ICDS 2011 : The Fifth International Conference on Digital Society

A Metamodel of the WS-Policy Standard Family

Balazs Simon, Balazs Goldschmidt, Peter Budai, Istvan Hartung, Karoly Kondorosi, Zoltan Laszlo, Peter Risztics
Department of Control Engineering and Information Technology
Budapest University of Technology and Economics
Budapest, Hungary
Email: {sbalazs | balage | bucnak | hartungi | kondor | laszlo} @iit.bme.hu, risztics @ik.bme.hu

Abstract—The basic building blocks of SOA systems are web
services. The domain specific language SOAL developed by
the authors has a Java and C#-like syntax for describing web
service interfaces. Beside the syntax a metamodel (SoaMM) is
also defined. The paper introduces an extended version of both
SOAL and SoaMM that supports WS-Policy specifications. The
original WS-Policy standards specify huge XML descriptions
that are too complex and low level for efficient service design.
The metamodel presented provides a high abstraction level
that is still strong enough for generating vendor-specific service
configurations for WCF and major JAX-WS implementations.

Keywords-SOA; web services; WS-policy; modelling; DSL.

I. INTRODUCTION

Complex distributed systems are best built from com-
ponents with well-defined interfaces and a framework that
helps connecting them. Web services and BPEL (Busi-
ness Process Execution Language) processes implementing
WSDL (Web Services Description Language) interfaces rep-
resent today the components that both enterprises and gov-
ernments use to construct their complex distributed systems,
implementing a Service Oriented Architecture (SOA) [1].

One of the advantages of building on web services tech-
nology is that one can get a vast set of standards from simple
connections to middleware functionalities such as security or
transaction-handling [2].

The other advantage is that SOA applies classical prin-
ciples of software engineering, like model-based develop-
ment, loosely coupled components, separation of interface
from implementation, etc., at a higher level of abstraction.
When implementing the abstract model, vendor specific
issues start to dominate. In many situations, like systems
in e-government or those of interoperating companies, such
vendor-dependent issues undermine successfull systems in-
tegration. Without clearly defined, common configuration
settings interoperability might be compromized. Therefore
it is of utmost importance to have a common model of
configuration descriptions that enables vendor independent
specification of policies. This was the essential aim of the
WS-Policy standards. Unfortunately these standards not only
require huge, unreadable, and thus unmaintainable XML
configuration descriptions, but in the actual products the
descriptions usually still contain vendor specific details.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

This paper shows how a high-level web service and
BPEL metamodel, description language, and code generating
framework was extended with WS-Policy standards support
in order to enable developers to automatically generate
platform-specific policy configurations from the general,
standard-compliant policy specifications. The paper empha-
sizes the use of a clear and easily extensible metamodel
framework that is the sine-qua-non of a really useable and
effective solution.

The activity of our research group aims at developing
principles, recommendations, components and technologies
that make the application of SOA in the e-government
domain easier. Considering the diversity of legacy systems
of governmental organizations, all the solutions we elaborate
should be platform-independent as far as it is possible.

The rest of the paper is organized as follows. In the second
section, related work is examined. In the third section,
the metamodel is introduced, the WS-policy representation
is detailed, the code generating framework architecture is
shown, and finally, an evaluation is provided. The fourth
section summarizes the results.

II. RELATED WORK

One way of describing services is using semantic web
technologies. The major goal of Semantic Web Services
(SWS) is to create intelligent software agents to provide
automated, interoperable and meaningful coordination of
web services [3]. The three main directions of SWS are
SAWSDL (Semantic Annotations for WSDL), OWL-S (Se-
mantic Markup for Web Services) and WSMO (Web Ser-
vices Modeling Ontology).

SAWSDL [4] does not introduce a new language. It is
a WSDL extension for referencing ontological concepts
outside WSDL documents. Beyond that it does not define
any execution semantics for the implementation.

