
BTOOLS: Trusted Transaction Generation for Bitcoin and Ethereum Blockchain
Based on Crypto Currency SmartCard

Pascal Urien
LTCI

Telecom ParisTech
France

Pascal.Urien@telecom-paristech.fr

Mesmin Dandjinou
Ecole Supérieure d’Informatique

Université Nazi BONI
Burkina Faso

Tmesmin.dandjinou@univ-bobo.bf

Kodjo Edem Agbezoutsi
Ecole Supérieure d’Informatique
Université Nazi BONI & LTCI

Burkina Faso
Kodjo.agbezoutsi@telecom-paristech.fr

Abstract— This paper presents an innovative and open
software framework whose goal is to increase the trust of
blockchain transactions. Transactions are signed by the
Elliptic Curve Digital Signature Algorithm (ECDSA)
associated with a 32 bytes secret private key. We designed a
Javacard application used for key generation, storage and
cryptographic procedure dealing with the secp256k1 elliptic
curve. Our open software BTOOLS generates Bitcoin and
Ethereum transactions whose trust is enforced by the support
of a Crypto Currency SmartCard (CCSC).

Keywords-. Blockchain; Bitcoin; Ethereum; Trust.

I. INTRODUCTION

The Bitcoin crypto currency was introduced in 2008 [1],
in a famous paper written by an anonymous author Satoshi
Nakamoto. This paper proposes "a solution to the double-
spending problem using a peer-to-peer distributed timestamp
server to generate computational proof of the chronological
order of transactions...The steady addition of a constant of
amount of new coins is analogous to gold miners expending
resources to add gold to circulation in our case, it is CPU
time and electricity that is expended"

Satoshi Nakamoto also wrote the win32 software
Bitcoin.exe [3], about 16,000 lines of C++ code, and 6 MB
binary size. This software realizes all the functions needed
by the Bitcoin blockchain [2]. It manages four major tasks:

- Generation of transactions which are signed according
to the Elliptic Curve Digital Signature Algorithm, dealing
with elliptic curve private keys;

- Communication with other Bitcoin nodes running the
Bitcoin application;

- Block mining;
- Blockchain management.

Figure 1. The wallet.dat, a database file from Bitcoin.exe PrivateKey:
171AE394E427A9F1750DD523179D9BBE885E8899AB478B457E2CC4

58D1374B45. BtcAdr: 177FjMo77rfT9x2grAUH7RjcKYz7Q2P6Lu

The Bitcoin application maintains a set of data files
managed by a non Structured Query Language (SQL)
database, the Berkeley Database (Berkeley DB) [14]. In
particular, the private keys are stored in the file named
wallet.dat. As illustrated in Figure 1, private keys are stored
in clear text in the database file.

Because all crypto currency legitimate transactions rely
on private keys, their secure storage and trusted use is a
major prerequisite for blockchain operations. As an
illustration, the Korean Exchange Youbit declared
bankruptcy in December 2017 after the hacking of 17% of its
Bitcoin reserves, about 4,700 Bitcoins [17].

Our researches attempt to increase trust of blockchain
operations, by using secure elements, enforcing secure key
storage and trusted ECDSA signature. In order to reach this
goal, we developed the BTOOLS (Blockchain Tools) open
software [12], able to generate Bitcoin or Ethereum
transactions, whose signature is computed by a dedicated
Crypto Currency SmartCard, i.e. a Javacard running a Java
application.

BTOOLS uses OPENSSL library and smartcard, for
cryptographic operations. It provides the following services:

 Bitcoin address generation (mainnet and testnet);
 Ethereum address generation;
 Bitcoin transaction generation;
 Ethereum transaction generation;
 Simple Bitcoin node client;
 Bitcoin transaction (via the Bitcoin client or WEB

APIs);
 Ethereum transaction (via WEB APIs);
 Crypto Currency SmartCard scripts for key

generation and transaction signature.

The paper is constructed according to the following
outline. Section 2 recalls basic notions for the generation of
ECDSA signatures over elliptic curves. Section 3 details
Bitcoin transactions and dedicated BTOOLS scripts. Section
4 describes Ethereum transactions and BTOOLS dedicated
scripts. Section 5 introduces Crypto Currency SmartCard and
its use with BTOOLS software. Finally, Section 6 concludes
this paper.

45Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

II. ABOUT THE ECDSA SIGNATURE

Most crypto moneys (Bitcoin, Ethereum...) use the
secp256k1 elliptic curve, whose parameters are as follow [4]:

 The p prime characteristic of the field Z/pZ,
defined as:

p = 2256 + 232 + 29 + 28 + 27 + 26 + 24 + 1

 The elliptic curve E defined as the set of points
(x,y) satisfying the relation:

y2 = x3 + 7, x,y ϵ Z/pZ

 The generator G uncompressed (i.e. x and y)
form which is:

04
79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798
483ADA77 26A3C465 5DA4FBFC 0E1108A8
FD17B448 A6855419 9C47D08F FB10D4B8

 The n order (i.e. the number of group elements)
of the curve defined as:

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
BAAEDCE6 AF48A03B BFD25E8C D0364141

 Finally, the cofactor is equal to 1, which means
that there is only one group in E whose order is
the prime n.

A. ECDSA Signature

An ECDSA signature over E [5] is a couple of two
integers (r, s) such as :

Given x Є [1, n-1] the private key i.e. a 32 bytes random
number, P= xG is the public key.

k is an ephemeral key, k Є [1, n-1]
kG= (xR, yR), and r = xR mod n
size = number of bytes of n (size = 32)
H a hash function, e = H(M) is the hash of a message M,

i.e. a set of bytes to be signed.
If H(M) has more bytes than size, then take e as the size

leftmost bytes.

The couple (r, s), with s = k-1 (e + x r) mod n is the
signature.

B. ECDSA Signature Verification

Let the signature being (r, s).
Given the message M and H, compute e = H(M).
size = number of bytes of n (size =32). If e has more

bytes than size, take the size leftmost bytes.
1) Compute u1 = es−1 mod n and u2 = rs−1 mod n.
2) Compute R = (xR, yR) = u1G + u2P.
3) Set v = xR mod n.
Compare v and r, and if v = r the signature is valid.

C. Canonical Signature

For a given ECDSA signature, (r, s), the signature (r, n-s)
is also valid. The canonical signature is computed according
to the following algorithm:

1) Compute n-s =t.
2) If s < t, then (r, s) is canonical signature.
3) Otherwise, (r, t) is the canonical signature.

Bitcoin and Ethereum blockchains request canonical
signature.

D. Public Key Recovery from ECDSA Signature

Given the ECDSA [5] signature (r, s).
Find the "positive" point R(x=r, y=y+) on the E: y2=x3+7

curve,
Given the message M and H, compute e= H(M).
size = number of bytes of n (32). If e has more bytes than

size, take the size leftmost bytes.
Compute the candidate public key Q = r−1(sR − eG).
Check the signature (r, s), and if valid set recovery to 27

in Ethereum.
If not verified, try with the "negative" point –R= (x=r,

y=y-), and if valid, set recovery to 28 in Ethereum.

III. BITCOIN TRANSACTIONS

A. Bitcoin Address

Bitcoin addresses (BA) are computed from ECDSA
public key. A private key, i.e. a 32 byte number x, is
generated, according to a true random number generator
(TRNG). Thereafter, a public key is computed according to
the relation P = xG. The uncompressed form uF(P) is a set of
65 bytes {4, xP, yP}, a prefix (one byte 0x04) and a point
(xP, yP) of the curve (2x32 bytes, in Z/pZ).

The Bitcoin address [2] is computed according to the
following procedure:

1) a1 = SHA256(uF(P)), 32 bytes
3) hash160= a2 = RIPEMD160(a1), 20 bytes
3) a3 = Network-ID || a2, 25 bytes
4) a4 = SHA256(SHA256(a3)), 32 bytes
5) a5= checksum = 4 rightmost bytes of a a4
6) a6 = a4 || a5, 25 bytes
7) Bitcoin address = a7 = encoding of a6 in base 58

The base 58 encoding uses the following digits {1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q, R,
S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, m, n, o, p,
q, r, s, t, u, v, w, x, y, z}.

A BA is protected by a four bytes checksum; although
the hash160 parameter has no checksum, it is used in
transactions as payee's address.

Figure 2 illustrates the generation of Bitcoin address by
BTOOLS.

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

btools -genmain
PrivateKey:
CE1DBAFD7D2E8983ED60E0E081632EB062737B1B1627AAAB276F2E037
A74A081
PublicKey:
04CFD7A542B8C823992AF51DA828E1B693CC5AB64F0CACF0F80C31A1E
CA471786E285BDD3F1FE0A006BD70567885EF57EB149C8880CB9D5AF3
04182AC942E176CC
Hash160: CB643DD608FB5C323A4A6342C1A6AC8048B409EB
BTC-Adr: 1KYSFr6CyTDMruu8wna981M4ziVyMwftcg
Double SHA2 Check OK
ID: 00
Hash160: CB643DD608FB5C323A4A6342C1A6AC8048B409EB
BTC-WIF:
5KP4YMxDzfv9P1WVAPZqHRSfi5FydGqqqRjr5oPvskpwTq59wiX

Figure 2. Generation of a Bitcoin address by the BTOOLS software

B. Bitcoin Transaction

A transaction is a list of inputs, associated to Bitcoin
amounts (i.e. coins), and a list of outputs to which are
transferred the totally of inputs. A fee is allocated to the
miner if the sum of outputs is less than the sum of inputs.

