported: Microsoft Visual Studio for
WCF and GlassFish ESB for JAX-WS. However, with the
appropriate configuration files the Java code generated by
our framework can be directly used in other products (e.g.,
Oracle SOA Suite and IBM WebSphere) as well.

Our proposition offers an extensive set of operators that
can be utilized in pre- and post-condition expressions. These
operators do not introduce any new concepts, therefore they
are easy to learn. They also have a well defined semantics
based on the C# language specification. The expressions can
also contain lambda functions and thus the benefits of the
LINQ standard query operators can also be harvested. These
query operators build a superset of OCL (without the UML
specific parts), which itself is also a powerful constraint
description language. Although the expression syntax in
SOAL is the same as in C#, the expressions are translated
by our framework to Java as well.

The design pattern generated by the framework separates
the interface, the publication part, the contract validation
part and the implementation part of a service. This results in
a clean, easily maintainable code. Although the delegation
of method calls in this design pattern introduces a minor
overhead, this is negligible compared to the time consumed
by transforming the incoming and outgoing SOAP XML
messages.

There is one weak point of the framework: the expressions
are too powerful to be translated into BPEL, therefore BPEL
code cannot be produced from them. However, a proxy web
service can be generated that delegates calls towards the
BPEL process instead of towards a local implementation
class. This solution introduces a major overhead though,

55

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

since the SOAP XML messages have to be serialized and
deserialized twice, instead of once. Nevertheless, this proxy
web service concept is useful for other purposes as well,
e.g., testing other web services.

IV. CONCLUSION

We proposed a Design by Contract solution for SOA.
Our solution is based on a simple, human readable domain
specific language called SOAL. Our framework generates
C# or Java code from this description, that can be directly
imported into the SOA products of the major software
vendors. The generated artifacts follow the delegation design
pattern, which results in a clean and easily maintainable
code. The syntax and semantics of the condition expressions
are based on C# and the LINQ standard query operators are
also fully supported. Design by Contract can also be applied
to BPEL though proxy web services at the cost of some
performance loss.

In our future work, we will extend the framework with
other concepts, e.g., invariant conditions and versioning.

ACKNOWLEDGMENT

This work is connected to the scientific program of the
”Development of quality-oriented and harmonized R+D+I
strategy and functional model at BME” project. This project
is supported by the New Hungary Development Plan (Project
ID: TMOP-4.2.1/B-09/1/KMR-2010-0002).

REFERENCES

[1] OASIS, SOA Reference Model, http://www.oasis-open.org/
committees/tc home.php?wg abbrev=soa-rm, accessed:
8.12.2010.

[2] ——, WS-* Standards, http://www.oasis-open.org/specs/, ac-
cessed: 8.12.2010.

[3] B. Meyer, “Applying ”design by contract”,” Computer,
vol. 25, no. 10, pp. 40–51, 1992.

[4] ——, Touch of Class: Learning to Program Well with Objects
and Contracts. Springer, 2009.

[5] A. G. D. Florescu and D. Kossmann, “Xl: an xml program-
ming language for web service specification and composi-
tion,” in Computer Networks: The International Journal of
Computer and Telecommunications Networking, 2003, pp. 1–
25.

[6] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo
+ astro: An integrated approach for bpel monitoring,” Web
Services, IEEE International Conference on, vol. 0, pp. 230–
237, 2009.

[7] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini,
“A timed extension of wscol,” Web Services, IEEE Interna-
tional Conference on, vol. 0, pp. 663–670, 2007.

[8] M. Klusch, CASCOM - Intelligent Service Coordination in
the Semantic Web. Birkhuser Verlag, Springer, 2008, ch. 3.

[9] W3C, Semantic Annotations for WSDL and XML Schema
(SAWSDL), http://www.w3.org/TR/sawsdl/, accessed:
8.12.2010.

[10] ——, OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/, accessed:
8.12.2010.

[11] E. W. working group, Web Service Modeling Ontology
(WSMO), http://www.wsmo.org/, accessed: 8.12.2010.

[12] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler,
“Wsmx - a semantic service-oriented architecture,” in In
Proceedings of the International Conference on Web Service
(ICWS 2005, 2005, pp. 321–328.

[13] R. Heckel and M. Lohmann, “Towards contract-based testing
of web services,” Electronic Notes in Theoretical Computer
Science, vol. 82, p. 2003, 2004.

[14] J. T. E. Timm, “Specifying semantic web service composi-
tions using uml and ocl,” in In 5th International Conference
on Web Services. IEEE press, 2007.

[15] B. Simon, Z. Laszlo, B. Goldschmidt, K. Kondorosi, and
P. Risztics, “Evaluation of ws-* standards based interop-
erability of soa products for the hungarian e-government
infrastructure,” in International Conference on the Digital
Society. Los Alamitos, CA, USA: IEEE Computer Society,
2010, pp. 118–123.

[16] B. Simon and B. Goldschmidt, “A human readable platform
independent domain specific language for wsdl,” in Net-
worked Digital Technologies, ser. Communications in Com-
puter and Information Science. Springer Berlin Heidelberg,
2010, vol. 87, pp. 529–536.

[17] B. Simon, B. Goldschmidt, and K. Kondorosi, “A human
readable platform independent domain specific language for
bpel,” in Networked Digital Technologies, ser. Communica-
tions in Computer and Information Science. Springer Berlin
Heidelberg, 2010, vol. 87, pp. 537–544.

[18] Microsoft, .NET LINQ ExpressionType Enumeration, http:
//msdn.microsoft.com/en-us/library/bb361179.aspx, accessed:
8.12.2010.

[19] ——, C# Language Specification Version 4.0, http:
//www.microsoft.com/downloads/en/details.aspx?familyid=
DFBF523C-F98C-4804-AFBD-459E846B268E&displaylang=
en, accessed: 8.12.2010.

[20] ——, .NET LINQ Standard Query Operators, http://
msdn.microsoft.com/en-us/library/bb882641.aspx, accessed:
8.12.2010.

[21] ——, SQL Server Modeling Services, http://msdn.microsoft.
com/en-us/data/ff394760.aspx, accessed: 8.12.2010.

[22] ——, Windows Communication Foundation,
http://msdn.microsoft.com/en-us/netframework/
aa663324.aspx, accessed: 8.12.2010.

[23] Oracle, JSR 224: Java API for XML-Based Web Services
(JAX-WS) 2.0, http://jcp.org/en/jsr/detail?id=224, accessed:
8.12.2010.

56

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