The OWL-S [5] profile ontology is used to describe what a
service does, and is meant to be mainly used for the purpose
of service discovery. The service description contains input
and output parameters, pre- and post-conditions, and also
non-functional aspects. The OWL-S process model describes
service composition including the communication pattern.
In order to connect OWL-S to existing web service stan-
dards, OWL-S uses grounding to map service descriptions

57

ICDS 2011 : The Fifth International Conference on Digital Society

to WSDL. The OWL-S environment provides an editor to
develop semantic web services and a matcher to discover
services. The OWL-S Virtual Machine is a general purpose
web service client for the invocation. OWL-S therefore
requires a custom execution environment and cannot be
used in current commercial SOA products. Its underlying
description logic OWL-DL has also a limited expressiveness
in practice.

The WSMO [6] framework provides a conceptual model
and a formal language WSML for semantic markup of
web services. WSMO is used for modeling of ontologies,
goals, web services and mediators. Ontologies provide for-
mal logic-based grounding of information used by other
components. Goals represent user desires, i.e., the objectives
that a client might have when searching for services. Web
services are computational entities, their semantic descrip-
tion includes functional and non-functional properties, as
well as their capabilities through pre- and postconditions,
assumptions and effects. Mediators provide interoperability
between components at data, protocol and process level.
The reference implementation of WSMO is the WSMX [7]
framework, a custom execution environment. It is designed
to allow dynamic discovery, invocation and composition of
web services. It also provides interoperability with classical
web services.

The main design goals of SWS standards are discovery,
invocation and composition of web services. These standards
are not primarily designed for modelling purposes. They
are weak in terms of security, transactional, reliability and
other non-functional aspects even at the conceptual level
[8]. Because of their custom execution environment, their
implementations do not rely on existing SOA products of
major software vendors, which can result in interoperability
problems with classical web services published by these
products.

Although there are directions to extend SWS standards
with WS-Policy concepts [9] [10] [11], these solutions focus
on service discovery and policy matching, and do not resolve
the issues related to modelling and implementation.

Most BPEL workflow engines in the industry also
lack support of the specification and enforcement of non-
functional requirements. A. Charfi et.al. [12] proposed and
implemented a container framework to include the most
important WS-* standards regarding security, reliability and
transaction handling in BPEL processes. However, their
solution can only be used in the ActiveBPEL engine, and
cannot be applied to other industry engines.

Another major drawback of the WS-Policy standard fam-
ily is that the policy assertions of the WS-* standards can
be very large XML structures, which makes them nearly
impossible to be handwritten by humans. Luckily, most SOA
products provide policy repositories (e.g., Oracle SOA Suite,
IBM WebSphere) containing complete assertions that can
be used for configuration. However, these assertions may

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

differ between products and matching them can be a difficult
task. There are also products, which offer GUI designers
(e.g., GlassFish ESB) or transform WS-Policy assertions into
their own configuration representation (e.g., Apache CXF,
Microsoft Windows Communication Foundation (WCF))
making interoperability problems even harder.

Others focus their research on creating platform indepen-
dent languages for describing WS-Policy assertions. These
efforts come together under the umbrella of XACML [13]
(eXtensible Access Control Markup Language). XACML is
a declarative access control policy language implemented
in XML and a processing model, describing how to inter-
pret the policies. WSPL [14] [15] (Web Services Policy
Language) is a subset of XACML and is designed for
matching policy descriptions. WS-PolicyConstraints [16] is
an even smaller subset of WSPL with the parts of WSPL
that overlapped and conflicted with WS-Policy and WS-
PolicyAttachment removed. Although these XACML-based
solutions are platform independent, they are too complex and
have unfriendly XML syntax. Their current tool support is
also very poor and they cannot be used for modelling.

WS-Policy and XACML provide expressions to specify
different configurations of policy assertions, however, most
SOA products support only a single configuration option per
endpoint. Different configurations are published on different
endpoints. Hence, there is usually no need to dynamically
choose between options; to be able to specify the exact same
configuration on the client and server side between different
products is a more important task in practice.

