
High Performance Internet Connection Filtering Through an In-Kernel
Architecture

Naser Ezzati Jivan, Alireza Shameli Sendi, Michel
Dagenais

Computer and Software Engineering
École Polytechnique de Montréal

Montreal, Canada
e-mail: {n.ezzati, alireza.shameli-sendi,

michel.dagenais}@polymtl.ca

Naser Nematbakhsh
Computer Engineering
University of Isfahan

Isfahan, Iran
e-mail: nemat@eng.ui.ac.ir

Abstract—A firewall is a tool that protects users and
applications from unauthorized accesses and network
attacks, and secures network connections and resources. It
rejects unauthorized access while permitting authorized
connections based upon network security rules and policies.
Although the importance of a firewall in securing a network
is vital, a poor architecture and inefficient mechanism for
inspecting network traffic may lead to reduced network
performance. Therefore, the performance of a firewall is
considered as one of its main characteristics. Several
methods have been proposed to increase firewall
performance. In this paper, an in-kernel architecture has
been proposed. It changes the structure of application
proxies and moves a portion of their functionalities to the
operating system kernel level. This kernel proxy inspects
and filters the connections passing through the firewall with
the help of a user daemon. Tests under different loads show
that the performance of the firewall increases with the
proposed architecture. The main reasons are the reduction
of context switches and elimination of extra copies between
kernel and user space. The Kernel proxy supports the
HTTP, FTP and TELNET protocols although a better
performance could be reached using a kernel URL filter.

Keywords-firewall; proxy; content filter; kernel proxy;
performance.

I. INTRODUCTION

Connecting a local private network to the global public
networks facilitates the communication between internal
staff and outside clients and suppliers. However, some
remote users may attempt to gain access to computers on
the local private network for purposes such as stealing or
destroying valuable company information, vandalism or
even extortion.

A simple solution for local network security is to run a
firewall, protecting it from unauthorized Internet accesses.
However, the associated level of protection obtained
depends on the chosen architecture and type of the
firewall. Firewalls can be divided into two general types:
packet filters and proxies.

Packet filter firewalls filter packets based on
examining the source and destination addresses and ports.
They examine the packet’s IP (and/or TCP) headers and
accept or reject the packet according to the firewall
filtering policy. In this organization, packets are inspected
at the network layer and then sent to the destination.

Proxy firewalls are protocol-aware firewalls. They use
the packet application layer content in order to decide to
accept or reject the packet, providing a more precise
control [6].

A Proxy firewall may have several application proxies.
In order to protect the local network, connections are
usually made indirectly through these proxies. They play
the role of a mediator to transfer data between the external
and internal networks [6].

In an application proxy, each packet must come up to
the application layer, be analyzed on that layer and
ultimately it is rejected or sent to the destination. There is a
risk for the application proxy to slow down the transfer of
data and cause a bottleneck in the network. Therefore, the
design of an application proxy should be such that it is
highly efficient and has a reduced impact on the speed of
data transfer between the local and global networks. The
purpose of this paper is to discuss a novel method for
increasing the efficiency of application proxies by moving
some parts of the functionalities to the kernel level. The
idea is based on splitting up the firewall responsibilities
between the user and kernel levels. The kernel level tasks
include some of the standard proxy tasks - authentication,
rule management, and state management. The application
level tasks include rule-based, detailed data and packet
level analysis. The main benefits of the revised firewall
architecture come from savings in the number of context
switches needed to process each packet sent and a
reduction in the number of copies between user and kernel
space.

The paper continues in the next section with a
discussion of related work for increasing the firewall
performance. This is followed by a section describing the
architecture of in-kernel proxies and differences with the
Linux Netfilter and other application layer proxies.

32

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

mailto:alireza.shameli-sendi%2C%20michel.dagenais%7d@polymtl.ca
mailto:alireza.shameli-sendi%2C%20michel.dagenais%7d@polymtl.ca

Subsequently, we will discuss our method in detail and
will show how it can increase the performance of a
firewall. Finally, the paper concludes by identifying the
main features of the method and possibilities for future
work.

II. RELATED WORK

Different methods have been introduced for improving
the performance of firewalls. The first and oldest method
to increase the efficiency of a firewall is called state-full
filtering [3]. In a simple stateless firewall, the inspection of
a packet is performed separately from other packets. Thus,
whenever a packet comes to the firewall, regardless of
whether it belongs to a previously setup TCP connection
or not, or the state of that connection or other packets, the
firewall will analyze the packet according to the rules, and
reach a decision for it. The analysis and investigation of all
the packets causes a severe performance cost to the
firewall. Therefore, keeping track of the state of the
connections can speed up the analysis of the packets and
thus increase its efficiency. In this way, only the first
packet of a connection is verified against the firewall rules,
and little verification is required for the remaining packets
[3].