A fee is usually expressed in satoshi per byte (1 satoshi =
10-8 Bitcoin (BTC)); since July 2017 it is expressed in weight
units/byte. At the time of writing, the fee was ranging
between 50,000 and 100,000 satoshi (0,0005 to 0,001 BTC).

The structure of a transaction is detailed in Figure 3.
In every input, a coin value for Unspent Transaction

Output (UTXO) is identified by a previous transaction
identifier and its output index (starting from 0). A transaction
ID is equal to the double SHA256 hash of the binary content
of the transaction. A signature script (sigScript) contains the
ECDSA signature and public key of the payer's transaction.

Every output comprises an amount expressed in satoshi,
and a public key script (pubKeyScript) including the payee's
hash160 address.

Parameter Type Comment
version integer 32 bits always 1
number of inputs var_int

1 byte or more
One or more inputs

transactionID 32 bytes coin transaction
index integer 32 bits coin index >=0
sigScript length 1 byte
sigScript contains the signature and the public

key
sequence integer 32 bits

FFFFFFFF=ignore
transaction
version

End of input
number of outputs var_int

1 byte or more
One or more outputs

value integer 64bits satoshi amount
pubKeyScript
length

1 byte

pubKeyScript

locktime integer 32 bits
00000000=ignore

transaction
locktime

Figure 3. Structure of a Bitcoin transaction

Figure 4. Binary encoding of a Bitcoin transaction

Figure 4 presents a binary dump of a transaction using a
pay-to-pubkey-hash script; it should be noticed that all values
are encoded according the a little endian format.

The pay-to-pubkey-hash script is defined as:

OP_DUP [76] OP_HASH160 [A9]
<length=14><hash160>
OP_EQUALVERIFY[88] OP_CHECKSIG[AC]

The ECDSA signature is encoded using the following
ASN.1 structure (see for example RFC 3279 [15]):

Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER }

Figure 5. Binary dump of a raw Bitcoin transaction

01000000 // Version
01 // number of inputs
DE2D211EF429909B0AB8D2E7D25826A0 //TransactionID
EDD6281EC6DEDF2B822CE5014A349E72
01000000 // index
8A // length of the signature Script
47 // ECDSA Signature length
30 44 // Sequence of (r, s) integer values
02 20 // integer r value
0772ABD5D37D0CAAB881DBC8912628F9
3461839CC8D4BC007A355831A6061ED7
02 20 // integer s value
4CCCC34B34A9075FC09C9777EAB7A6F5
612DA2130C1FF1C0E376AD9B2209D51D
01 41 // Public key length
04 // uncompressed format
CFD7A542B8C823992AF51DA828E1B693
CC5AB64F0CACF0F80C31A1ECA471786E
285BDD3F1FE0A006BD70567885EF57EB
149C8880CB9D5AF304182AC942E176CC
FFFFFFFF // sequence
01 // number of outputs
D418040000000000 // amount in satoshi
19 // Public Key Script
76 // OP_DUP
A9 // OP_HASH160
14 // hash160 length
CB643DD608FB5C323A4A6342C1A6AC8048B409EB
88 // OP_EQUALVERIFY
AC // OP_CHECKSIG
00000000 // Locktime

01000000 // Version
01 // number of inputs
DE2D211EF429909B0AB8D2E7D25826A0 // Transaction ID
EDD6281EC6DEDF2B822CE5014A349E72
01000000 // index
00 // vi= length of the Signature Script
FFFFFFFF // sequence
01 // number of outputs
D418040000000000 // amount in satoshi
19 // Public Key Script (Pk script)
76 // OP_DUP
A9 // OP_HASH160
14 // hash160 length
CB643DD608FB5C323A4A6342C1A6AC8048B409EB
88 // OP_EQUALVERIFY
AC // OP_CHECKSIG
00000000 // Locktime
01000000 // hash Type

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

The signature computing is performed according to the
following procedure:

1) Build a raw transaction (see Figure 5), in which, for
every input, the sigScript is removed, i.e. the length value
(vi) is set to zero.