III. META-MODEL FOR THE WS-POLICY STANDARDS

This section introduces the high level description language
and the metamodel for WS-Policy standards.

A. SOAL and SoaMM

In the SOA world, XML is used for interface and
process-description, and message-formatting. The aim is
interoperability, but the drawback is that handling and
transforming XML documents above a certain complexity
is almost impossible. This is why most development envi-
ronments have graphical tools for helping developers cre-
ating interface-descriptions, connections, process-flows and
message-formats. The problem with the graphical approach
is that it is neither efficient, nor reliably repeatable, nor
sufficiently controllable, nor easily automatable.

On the other hand, the standards usually have a lot of
redundant parts that result in poor readability and manage-
ability. For example the message element in WSDL 1.x
was omitted from WSDL 2.0 because of its redundancy. The
development tools do not support the inclusion of special
extensions in the interface specification (like pre- and post-
conditions, authorization, etc.) Even some tools have special
naming conventions that are to be accepted, otherwise the
generated code is even less readable than necessary. We

58

ICDS 2011 : The Fifth International Conference on Digital Society

have examined a lot of products [17] and have found a
lot of peculiarities, which have to be taken into account
beyond the recommendations of the WS-I Basic Profile.
In BPEL process-descriptions the partnerLinkType-
partnerLink constructs for partners, or the property-
propertyAlias-correlationSet constructs for cor-
relations mean unnecessary redundancy in BPEL. Unfortu-
nately, the process designer tools usually map these con-
structs directly to the graphical interface instead of hiding
them from the users. The development tools do not support
the inclusion of special extensions in the process description
(like pre- and post-conditions, authorization, etc.)

To solve the above problems, an abstract model (SoaMM)
has been developed that can manage both BPEL and WSDL
concepts, and, in order to describe the model, an extendable
language called Service Oriented Architecture Language
(SOAL) was specified [18], [19] that can be used for
describing webservice interfaces and BPEL processes, and
is more easily readable and manageable by humans. This
model and language also enables automatization, vendor-
specific WSDL and BPEL generation, and compile time type
checking.

The following example illustrates a simple stack web
service description in SOAL. The service has the URL http:
/Nocalhost/Calculator and can be accessed through SOAP
1.1 over HTTP:

namespace CalculatorSample {

interface ICalculator {
double Add(double left, double right);
double Subtract (double left, double right);
double Multiply (double left, double right);
double Divide (double left, double right);

}

binding SoapllHttpBinding {
transport HTTP;
encoding SOAP { Version =

}

endpoint Calculator : ICalculator {
binding SoapllHttpBinding;
location "http://localhost/Calculator";

}

SoapVersion.Soapll }

B. WS-Policy in SoaMM and SOAL

The most widely supported WS-* protocols by the in-
dustry are WS-Addressing, WS-ReliableMessaging, WS-
SecureConversation and WS-AtomicTransaction. Each of
them has a respective WS-Policy standard, which defines
assertions that can be used to describe a set of parameters
in a platform independent way to configure these protocols.

SOA products implement these protocols as web services
stacks. These stacks consist of various layers, and the prod-
ucts offer different kinds of configuration mechanisms to set
the parameters of these layers. We have reviewed all the WS-
Policy standards corresponding to the protocols enumerated
at the beginning of this section, and we have also examined
the configuration mechanisms of the most popular SOA

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

SoaObject
V4

Y%

BindingElement

1
Transpprt
TransportBindingElement

ProtocolBindingElement

.+ | Protocols

1
Encoding]| EncodingBindingElement ‘

Figure 1. Bindings and binding elements in SoaMM

«enum»

HttpsClientAuthentication
+None

‘ TransportBindingElement

‘ HttpTransport ‘ HttpsTransport 1 +Certificate
ClientAuthentication
Figure 2. Transport binding elements in SoaMM

products. Oracle SOA Suite and IBM WebSphere directly
use WS-Policy assertions, which can be selected from a
repository. GlassFish ESB, using the Metro web services
stack, also consumes WS-Policy assertions, however, it
offers a graphical user interface built into Netbeans in order
to make the settings easier. Apache CXF and Microsoft WCF
transform WS-Policy assertions into their own configuration
representation. These differencies between products make
it very hard to achieve interoperability when the number of
protocols in the stack increases, since finding the exact same
options between the various representations can be error
prone. It is not a coincidence, that GlassFish ESB being a
Java implementation offers configurations labeled as .NET
interoperable in its GUI settings.

