
Fast Singular Value Decomposition for Large-scale Growing Data

Jengnan Tzeng
Department of Mathematical Sciences, National Chengchi University

Taipei, Taiwan
jengnan@math.nccu.edu.tw

Abstract—Singular value decomposition (SVD) is a funda-
mental technique in linear algebra, and it is widely applied
in many modern information technologies, for example, high
dimensional data visualization, dimension reduction, data min-
ing, latent semantic analysis, etc. However, when the matrix size
of the data is huge and continuously growing, the matrix can
not be loaded all at once into the computer memory and O(n3)
computational cost of SVD becomes infeasible. To resolve this
problem, we will adapt a fast multidimensional scaling method
to obtain a fast SVD method, given that the significant rank of
a huge matrix is small. This proposed fast SVD method can be
easily implemented via parallel computing. We also propose a
fast update method to be applied when the huge data is updated
continuously. We will demonstrate that the approximated SVD
result is sufficiently accurate, and most importantly it can be
derived very efficiently. Using this fast update method, many
modern techniques based on SVD which were infeasible will
become viable.

Keywords-Singular value decomposition; multidimensional
scaling; parallel computing; huge matrix.

I. INTRODUCTION

Singular value decomposition (SVD) and Principle com-
ponent analysis (PCA) are two fundamental techniques in
linear algebra and statistics. There are many modern appli-
cations based on these two tools, such as linear discriminate
analysis [1], multidimensional scaling analysis [2], feature
extraction, high dimensional data visualization, etc. In recent
years, digital information has been proliferating and many
analytic methods based on PCA and SVD are facing the
challenge of their significant computational cost. Thus, it is
crucial to develop a fast method of PCA and SVD.

In 2008, Tzeng et al. [4] developed a fast multidimen-
sional scaling (MDS) method which turned the classical
O(n3) MDS method to be linear. MDS is a method to
represent the high dimensional data into the low dimensional
configuration. Because of the phenomenon of the curse
of dimensionality, MDS is widely used in data mining,
clustering, and many recommendation systems for web
services. When the data configuration is Euclidean, MDS is
similar to principle component analysis (PCA), in that both
can remove inherent noise with its compact representation
of data. The O(n3) computational complexity makes it
infeasible to apply to huge data, for example, when the
sample size is more than one million.

In the following section, we will show how to adapt clas-
sical MDS to be a fast Split-and-combine MDS (SCMDS).
And using this SCMDS, we can modify the PCA and SVD
method to become fast methods.

II. METHODOLOGY

In 2008, we adapted the classical MDS so as to reduce
the original O(n3) complexity to O(n) [4], in which we
have proved that when the data dimension is significantly
smaller than the number of data entries, there is a fast linear
method for classical MDS. The following section begins
with a review of SCMDS. Then we will demonstrate how
to adapt SCMDS method to become the fast PCA, and with
further modification, the fast PCA can become the fast SVD.

A. From MDS to SCMDS

The main idea of fast MDS is using statistical resampling
to split data into overlapping subsets. We perform the
classical MDS on each subset and get the compact Euclidean
configuration. Then we use the overlapping information
to combine each configuration of subsets to recover the
configuration of the whole data. Hence, we named this fast
MDS method by Split-and-combine MDS (SCMDS).

Assume X1 and X2 are matrices in which the columns are
the two coordinates of the overlapping points obtained by
applying MDS to two grouped data sets. Then there exists an
affine mapping that maps X1 to X2. Let X̄1 and X̄2 be the
means of columns of X1 and X2, respectively. In order to
obtain the affine mapping, we apply QR factorization to both
X1 − X̄11̇T and X2 − X̄21̇T . Then we have X1 − X̄11̇T =
Q1R1 and X2 − X̄21̇T = Q2R2. It is clear that the mean
of the center of column vectors of X1 − X̄11̇T has been
shifted to zero. Because X1 and X2 come from the same
data set, the difference between X1−X̄11̇T and X2−X̄21̇T

is a rotation. Therefor, the triangular matrices R1 and R2

should be identical when there is no noise in X1 and X2.
Due to randomness of the sign of columns of Qi in QR
factorization, the sign of columns of Qi might need to be
adjusted according to the corresponding diagonal elements
of Ri, so that the signs of tridiagonal elements of R1 and
R2 are the same.