2) For every input:
2.1) Copy the pay-to-pubkey-hashScript in the sigScript

location, and modify the length (initially set to 0)
accordingly (length =25 in decimal).

2.2) The hash160 inserted in pay-to-pubkey-hash is
computed from the payer's public key.

2.3) Compute the double SHA256 of the modified
transaction.

2.4) Generate the ECDSA signature with the payer's
private key.

2.5) Insert the final sigScript in the input, and modify the
length accordingly.

C. BTOOLS Bitcoin Script

Figure 6. A Bitcoin transaction script in BTOOLS

Bitcoin transactions are generated thanks to a script; the
Crypto Currency SmartCard can be used to compute the
ECDSA signature.

A script is a set of lines. A comment line begins by the '/'
or '*' character. It defines sequence and locktime values (in
hexadecimal Most Significant Bit (MSB) encoding).

The number of inputs is specified by the nb_input field.
Each input must begin by the input field; it comprises:

 a transaction identifier (32 bytes, hexadecimal MSB
encoding);

 an index (decimal encoding);
 and a choice between the following fields :

- privkey [private key hexadecimal MSB encoding],
- wif [WIF],
- APDU_script [the name of a smartcard script].

The number of outputs is specified by the nb_output
field. Each output must begin by the output field; it
comprises:

 an optional fee in decimal format, to be subtracted
from the BTC (i.e. UTXO in most case) value of the
current output; the character '.' is used as decimal
separator;

 a BTC amount in decimal format, the character '.' is
used as decimal separator;

 and a choice between the following fields:
- adr [Bitcoin address],
- hash160 [hash160, hexadecimal MSB encoding].

A Bitcoin transaction script is detailed in Figure 6.

D. Sending transaction to the Bitcoin blockchain

Figure 7. Using BTOOLS for sending Bitcoin transaction

1) Bitcoin protocol
The Bitcoin blockchain supports a protocol running over

the TCP port 8333. Some Web sites list the Bitcoin nodes
available over the world, for example:

https://bitnodes.earn.com/
The structure of Bitcoin messages is detailed in [7][10].

The connection to a Bitcoin node requires a four way
handshake, client and server exchange two version messages
and their acknowledgment (verack). Afterwards, the
transaction is forwarded thanks to the tx message.

As illustrated in Figure 7, BTOOLS realizes these
operations according to the command line:

btools -sendmain transaction.bin BitcoinNode
2) Web APIs

Many full Bitcoin nodes support WEB interfaces and
associated APIs. As illustrated in Figure 8 the hexadecimal
representation of the transaction can be simply cut and paste
in a dedicated HTML form.

Figure 8. Sending Bitcoin transaction thanks to the WEB interface
https://live.blockcypher.com/btc/pushtx

sequence ffffffff
locktime 00000000

nb_input 1

input
transaction 729E344A01E52C822BDFDEC61E28D6ED
A02658D2E7D2B80A9B9029F41E212DDE
index 1
privkey CE1DBAFD7D2E8983ED60E0E081632EB0
62737B1B1627AAAB276F2E037A74A081
// APDU_script sAPDU.txt

nb_output 1

output
fee 0.0005
btc 0.002685
hash160 CB643DD608FB5C323A4A6342C1A6AC8048B409EB

0100000001DE2D211EF429909B0AB8D2E7D25826A0EDD6281EC6D
EDF2B822CE5014A349E72010000008A47304402200772ABD5D37D
0CAAB881DBC8912628F93461839CC8D4BC007A355831A6061ED70
2204CCCC34B34A9075FC09C9777EAB7A6F5612DA2130C1FF1C0E3
76AD9B2209D51D014104CFD7A542B8C823992AF51DA828E1B693C
C5AB64F0CACF0F80C31A1ECA471786E285BDD3F1FE0A006BD7056
7885EF57EB149C8880CB9D5AF304182AC942E176CCFFFFFFFF01D
4180400000000001976A914CB643DD608FB5C323A4A6342C1A6AC
8048B409EB88AC0000000001000000

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

IV. ETHEREUM

A. Ethereum Address

Ethereum addresses (EA) are computed from ECDSA
public keys [8][9] . A private key, i.e. a 32 byte number x, is
generated, according to a true random number generator
(RNG). Thereafter a public key is computed according to the
relation P=xG. The uncompressed form u'F(P) is a set of 64
bytes {xP,yP}, i.e. the point (xP,yP) of the curve (2x32 bytes,
in Z/pZ).

The Ethereum address is computed according to the
following procedure:

- Compute a1= Keccak(u'F(P)), a 32 byte value. SHA3 is
this a subset the Keccak [13] algorithm.