After reviewing all of these configuration representations
we have created a platform independent metamodel as an
extension of SoaMM in order to be able to describe all
the parameters of the various WS-* protocols and to be
able to generate directly interoperable configurations for the
individual SOA products.

Figure 1 shows the basic building blocks of the policy
metamodel. SoaObject is the root of the class hierarchy
in SoaMM. Binding contains a set of protocols repre-
sented by BindingElements. TransportBindingElement, En-
codingBindingElement and ProtocolBindingElement denote
transport protocols (e.g., HTTP, UDP, JMS, etc.), encoding
protocols (e.g., SOAP, binary, etc.) and higher level protocols
(e.g., WS-SecureConversation, etc.) respectively.

Figure 2 contains the two transport protocols currently
supported by our metamodel: HrtpTransport for HTTP and
HttpsTransport for HTTPS. Through the ClientAuthentica-
tion property of type HttpsClientAuthentication the latter

59

ICDS 2011 : The Fifth International Conference on Digital Society

‘ EncodingBindingElement ‘

«enum>»
1

SoapEncoding SoapVersion

+Soapll
+Soap12

-MtomEnabled : boolean Version|

Figure 3. Encoding binding elements in SoaMM

SecurityProtocol

ProtocolBindingElement 4

I

WsReliableMessagingProtocol

WsAddressingProtocol

Versionl

‘ WsAtomicTransactionProtocol ‘
-InOrder : boolean

1
VersiLn ! Deliverl/ 1 Versjon

«enum>» «enums» «enum»
WsrmVersion WsrmDelivery WsatVersion

+Wsrm1l +Wsat10

«enum»
WsaVersion

+Wsal0
+WsaAugugst2004

+ExactlyOnce
+AtMostOnce
+AtLeastOnce

Figure 4. Protocol binding elements in SoaMM

can prescribe that the client must authenticate itself with
an X.509. certificate.

Web services use the SOAP encoding protocol for com-
munication. Our metamodel offers SoapEncoding (see Fig-
ure 3) to represent this protocol and also allows the MTOM
option to be enabled for increased efficiency in the com-
munication. The SOAP version can be specified through the
Version property.

Figure 4 introduces the higher level protocols. WsAddress-
ingProtocol, WsReliableMessagingProtocol and WsAtomic-
TransactionProtocol denote the settings of WS-Addressing,
WS-ReliableMessaging and WS-AtomicTransaction respec-
tively. Each of these has a Version property for the version
number. The Delivery property of WsReliableMessagingPro-
tocol defines what kind of delivery should be used in the
WS-ReliableMessaging protocol while the InOrder property
indicates whether the order of the messages should be
preserved. The security protocols are omitted from this paper
because of space limitations, however, in the figure they are
marked by the SecurityProtocol class.

We have also extended the SOAL language so that the
various protocol settings can be represented in the language.
The main extension point is the binding declaration. For
example the following binding can be used to configure
WS-Addressing 1.0 and WS-ReliableMessaging 1.1 with
messages delivered exactly once over HTTPS:
binding ReliableBinding {

transport HTTPS {

ClientAuthentication =

HttpsClientAuthentication.None
}
encoding SOAP {
Version = SoapVersion.Soapll

}

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

protocol WsAddressing {
Version = WsaVersion.WsalO

}

protocol WsReliableMessaging {

Version = WsrmVersion.Wsrmll,
Delivery = WsrmDelivery.ExactlyOnce,
InOrder = true