After necessary modification to the sign of columns of
Qi, we conclude that

QT
1 (X1 − X̄11̇T) = QT

2 (X2 − X̄21̇T).

193

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Furthermore, we have

X1 = Q1Q
T
2 X2 −Q1Q

T
2 (X̄21̇T) + X̄11̇T .

Here, the unitary operator is U = Q1Q
T
2 and the shifting is

b = −Q1Q
T
2 X̄2 + X̄1. Since the key processing of finding

this affine mapping is QR decomposition, the computational
cost is O(k3), where k is the number of columns of X1 and
X2. Therefore, the cost O(k3) complexity is limited by the
number of samples in each overlapping region. The proof
of the computational cost of SCMDS is given as follows:

Assume that there are N points in a data set, we divide
these N samples into K overlapping subgroups, where NG

is the number of points in each subgroup and NI the number
of points in each intersection region. Then we have the
relationship

KNG − (K − 1)NI = N

or

K =
(N −NI)

(NG −NI)
.

For each subgroup, we apply classical MDS to compute the
configuration of each group data, which cost O(N3

G). In each
overlapping region, we apply QR factorization to compute
the affine transformation, which cost O(N3

I). Assume that
the true data dimension is p, and the lower bound of NI

is p + 1. For the convenience, we take NG = αp for some
constant α > 2. Then the total computational cost is about

N − p
(α− 1)p

O(α3p3) +
N − αp
(α− 1)p

O(p3) ≈ O(p2N).

The first term of above equation is the complexity of MDS
in K groups, and the second term is the complexity of QR
in the K − 1 overlapping regions.

When p << N , the computational cost O(p2N) is much
smaller than O(

√
NN), which is the computation time of

the fast MDS method proposed by Morrison et al., 2003
[3]. The key idea of our fast MDS method is to split data
into subgroups, then combine the configurations to recover
the whole one. Since all the order three complexities are
restricted in the small number of data entries, we can therefor
speed up MDS. The concept of split-and-combine is also
similar to the concept of parallel computing. Thus, SCMDS
method can be easily implemented via a parallel algorithm.

B. From SCMDS to SCPCA

Because MDS is similar to principle component analysis
(PCA) when the data configuration is Euclidean, we can
adapt SCMDS method to obtain the fast PCA in the same
constrain p << N .

Assume that X is a p-by-N matrix, where there are N
samples with p dimension. D = XTX indicates product
matrix of X , and 1̇ is an N -by-1 vector whos elements are
all 1’s. We define a symmetric matrix B by

B =
(
X − 1

N
X 1̇1̇T

)T (
X − 1

N
X 1̇1̇T

)
= D − 1

N
D1̇1̇T − 1

N
1̇1̇TD +

1
N2

1̇1̇TD1̇1̇T

= D − D̄r − D̄c + D̄g,

where D̄r = 1
ND1̇1̇T is the row mean matrix of D,

D̄c = 1
N 1̇1̇TD is the column mean matrix of D and

D̄g = 1
N2 1̇1̇TD1̇1̇T is the ground mean matrix of D. The

operator from D to D − D̄r − D̄c + D̄g is called double
centering. If we define a matrix H by

H = I − 1
N

1̇1̇T ,

B can be simplified to B = HDH . Since matrix B is
symmetric, the SVD decomposes B into B = ZΣZT . Then
we have

√
B = ZΣ

1
2PT = (X − 1

N
X 1̇1̇T)T ,

for some unitary matrix P . In practice, we set P = I to
obtain the MDS result

√
B. Therefore, the row vector of√

B is the coordinates of X with the mean of data been
shifted to the original point and rotated by some unitary
matrix P .

If D is a distance matrix with each element di,j =√
(xi − xj)T (xi − xj), the double center of D2 is equiv-

alent to −2B, provided that
∑N

i=1 xi = 0. Hence, the MDS
method performs double centering on D2, multiplies by − 1

2 ,
and then performs SVD, which gives the configurations of
the data set.

The constrain
∑N

i=1 xi = 0 in MDS is the same as the
constrain in computing PCA. The score matrix P of PCA
is an unitary matrix, and it is derived by

(X − 1
N
X 1̇1̇T)(X − 1

N
X 1̇1̇T)T = PΣPT .