- Extract a2, the 20 rightmost bytes of a1; a2 is the
Ethereum address

Figure 9 illustrates the generation of Ethereum address
by BTOOLS.

btools -geneth

PublicKey:
0477AAA9AE8ADCAAA26F930D6022E470BBC16E10AF22A5482DAB0798A
5A2C2AF52581076023A8B33D8BA6F8E7E89EC1C5F0D66B1EFFC744582
AF063187297592F6
PrivateKey:
E49344BD32802138C9A250FCEA13F6AE30E17BC945F107F05618AFC0E
D523042
Ether Address: 777A07BAB1C119D74545B82A8BE72BEAFF4D447B

Figure 9. Generation of Ethereum address by the BTOOLS software

B. Ethereum Transaction

A transaction encodes the transfer of ethers or data
between two entities, identified by their address. It includes
the following fields:

 The recipient's address of the message
 nonce, a scalar value equal to the number (>=0) of

transactions generated by the sender.
 value, a scalar value equal to the number of Wei (1

Wei=10-18 Ether) to be transferred to the message
recipient, or in the case of contract creation, as an
endowment for the newly created account.

 A gasLimit value, representing the maximum
number of computational steps that the transaction
execution is allowed to take.

 A gasPrice value, representing the fee the sender
pays per computational step. A scalar value equal to
the number of Wei to be paid per unit of gas.

 An optional data field. A contract creation
transaction contains an unlimited size byte array
specifying the EVM (Ethereum Virtual Machine)
code for the account initialization procedure. A
message call transaction contains an unlimited size
byte array specifying the input data of the message.

 The ECDSA signature, used to identify the sender.

C. RLP encoding

All transaction attributes are encoding according [11] to
the RLP (Recursive Length Prefix) syntax, which supports
string and list items.

1) String encoding
A string is a byte array, it is encoded according to the

following rules :
 for one byte ϵ [0x00 0x7F] : a byte value
 if the string length ϵ [0,55] : 0x80 + Length ϵ [0x80,

0xb7] || ByteArray[Length]
 0x80: = NULL String
 if the string Length >55 : 0xb7 + Length-of-Lengh ϵ

[0xb8, 0xbf] || Length-value || ByteArray[Length]
2) List encoding

A list is a set of items, either list or string.
 if the list Length <=55 : 0xc0 + Length ϵ [0xc0,

0xf7] || ListItems.
 if the list Length > 55 : 0xf7 + Length-of-Length ϵ

[0xf8, 0xff] || Length-value || ListItems.

D. Example of transaction

F8 6B // list length= 107 bytes
80 // nonce = null (zero value)
85 04E3B29200 // gazPrice= 21,000,000,000 Wei)
82 9C40 // gazLimit= 40,000 Wei
94 777A07BAB1C119D74545B82A8BE72BEAFF4D447B //Recipient
87 2386F26FC10000 // value= 10,000,000,000,000,000 Wei
80 // data = null
1C // signature recovery parameter = 28
A0 F1DD7D3B245D75368B467B06CAD61002 // r value
67031935B7474ACB5C74FE7D8C904097 // 32 bytes
A0 772D65407480D7C45C7E22F84211CB1A // s value
DF9B3F36046A2F93149135CADBB9385D // 32 bytes

Figure 10. Binary dump of an Ethereum transaction

Transaction values are expressed according to a Big
Endian scheme. A transaction (illustrated in Figure 10) is a
list of strings, encoded with the RLP syntax. The six
transaction items (nonce, gasPrice, gasLimit, recipient
address, value, data), are followed by the ECDSA signature
dealing with a recovery value. The recovery value is used for
the recovery of the sender's public key.

E. Ethereum Raw Transaction

E8 80 // list length = 40 bytes
80 // nonce = null (zero value)
85 04E3B29200 // gazPrice= 21,000,000,000 Wei)
82 9C40 // gazLimit= 40,000 Wei
94 777A07BAB1C119D74545B82A8BE72BEAFF4D447B //Recipient
87 2386F26FC10000 // value= 10,000,000,000,000,000 Wei
80 // data = null

Figure 11. Example of a raw Ethereum transaction

A raw transaction (see Figure 11) is the list of six items
(nonce, gasPrice, gasLimit, recipient address, value, data),
without the signature elements. The ECDSA signature is
performed over this structure. The recovery parameter (either
0 or 1) is added to the 27 decimal value, and is needed for
the extraction of the sender public key.

F. BTOOLS script for Ethereum transaction

A transaction script is a set of lines (see Figure 12). A
comment line begins by the '/' or '*' character.