The corresponding WS-Policy assertions used by most
SOA products would be:

<wsp:Policy wsu:Id="ReliableBinding_Policy">
<sp:TransportBinding>
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken
RequireClientCertificate="false"/>
</wsp:Policy>
</sp:TransportToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Strict/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
</wsp:Policy>
</sp:TransportBinding>
<wsam:Addressing/>
<wsrmp:RMAssertion>
<wsp:Policy>
<wsrmp:DeliveryAssurance>
<wsp:Policy>
<wsrmp:ExactlyOnce/>
<wsrmp:InOrder/>
</wsp:Policy>
</wsrmp:DeliveryAssurance>
</wsp:Policy>
</wsrmp:RMAssertion>
</wsp:Policy>

The WCF configuration would be the following:

<binding name="ReliableBinding">
<reliableSession reliableMessagingVersion=
"WSReliableMessagingll"
ordered="true" />
<textMessageEncoding
messageVersion="SoapllWSAddressinglO" />
<httpsTransport
requireClientCertificate="false" />
</binding>

As it can be seen, the SOAL description is much cleaner

than the bloated XML-based WS-Policy assertions and is as
compact as the custom configuration representation of WCF.

C. Architecture

The grammar for the WS-Policy extension in SOAL was
implemented in the M language designed by Microsoft. The
M language is a declarative language for working with data
and building domain models. It is part of the SQL Server

60

ICDS 2011 : The Fifth International Conference on Digital Society

Interface and WSDL, C#

. de, Java
E SoaMM code,
b",]dl,n‘; .| parser e .Sm —=>| generator |— code,
description in object model .
configuration

SOAL files

Figure 5. The architecture of the platform independent SOAL framework

Modeling Services [20] (formerly Oslo) framework, which
also includes an editor called IntelliPad for domain specific
languages and a repository for storing data models.

Based on the grammar the M language parser can process
binding descriptions in the SOAL form and can transform
the input into an object model described by the SoaMM
metamodel. The object model is then easily processable from
any .NET language. From this object model the framework
generates directly importable projects for different SOA
products. The projects include web services with directly
interoperable configurations even between different prod-
ucts; the programmer only has to specify the implementation
of the services. The code generator is written in the Text
Template Transformation Toolkit for Visual Studio.

The architecture of the platform independent SOAL for
WSDL framework can be seen in Figure 5.

D. Generated code

Our framework generates code for two popular web
service technologies: Windows Communication Foundation
(WCEF [21]) and Java API for XML-Based Web Services 2.0
(JAX-WS [22]). The generated C# and Java classes contain
only standard elements, hence they can be used in any SOA
product implementing these standards (e.g., Microsoft .NET,
Oracle SOA Suite, IBM WebSphere, Apache CXF).

However, JAX-WS (unlike WCF) does not cover WS-
Policy standards for non-functional requirements, therefore,
configuration files for SOA products may differ between
JAX-WS implementations. Our framework currently sup-
ports WCF and the following JAX-WS implementation
stacks: Metro (used in GlassFish ESB), IBM WebSphere
and Oracle SOA Suite. The open-source Apache CXF (also
used in the JBossWS stack) is planned to be supported.

Table I shows the number of lines required in configura-
tion files of the various web services stacks regarding the
different protocols. It can be seen that SOAL is as compact
as WCEF, while the other configuration representations are
more verbose. Therefore, generating these configuration
files, so that they are even directly interoperable, results in
great increase of productivity.