If we have the unitary matrix P , we can use (X −
1
NX 1̇1̇T)TP to obtain

√
B. The result of MDS (

√
B) simply

uses the first r orthogonal columns of this unitary matrix to
represent the data. We define an orthogonal matrix Zr by the
first r columns of Z and the sub-diagonal matrix Σr by the
up-left block of Σ, then

√
Br = ZrΣ

1
2
r is the r-dimensional

configuration of data set. If we have r-dimensional MDS
configuration, we can obtain the first r columns of the score
matrix of PCA, denoted by Pr. That is

Pr = (X − 1
N
X 1̇1̇T)Z(Σ

1
2
r)−1.

Thus, the key scheme of PCA is embedded in the MDS
method. When the number of samples is large and the data
set is high dimensional, the complexity is costly. However,
if there are many samples which are linearly dependent,
the actual rank of the data matrix is much smaller than

194

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

the matrix size. In this case, SCMDS has advantage in
computing speed. And the approach of obtaining Pr by
SCMDS is called SCPCA.

C. From SCPCA to SCSVD

The concept of SVD and PCA are very similar. Since
the PCA starts from decomposing the covariance matrix of
data set, it can be considered as adjusting the center of
mass of a row vector to zero. On the other hand, SVD
operates directly on the product matrix without shifting.
If the mean of the matrix rows is zero, the eigenvectors
derived by SVD are equal to the eigenvectors derived by
the PCA. We are looking for a method which will give a
fast method to produce the SVD result without recomputing
the eigenvectors of the whole data set, when the PCA result
is given. The following is the mathematical analysis for this
process.

Let X be a column matrix of data set. X̃ = X − X̄ · 1̇T ,
where X̄ is the mean of columns of X . Hence, the row mean
of X̃ is zero. Assume that we have the PCA result of X ,
that is, X̃X̃T = PΣ2PT . Then we have X̃ = PΣUT for
some orthogonal matrix U . Assume that the rank of X̃ is r
and r is much smaller than the matrix size, we observe that
rank(X) = r or rank(X) = r + 1, depending on whether
X̄ is spanned by P . If X̄ is spanned by P , then

X = X̃ + X̄ · 1̇T = PΣUT +P · c · 1̇T = P (ΣUT + c · 1̇T),

where c is the coefficient vector of X̄ when represented by
P , i.e., X̄ = P · c.

If the singular value decomposition of ΣUT + c · 1̇T is
W Σ̂V T , we have

X = P (W Σ̂V T) = (PW)Σ̂V T = ZΣ̂V T .

Because the matrix W is unitary, Z = PW is automatically
an orthogonal matrix as well. Then we have the SVD of X .

Checking the matrix size of ΣUT +c · 1̇T , we can see that
to compute the SVD of ΣUT + c · 1̇T is not a big task. This
is because ΣUT + c · 1̇T is a r-by-n matrix, and under our
assumption, r is much smaller than n, so we can apply the
economic SVD to obtain the decomposition of ΣUT +c · 1̇T .

On the other hand, if X̄ is not spanned by P , the analysis
becomes

X = X̃+X̄·1̇T = [P |pr+1]
([

Σ 0
0 0

] [
UT

0

]
+ c · 1̇T

)
,

where pr+1 is a unit vector defined by

pr+1 =
(I − PPT)X̄
‖(I − PPT)X̄‖

.

Using the same concept of diagonalization in the case when
X̄ is spanned by P , we find the SVD of([

Σ 0
0 0

] [
UT

0

]
+ c · 1̇T

)
= W Σ̂V T .

Then X = [P |pr+1]W Σ̂V T = ZΣ̂V T , where Z =
[P |pr+1]W is another orthogonal matrix and hence the SVD
of X is completed.

From the above analysis, we can have a fast PCA method
by computing SCMDS first, then adapt the MDS result to
obtain PCA. We named this approach SCPCA. Similarly, the
fast SVD method which computes SCMDS first, then adapts
MDS result to obtain PCA, and finally adapts PCA result to
SVD, is called the SCSVD. These two new methods work
when the rank of X is much smaller than the number of
samples and the number of variables. To obtain the exact
solution, the parameter NI must be greater than the rank
of X . In SCPCA or SCMDS method, if Ni ≤ r, we only
get the approximated solution of PCA and SVD. Under the
necessary criterion, we can reduce the computational com-
plexity from min{O(p2n), O(pn2)} to min{O(rp), O(rn)}.
If the significant rank is not small, for example,r ≈ √pn,
the computational complexity becomes almost the same as
the original PCA and SVD. Our method has no advantage
in the latter case.