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

The file (see Figure 12) comprises the following
elements:

 the private key (privkey) or the name of a smartcard
script (APDU_script) The Bitcoin and Ethereum
smartcard scripts follow the same syntax.

 the nonce field. The nonce is expressed in decimal
format.

 the gasPrice field. The gasPrice, in WEI unit.
 the gasLimit field. The gasLimit, in WEI unit.
 the to field indicates the ether destination address. It

is a 20 bytes hexadecimal value.
 the value field indicates the transaction amount, in

WEI unit.
 the data field. Three options are available:

- data, text (ASCII) data field
- datab, hexadecimal data field
- dataf, a binary file

Figure 12. Illustration of an Ethereum transaction script in BTOOLS

G. Sending a transcation to the Ethereum blockchain

The Ethereum blockchain supports a protocol running
over the TCP port 30303. Some Web sites list the Ethereum
nodes available over the world, for example:

https://www.ethernodes.org
The today BTOOLS software doesn't implement the

Ethereum protocol. Nevertheless many full Ethereum node
support WEB interfaces and associated APIs. As illustrated
in Figure 13 the hexadecimal representation of the
transaction can be simply cut and paste in a dedicated HTML
form.

Figure 13. Sending an Ethereum transaction thanks to a Web API on the
website https://etherscan.io/pushTx

Figure 14 illustrates an Ethereum transaction generation
and forwarding thanks to BTOOLS software facilities.

Figure 14. Illustration of an ether transaction generation with BTOOLS

V. CRYPTO CURRENCY SMARTCARD (CCSC)

The Crypto Currency SmartCard application (CCSC),
illustrated in Figure 15, is written in Javacard, a subset of the
Java language. It has three PINs: administrator, user, and
user2. The default values are 8 zeros (3030303030303030)
for administrator and 4 zeros (30303030) for user and user2.
It is able to generate or to import elliptic curve keys (up to
8), used for the generation of ECDSA signatures used by
Bitcoin and Ethereum crypto currencies. A Read/Write non
volatile memory, protected by a dedicated PIN (User2), is
available for the storage of any sensitive information.

Figure 15. Illustration of a Crypto Currency SmartCard (CCSC)

The CCSC application main ISO7816 services are the
following: Init Curve, Clear Key Pair, Generate Key Pair,
Get Key Parameters, Set Key Parameters, Sign ECDSA.

A. The CCSC ISO7816 interface

According to the ISO7816-4 standard [16], a smartcard
command, also called Application Protocol Data Unit
(APDU), comprises at least five bytes named CLA, INS, P1,
P2, P3; P3 is the length of data to be written or the length of
information to be read. The response comprises an optional
payload (up to 256 bytes) and two status bytes (SW1, SW2).
The available commercial version of Javacard is 3.0.4, which
API framework supports elliptic curve facility, in particular
the secp256k1 curve, and the ECDSA signature. The
ISO7816 interface of the CCSC application is detailed in
Figure 16.

privkey E49344BD32802138C9A250FCEA13F
6AE30E17BC945F107F05618AFC0ED
523042
// APDU_script sAPDU.txt

nonce 0
gasPrice 21000000000
gasLimit 40000
to 777A07BAB1C119D74545B82A8BE72BEAFF4D447B
value 10000000000000000
data

F86B808504E3B29200829C4094777A07BAB1C119D7454
5B82A8BE72BEAFF4D447B872386F26FC10000801CA0F1
DD7D3B245D75368B467B06CAD6100267031935B7474AC
B5C74FE7D8C904097A0772D65407480D7C45C7E22F842
11CB1ADF9B3F36046A2F93149135CADBB9385D

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

Command ISO7816 encoding Comment
Select 00A4040006<AID>

AID= Application
IDentifier=010203040500

Start the CCSC
application

Verify 0020000004<UserPIN>
0020000204<User2PIN>
0020000108<AdminPIN>

Check PIN

InitCurve
AdminPIN is
required

008900P200
P2 is the key index

Init curve
parameters

ClearKeys
AdminPIN is
required

008100P200
P2 is the key index

Clear public and
private keys,

GenKeys
AdminPIN is
required

008200P200
P2 is the key index

Generate the keys

SetKey
AdminPIN is
required

008800P1P2P3<value>
P2 is the key index
P1=6 for the public key
P1=7 for the private key
P3 is the key length
Value is the key value

Set public or
private key
The public key is
in the uncompress
format

GetKey
UserPin is
required

008400P1P2P3<value>
P2 is the key index
P1=6 for the public key
P1=7 for the private key
AdminPIN is required for
the private key

Get public or
private key, return
the length (16bits)
of the key and its
value

SignECDSA
UserPIN is
required

008000P2P3<value>
P2 is the key index
P3 is the length of the
hash to be signed (32)
value is the hash (e)

Return the length
(16bits) of the
ECDSA signature
and its ASN.1
encoding

Figure 16. ISO7816 interface of the CCSC application

The cryptographic keys can be generated and optionally
exported, or imported.