E. Evaluation

SOAL is a human readable domain specific language for
SOA with a metamodel called SoaMM behind it. It provides
much cleaner syntax than an XML based WSDL document.
From a SOAL description a SoaMM object model can be
constructed and from this object model WSDL files, program
code and configuration files can be automatically generated.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Table I
NUMBER OF LINES OF THE VARIOUS CONFIGURATIONS IN SOA
PRODUCTS

Legend: WS-A=WS-Addressing, WS-RM=WS-ReliableMessaging,
WS-AT=WS-AtomicTransaction, WS-SC=WS-SecureConversation

Protocol SOAL | WCF | Metro/IBM/Oracle | CXF/JBoss
HTTP 1 1 1 1
HTTPS 2 1 20 29
SOAP 2 1 1
MTOM 2 1 14
WS-A 2 1 5
WS-RM 4 1 10 11
WS-AT 2 1 10 -
WS-SC 4 5 40 40

This is a powerful tool in the top-down development process
where the task is to create interoperable web services based
on WSDLs, while it is as simple as the less interoperable
bottom-up development process primarily supported by SOA
products. The C#-Java-like textual syntax of SOAL is easier
to maintain than XML or graphical WSDL representations
provided by the products.

Furthermore, the authors are not aware of any other frame-
work or metamodel that has such a high abstraction level
policy representation and strong descriptive power at the
same time as SoaMM and SOAL. The metamodel and the
language also has advantage over the web services standard
family: the descriptions are unified in a single language on
all three (transport, encoding, protocol) configuration layers.

The flexibility and extensibility of the metamodel
are demonstrated by the integration of standards spec-
ifying the most important non-functional aspects, like
WS-Addressing, WS-ReliableMessaging, WS-Security, WS-
SecureConversation, WS-AtomicTransaction. The meta-
model can be easily extended at any time by further solutions
for transport, encoding, or protocol.

The most important aspect of the metamodel extension is
that configuration profiles can be specified on a high concep-
tual level. The actual implementation-specific configuration
files are automatically generated from these high level de-
scriptions. Interoperability, which is of utmost importance
in systems integration, is thus guaranteed without further
vendor-specific, low-level product configuration.

There is one weak point of the framework: current BPEL
engines usually do not support advanced non-functional re-
quirements (e.g., security, transactions), hence, configuration
cannot be generated for them. However, a proxy web service
can be produced that delegates calls towards the BPEL
process. This solution introduces a major overhead though,
since the SOAP XML messages have to be serialized and
deserialized twice, instead of once. Nevertheless, this proxy
web service concept is useful for other purposes as well,
e.g., testing or adapting other web services.

61

ICDS 2011 : The Fifth International Conference on Digital Society

IV. CONCLUSION

The original WS-Policy standards specify huge XML
descriptions that are too complex and too low level for
efficient service design. The paper presented an extension
to the metamodel SoaMM and description language SOAL
that was originally designed as a simple, human readable
domain specific language specifically for webservices and
BPEL. This extension provides a high abstraction level that
is still strong enough for generating vendor-specific pol-
icy configurations. Furthermore, this description guarantees
interoperability of SOA products of different vendors. For
BPEL engines that do not support advanced non-functional
requirements, a proxy web service can be produced that
delegates calls towards the BPEL process.

In our future work, we will extend the framework with
other concepts, e.g., versioning and SAML authentication.

ACKNOWLEDGMENT

This work is connected to the scientific program of the
“Development of quality-oriented and harmonized R+D+I
strategy and functional model at BME” project. This project
is supported by the New Hungary Development Plan (Project
ID: TMOP-4.2.1/B-09/1/KMR-2010-0002).

REFERENCES

[1] OASIS, SOA Reference Model, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=soa-rm, accessed:
8.12.2010.

[2] ——, WS-* Standards, http://www.oasis-open.org/specs/, ac-
cessed: 8.12.2010.

[3] M. Klusch, CASCOM - Intelligent Service Coordination in
the Semantic Web. Birkhuser Verlag, Springer, 2008, ch. 3.

[4] W3C, Semantic Annotations for WSDL and XML Schema
(SAWSDL), http://www.w3.org/TR/sawsdl/, accessed:
8.12.2010.

[5] —— OWL-S: Semantic Markup for
http://www.w3.org/Submission/OWL-S/,
8.12.2010.