III. SVD FOR CONTINUOUSLY GROWING DATA

In this section, we look for the solution when the data is
updated constantly and we need to compute SVD continu-
ously. Instead of scanning all the data again, we try to use
the previous SVD result together with the new updated data
to compute the next SVD.

Let A be an m-by-n matrix, where m is the number of
variables and n is the number of samples. And we assume
that both m and n are huge. When new data comes in,
we collect these new data to form a column matrix which
is denoted by B. Assume that we have the singular value
decomposition of A, that is

A = ZΣV T ,

where Z ∈ Mm(<), V ∈ Mn(<) are orthogonal and Σ
is a diagonal. Since the data gets updated, the data matrix
becomes

A1 = [A|B] .

To compute the singular value decomposition of A1, we need
to compute the eigenvalue and eigenvector of A1A

T
1 .

We can represent the column matrix B by B = ZC,
where C is the coefficient matrix of B with columns of Z
as the basis. Since Z is orthogonal, the coefficient matrix C
can be computed easily by C = ZTB. Then we have

A1A
T
1 = [A|ZC] [A|ZC]T

= AAT + ZC(ZC)T

= Z(Σ2 + CCT)ZT

= ZU Σ̂2UTZT

= Z1Σ̂2ZT
1 . (1)

Note that the matrix Σ2 + CCT is positive symmetric.
Using the spectrum theorem, we can decompose this matrix

195

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

into U Σ̂2UT . Because the matrix U is unitary, Z1 is Z
rotated by U .

When the matrix size of A is huge, the computational
cost of SVD is high. If the data is constantly growing, it
is difficult to compute the singular value decomposition of
A1 in real time. Therefore, we look for an approximated
solution with fast method.

Let Z = [z1, z2, · · · , zm]. If the new updated data B has
only the components in {z1, z2, · · · , zr}, where r << m,
then only r-dimensional space will be perturbed by this new
data. This is proved as follows.

Theorem Let A = ZΣV T . Assume that A1 = [A|B],
where B has no component in i-th column of Z for i > r.
Then the singular value decomposition of A1 has the same
spectrum σi and singular vector zi, vi for i > r.

Proof: Let

A =
r p− r

(Z1 Z2)

r p− r(
Σ1 0
0 Σ2

) (
V T

1

V T
2

)
,

Where Z1 and V1 are the first r columns of Z and V .
Because B has no component in Z2, B = Z1C for some
C. Then A1A

T
1 can be written as

A1A
T
1 = [A|B][A|B]T

= AAT + UUT

=
(
Z1 Z2

)(Σ2
1 + CCT 0

0 Σ2
2

)(
ZT

1

ZT
2

)
=

(
Z1 Z2

)(U Σ̂1U
T 0

0 Σ2
2

)(
ZT

1

ZT
2

)
=

(
Z1U Z2

)(Σ̂2
1 0

0 Σ2
2

)(
UTZT

1

ZT
2

)
=

(
Ẑ1 Z2

)(Σ̂2
1 0

0 Σ2
2

)(
ẐT

1

ZT
2

)
(2)

where U is unitary. We can see that the terms Σ2 and
Z2 do not change if ZT

2 B = 0. Thus, the singular value
decomposition of A1 has the same spectrum σi and zi for
i > r. Moreover, the vi for i > r are unchanged too.

In many applications, we are only concerned with the
first few spectrums and eigenvectors. For example, in high
dimensional data visualization, we only consider the first
two or three eigenvectors, that is r = 2 or 3. In this case,
the new updated data should be have component in the
space that spanned byZ2. We are therefore interested in the
performance of the approximated solution compared with the
true solution when we only retained the first r components
of B every time we updated the new data by the previous
method. If the performance decays slowly, we can daringly
compute only three or four components in many SVD-based
methods and the result in low dimensional space is still
quite reliable. So, we need to understand in what kind of
conditions, the approximated solution is stable.

Now, we analyze the effect of the perturbation of a matrix
in its eigenvalues and eigenvectors. Let matrix A be real

symmetric and A = SΛST , where S is unitary, such that
S−1 = ST . A matrix change ∆A produces changes in
eigenvalues and eigenvectors, which are denoted by ∆Λ
and ∆S respectively. Because S is orthogonal, AS = SΛ.
Similarly, we have

(A+ ∆A)(S + ∆S) = (S + ∆S)(Λ + ∆Λ).