 The procedure for key generation and export deals
with the following commands: Select(AID),
Verify(AdminPIN), InitCurve, ClearKeys, GenKeys,
GetKeys.

 The procedure for key import uses the following
commands: Select(AID), Verify(AdminPIN),
ClearKeys, InitCurve, SetKey(PublicKey),
SetKey(PrivateKey).

The ECDSA signature is performed according to the
following sequence: Select(AID), Verify(UserPIN),
GetKey(PublicKey), SignECDSA(HashValue).

B. BTOOLS APDU script

The BTOOLS software manages APDU script in order to
communicate with Crypto Currency SmartCards. It is a set of
lines. A comment line begins by the '/' or '*' character.

The main script token are as follow:
- start <optional AID> which initializes the ISO7816

context, and detects the first available smartcard;
- APDU <hexadecimal value> which sends an ISO7816

request to the smartcard. For error free operation, the
response should end by the 9000 status;

- pub <offset> which MUST be specified before the
APDU command used to collect the public key. It is the
offset in the response of the public key (after the byte 04);

- signature <offset> which MUST be specified before
the APDU command used to collect the signature. It is the
offset in the response of the ASN.1 encoding of the ECDSA
signature;

- hash <offset> which MUST be specified before the
APDU command used to collect the signature. It is the offset
in the ISO7816 request of the hash (or data) to be signed.

Figures 17 and 18 give an example of APDU script,
dealing with a pair of keys identified by the index 5.

Figure 17. An APDU script use for the generation of ECDSA signature

Figure 18. An APDU script used by a transaction script

In Figure 18, the public key is in blue characters, the value to
sign in bold characters, and the ASN.1 signature encoding in
red characters.

// script file name: sAPDU.txt
start
// Select CCSC
APDU 00A4040006 010203040500
// Verify UserPIN= 0000
APDU 0020000004 30303030
// Get PublicKey index=5
pub 3
APDU 0084 0605 43
// ECDSA Signature, index=5
signature 2
hash 5
APDU 0080 0005 20

// start
Opening the APDU script sAPDU.txt
Reader: Broadcom Corp Contacted SmartCard 0
T=0 - ATR
// Select(CCSC)
Tx: 00 A4 04 00 06 01 02 03 04 05 00
Rx: 90 00
// Verify(UserPIN)
Tx: 00 20 00 00 04 30 30 30 30
Rx: 90 00
// GetKey(PublicKey)
Tx: 00 84 06 05 43
Rx: 00 41 04 A6 FC 0C 5F 46 7C 3D B8 C1 58 18 05 E7
C6 2C 5F AE A1 90 63 B0 1F 58 45 AD 68 DE 9D 84
38 5F 32 1E BF 3A 26 B2 99 12 41 89 92 DC DC 1F
E6 9C 28 2E FF 65 86 0E 10 9F 53 AD 27 A2 96 24
98 4B 6A 90 00
// SignECDSA(hash)
Tx: 00 80 00 05 20 DC AF B4 6D 7F 57 1D 87 C2 34 B3
20 8E 68 86 AD F4 85 AC 98 20 EA A5 67 7C 6D 37 6A
32 13 6F 34
Rx: 61 48
Tx: 00 C0 00 00 48
Rx: 00 46 30 44 02 20 65 A3 1E 14 88 20 61 82 1E A8
B7 27 C4 A8 D1 E2 CB 59 29 20 88 6B DD 70 84 B9
C1 C5 D6 6F 7D 30 02 20 5B 83 A4 69 E5 6D 3B B1
C2 77 6B 16 A3 7B C1 19 0F 6A C9 85 F7 03 54 B6
58 1B 6F 46 21 C7 63 3B 90 00

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

BTOOLS also provides an option that starts APDU
scripts, typically used for used key generation.

Figure 19 gives an example of such a script, and Figure
20 illustrates its execution.

Figure 19. Example of a script used for key generation

Figure 20. Illustration of a key generation script at run time. The public
key is in blue characters. The private key is in red characters.