Web Services,
accessed:

[6] E. W. working group, Web Service Modeling Ontology
(WSMO), http://www.wsmo.org/, accessed: 8.12.2010.

[7] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler,
“Wsmx - a semantic service-oriented architecture,” in In
Proceedings of the International Conference on Web Service
(ICWS 2005, 2005, pp. 321-328.

[8] O. Shafig, M. Moran, E. Cimpian, A. Mocan, M. Zaremba,
and D. Fensel, “Investigating semantic web service execution
environments: A comparison between wsmx and owl-s tools,”
Internet and Web Applications and Services, International
Conference on, vol. 0, p. 31, 2007.

[9] V. Kolovski, B. Parsia, Y. Katz, and J. Hendler, “Representing
web service policies in owl-dl,” in In International Semantic
Web Conference (ISWC, 2005, pp. 6-10.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

[10] K. Verma, R. Akkiraju, and R. Goodwin, “R.: Semantic
matching of web service policies,” in Proceedings of the
Second Workshop on SDWP, 2005, 2005, pp. 79-90.

[11] N. Sriharee, T. Senivongse, K. Verma, and A. Sheth, “On

using ws-policy, ontology, and rule reasoning to discover

web services,” in [Intelligence in Communication Systems,
ser. Lecture Notes in Computer Science, F. A. Aagesen,

C. Anutariya, and V. Wuwongse, Eds. Springer Berlin /

Heidelberg, 2004, vol. 3283, pp. 246-255, 10.1007/978-3-

540-30179-0_22.

[12] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini,

“Reliable, secure, and transacted web service compositions

with aodbpel,” in ECOWS ’'06: Proceedings of the European

Conference on Web Services. Washington, DC, USA: IEEE

Computer Society, 2006, pp. 23-34.

[13] T. Moses, eXtensible Access Control Markup Language

(XACML), http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=xacml, accessed: 8.12.2010.

[14] A. Anderson, An Introduction to the Web Services Policy

Language, Fifth IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY 04),

http://1abs.oracle.com/projects/xacml/Policy2004.pdf,

accessed: 8.12.2010.

[15] T. Nadalin, Web Services Security Policy Language (WS-

SecurityPolicy), http://www-128.ibm.com/developerworks/

library/specification/ws-secpol/, accessed: 8.12.2010.

[16] A. Anderson, XACML-based Web Services Policy Constraint

Language (WSPolicyConstraints), http://labs.oracle.com/

projects/xacml/ws-policy-constraints-current.pdf, —accessed:

8.12.2010.

[17] B. Simon, Z. Laszlo, B. Goldschmidt, K. Kondorosi, and

P. Risztics, “Evaluation of ws-* standards based interop-

erability of soa products for the hungarian e-government

infrastructure,” in International Conference on the Digital

Society. Los Alamitos, CA, USA: IEEE Computer Society,

2010, pp. 118-123.

[18] B. Simon and B. Goldschmidt, “A human readable platform
independent domain specific language for wsdl,” in Net-
worked Digital Technologies, ser. Communications in Com-
puter and Information Science. Springer Berlin Heidelberg,
2010, vol. 87, pp. 529-536.

[19] B. Simon, B. Goldschmidt, and K. Kondorosi, “A human
readable platform independent domain specific language for
bpel,” in Networked Digital Technologies, ser. Communica-
tions in Computer and Information Science. Springer Berlin
Heidelberg, 2010, vol. 87, pp. 537-544.

[20] Microsoft, SQL Server Modeling Services, http:
//msdn.microsoft.com/en-us/data/ff394760.aspx, accessed:
8.12.2010.

[21] —, Windows Communication Foundation,
http://msdn.microsoft.com/en-us/netframework/
aa663324.aspx, accessed: 8.12.2010.

[22] Oracle, JSR 224: Java API for XML-Based Web Services

(JAX-WS) 2.0, http://jcp.org/en/jsr/detail?id=224, accessed:

8.12.2010.

62