The above equation can be represented by

A(∆S) + (∆A)S = S(∆Λ) + (∆S)Λ, (3)

when ignoring the small terms (∆A)(∆S) and (∆S)(∆Λ).
We multiply equation (3) by ST , then we have

∆Λ = ST (∆A)S + STA(∆S)− ST (∆S)Λ
= ST (∆A)S + ΛST (∆S)− ST (∆S)Λ. (4)

Because the diagonal terms of ΛST (∆S) and ST (∆S)Λ
are the same, the diagonal part of ST (∆A)S is what we
are looking for. Applying this concept to matrix Σ2 +CCT ,
CCT can be considered as ST (∆A)S. We can conclude
that if the maximal element of the absolute value of CCT

is smaller than the difference between σi − σi+1 for i =
1, · · · , r, then the order of columns of S will not change.
The first r columns of S + ∆S can be approximated stably
by the first r columns of S. If CCT is too large such that the
new spectrum ˆσr+1 > σ̂r, the approximation solution that
only use first r components to update the new spectrum and
singular vectors will fault by using ẑr+1 to replace ẑr. This
conclusion will be demonstrated in the experimental result.

IV. EXPERIMENTAL RESULT

In this section, we show that our fast PCA and SVD
method works well for big sized matrix with small rank. The
simulated matrix is created by the product of two slender
matrices. The size of the first matrix is p-by-r, and the
second matrix is r-by-n. Then the product of these two
matrixes is of size p-by-n and its rank is smaller than r.
When p and n are large and r is much smaller than p and
n, the simulated matrix satisfies our SCSVD condition. We
pick p = 4000, n = 4000 and r = 50 as our fist example.
The elements of the simulated matrix is generated from the
normal distribution N (0, 1).

The average elapsed time of SCSVD is 3.98 seconds,
while the economical SVD takes 16.14 seconds, If we
increase the matrix to p = 20000, n = 20000 and the
same rank r = 50, the elapsed time of economical SVD
is 1209.92 seconds, but SCSVD is only 195.85 seconds. We
observe that our SCSVD method demonstrates significant
improvement.

Note that when the estimated rank used in SCSVD is
greater than the real rank of data matrix, there is almost
no error (except rounding error) between economic SVD
and SCSVD. Figure 1 shows the speed comparison between
economical SVD (solid line) and SCSVD (dashed line) with
square matrix size from 500 to 4000 by fixed rank 50.

196

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

We also use fixed parameter NI = 51 and Ng = 2NI

in each simulation test. We can see that the computational
cost of SVD follows the order 3 increase, compared with
linear increase of SCSVD. The error between economical
SVD and economical SVD, and that between SVD and
SCSVD are shown in Figure 2. Because the results between
economical SVD and SVD are very similar, we use solid line
to represent the value of economical SVD and circle plot to
represent SCSVD. The values in both Figure 1 and Figure
2 are the mean of the results from 100 repeated simulated
matrices. The errors between SVD and economic SVD, and
that between SVD and SCSVD are all under the 10−4 level.
Thus, when the estimated rank of SCSVD is greater than
the true rank, the accuracy of SCSVD is pretty much the
same as SVD in the case of small rank matrix.

The purpose of the second simulation experiment is to
observe the approximation performance of applying SCPCA
to big full rank matrix. We generate random matrix with
fixed number of columns and rows, say 1000. The square
matrix is created by the form, Ap×r ·Br×n +αEp×n, where
r is the essential rank, E is the perturbation and α is a small
coefficient for adjusting the influence to the previous matrix.
Such matrix can be considered as a big sized matrix with
small rank added by a full rank perturbation matrix. We will
show that our method works well for this type of matrices.

Figure 3 shows the error vs. estimated rank, where the
error is computed by the difference between the original
matrix and the composition of three matrices from SCSVD.
All the elements of matrices A, B and E are randomly
generated from the normal distribution N (0, 1), where α =
0.01 and the essential rank r = 50. We can see that
when the estimated rank increases, the composition error
decreases. Especially when the estimated rank is greater than
the essential rank r, the composition error decays rapidly.
Thus, it is important to make sure that the estimated rank
is greater than the essential rank. In other words, when the
estimated rank of SCSVD is smaller than the essential rank,
our SCSVD result can be used as the approximated solution
of SVD.