VI. CONCLUSION

In this paper we present the BTOOLS open software [12]
that targets the generation of trusted blockchain transactions,
based on smartcard cryptographic services. BTOOLS is
available for Win32, Linux or Raspberry PI environments.
Our future projects will address the definition of innovative
services based on this trusted platform.

REFERENCES

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system",
www.bitcoin.org, 2008, [retrieved: June, 2017]

[2] A. M. Antonopoulos, "Mastering Bitcoin", O'REILLY, 2015

[3] P. Huang, "A Dissection of Bitcoin", ISBN 9781329754812, January
2016

[4] Standards for Efficient Cryptography "SEC 2: Recommended Elliptic
Curve Domain Parameters", Certicom Research, January 27, 2010
Version 2.0

[5] Standards for Efficient Cryptography, "SEC 1: Elliptic Curve
Cryptography", Certicom Research, May 21, 2009, Version 2.0

[6] https://github.com/Bitcoin, [retrieved: July, 2017]

[7] https://en.Bitcoin.it/wiki/Protocol_documentation#Message_structure
[retrieved: July, 2017]

[8] V. Buterin, "Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform", 2013,
http://Ethereum.org/Ethereum.html, [retrieved: July, 2017]

[9] G. Wood, Ethereum Yellow Paper, "Ethereum : a Secure
Decentralized Generalized Transaction Ledger", EIP-150, 2015,
http://yellowpaper.io/, [retrieved: July, 2017]

[10] https://qbitninja.docs.apiary.io/#reference/transactions/retrieve-a-
transaction/get, [retrieved: June, 2017]

[11] https://github.com/Ethereum/wiki/wiki, [retrieved: June, 2017]

[12] "BTOOLS, blockchain tools", https;//github.com/purien/btools, ,
[retrieved: November 2017]

[13] G. Bertoni, J. Daemen, M. Peeters, G. Assche, "The Keccak SHA-3
submission", 2011, http://keccak.noekeon.org/Keccak-submission-
3.pdf, [retrieved: July, 2017]

[14] M. A. Olson, K. Bostic, M. Seltzer, "Berkeley DB", Proceedings of the
FREENIX Track: 1999 USENIX Annual Technical Conference,
Monterey, California, USA, June 6-11, 1999.

[15] W. Polk, R. Housley, L. Bassham, "Algorithms and identifiers for the
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) profile", RFC 3279, April 2002.

[16] ISO/IEC7816-4:2013, "Identification cards – Integrated circuit cards –
Part 4: Organization, security and commands for interchange", 2013

[17] https://www.reuters.com/article/us-bitcoin-exchange-
southkorea/south-korean-cryptocurrency-exchange-to-file-for-
bankruptcy-after-hacking-idUSKBN1ED0NJ, [retrieved: December,
2017]

start
// select
APDU 00A4040006 010203040500
// Verify PinAdmin
APDU 0020 0001 08 3030303030303030
// ClearKeys Key 0
APDU 0081 00 00 00
// InitCurve, Key 0
APDU 0089 00 00 00
// Generate KeysPair Key 0
APDU 0082 00 00 00
// GetPublicKey Key0
APDU 0084 06 00 00
// GetPrivateKey Key 0
APDU 0084 07 00 00

// select
Tx: 00 A4 04 00 06 01 02 03 04 05 00
Rx: 90 00
//Verify(AdminPIN)
Tx: 00 20 00 01 08 30 30 30 30 30 30 30 30
Rx: 90 00
Tx: 00 81 00 00 00 // Clear Key index 0
Rx: 90 00
Tx: 00 89 00 00 00 // Init curve index 0
Rx: 90 00
Tx: 00 82 00 00 00 // Generate Keys index 0
Rx: 90 00
Tx: 00 84 06 00 43 // Get Public Key index0
Rx: 00 41 04 BA 5A 71 A8 0E 90 76 9E DD D2 B9 6C B4
BA 47 0B 45 C6 3B 01 F5 A9 FB FC 3F 95 37 43 23
18 15 5D 59 F3 F1 75 26 08 4E 5A CC 7D 17 4D 68
AB 39 57 C4 F6 D8 5D 38 43 95 EF 8D F4 7D 05 3B
FE E6 F9 90 00
Tx: 00 84 07 00 00 // Get Private Key index 0
Rx: 6C 22
Tx: 00 84 07 00 22
Rx: 00 20 85 1F 6D 62 0B 87 FC 27 FC 9A 00 42 8F C6
01 37 D8 6B 14 07 E4 B6 8F 77 30 A4 BF AC CE 7D
A3 91 90 00

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-623-1

ICDT 2018 : The Thirteenth International Conference on Digital Telecommunications