In the last experimental result, we will show that we can
set the estimated rank r = 3, starting from the SCSVD result
and using the previous updating method to continuously
update the new SVD. We will show that the performance
of the first three components decays very slowly. Thus,
many SVD-based modern techniques, for example, Fisher
linear discrimination, Latent semantic analysis [5], eigen-
taste recommendation system [6], dimensional reduction,
etc, become feasible even when dealing with huge data set.

We produce a series square random matrices A with size
n-by-n for n between 1000 and 3000. Then we decompose
A by SVD to obtain A = ZΣV T . We reset the diagonal
terms of Σ to be exponential decay, so that the data can
simulate the meaningful data in the real world. The maximal
spectrum is set to be 104. Then we compose A by the new

diagonal matrix V . We use SCSVD with estimated rank 3,
and the parameter NI = n

10 , Ng = 2NI .
We make 16 updates to the data, and each time we add

10% samples of original data. The new data is simulated
from the normal distribution N (0, 1). We use our updating
method to compute the first three new columns of Z and
compare it with the true SVD result. Let a(t), b(t) be the
maximal and minimal element of the absolute values of
Ẑ

(t)T
3 Z

(t)
3 , respectively, where Ẑ

(t)
3 is the t-th updated Z

by our updating method taking only the first three columns,
and Z(t) is the t-th updated Z by normal SVD. If a(t) and
b(t) are close to 1, the updated Z derived by our updating
method is very close to the true Z. In Figure 4, we can see
that both a(t) and bt) are close to 1, and they decay very
slowly as the matrix size increases. In Figure 4, every point
is the average value of 32 repeating simulations.

V. CONCLUSION AND FUTURE WORK

We proposed fast PCA and SVD methods derived from
the technique of SCMDS method. The new PCA and SVD
have the same accuracy as the traditional PCA and SVD
ones when the rank of a matrix is much smaller than its
matrix size. The results of applying SCPCA and SCSVD to
a full rank matrix are also quite reliable when the essential
rank of the matrix is much smaller than its matrix size.
In most information technology applications, the essential
rank of a matrix is usually much smaller than its matrix
size. In such cases, utilizing SCPCA or SCSVD in huge
data applications will render good approximated results.
Since the concept of split-and-combine is very similar to
that of parallel computing, this SC-series methods (Split-
and-combine series) can be easily implemented via parallel
computing. Using our updating method for the growing data,
we show that the approximated solution is very close to the
actual solution, even when the estimated rank is as small as
r = 3.

For the future work, we will focus on the cases when
the data contains missing values. Our intuitive speculation
is that the processing of splitting data should be somehow
related to the locations where the missing values occur. We
believe that it would be an interesting topic worth further
exploration.

197

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Figure 1. Comparison of the elapsed time between economical SVD (the
solid line) and SCSVD (the dashed line).

Figure 2. Comparison of the composition errors between economical SVD
(the solid line) and SCSVD (the circle plot).

REFERENCES

[1] D. J. Hand, ”Discrimination and classification”, Wiley Series
in Probability and Mathematical Statistics, Chichester: Wiley,
1981

[2] M. Cox, T. Cox ”Multidimensional scaling”, Handbook of data
visualization, Springer, 2008

[3] A. Morrison, G. Ross and M. Chalmers, ”Fast multidi-
mensional scaling through sampling, springs and interpola-
tion”,Information Visualization, Vol. 2 , Issue 1, pp. 68 - 77,
2003

[4] J. Tzeng, H. Lu and W. Li, ”Multidimensional scaling for large
genomic data sets”, BMC Bioinformatics, 9:179, 2008

Figure 3. The effect of estimated rank to the composition error. The matrix
size is 1000-by-1000 and its essential rank is 50 (α = 0.01). When the
estimated rank is greater than 50, there is almost no composition error

Figure 4. The orthogonality between approximated SVD and true SVD.
The solid line is a(t) and the dashed line is b(t)

[5] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer,
R.A. Harshman, L. A. Streeter and K. E. Lochbaum, ”Infor-
mation retrieval using a singular value decomposition model
of latent semantic structure”, Annual ACM conference on
Research and Development in Information Retrieval, pp. 465-
480, 1988

[6] K. Goldberg, T. Roeder, D. Gupta and C. Perkins, ”Eigentaste:
A constant time collaborative filtering method”, Information
Retrieval, Springer, 2001

198

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