Another method to increase the efficiency of a firewall
is the use of caching in the application layer. With this
mechanism, the results of recent user requests are saved. In
the case of a repeated request (e.g. Web page or DNS
entry), instead of creating a new connection to the server,
the saved pages in cache memory are used. This will
decrease the response time and use of the network
bandwidth. This mechanism has been used in the Squid
application proxy [5].

Fall [13] introduced another method to speed up the
copying between two sockets and two files. Hence, this
method can increase the data transfer speed and efficiency,
in comparison with application proxies which only copy
and transfer data.

In 1998, at the IBM research center, Bhaqwat [14]
introduced another method called connection link. This
method is based on the separation of control and pass-
through of the proxies and proposes a fast route to transfer
the data in pass-through mode. The main idea of
connection link is that one should determine when a proxy
moves from control to pass-through and then link the two
separate TCP connections as a single connection [14].
Studies [1], [2], [4] and [7] suggest different kernel
methods to increase the performance and efficiency.
Gopinath [9] discusses kernel support for firewalls.
Knobbe et al. [6] propose high performance architecture
for network firewalls. Most of the aforementioned
methods are based on separating the control and pass-
through modes which is not cost effective and can’t be
accomplished completely. This paper introduces a method
that increases the performance of firewalls to an
acceptable level, without having to isolate the control and
pass-through modes.

III. IN-KERNEL PROXY

When two clients of a network are connected to each
other through a proxy, this proxy mediates the connection

and controls data transfers between these two clients. The
proxy checks the authorization of these clients and decides
whether these two clients can be connected to each other
or not, and if the connection is permitted, the data being
transferred between them is controlled by the proxy [10].

Generally, proxies act in two following modes [7]:
• Control mode
• Pass-through mode
In control mode, the proxy performs some analysis on

the data before it is accepted and transferred. When the
control phase is over, the proxy moves to the pass-through
mode in which, the proxy only passes the data. After the
data is transferred, the proxy may turn back to the control
state. For example, a TELNET proxy starts in control state
considers and analyses a TELNET request and whether it
is permitted or not. When it is permitted and the
connection is made, the proxy changes to pass-through
mode and copies the data between the two ends of the
connection. Distinguishing these two modes and moving
from one mode to another is the most important task in the
improvement of the proxies’ performance [4].

The functionalities of various proxies are different in
the control mode. These vary from simple control, at the
connection starting time, to continuous analysis of data
being transferred during the connection. The proxies can
be categorized into four groups according to the amount of
processing that they do.

The first group of proxies performs a very little
control. They are in control mode only at the time of
connection start, and then remain in pass-through mode
until the end of the connection. An FTP proxy is an
example of this type. In the FTP protocol there are two
kinds of connection, control connection and data
connection. The FTP proxy processes an FTP request in
control mode and connects the two clients through a new
data connection. Then, the proxy processes the data
connection, in pass-through mode. It keeps this mode until
the end of the connection. The control connection stays in
control mode in order to process the subsequent requests
and commands [3].

The second group of proxies performs a large amount
of control. These proxies authenticate the user, and the
connections remain in control mode for all the data being
transferred in both directions. One example of these
proxies is the HTTP proxy that lets the user have access to
the HTTP servers on the Internet. HTTP proxies can refine
and modify the access of external agents or users by
filtering and constraining permitted agents or users, and
also it can modify and refine the response to internal
requests through deleting unsecured applets (as JAVA
applets and other potentially malicious codes) [7].

A firewall may combine different proxies, each of
which controls a specific aspect of the transfer or exchange
of data between two networks or clients. Typically, a
proxy receives a connection, authenticates the client or
user, and possibly after having refined and modified the
request, passes the data to another network or client. The
firewall either uses its own IP address to be an
intermediary between the two ends of the connection, in

33

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

which case it is called classical proxy, or it is hidden from
both ends of the connection, in which case it is called a
transparent proxy.

An important point is that in many applications only a
small part of packet (usually in the header) is controlled,
and the proxy is mostly in pass-through mode. However,
here a packet should also move from the kernel layer to the
application layer and return to the kernel layer again
before being transmitted to the destination. Therefore, the
transfer of a considerable percentage of data from kernel
layer to the application layer seems inevitable but wasteful
[8] (Figure 1 (a)).

However, it is possible to design a new in-kernel
structure for proxies that can solve the problem of
unnecessary copying of packets from kernel layer to
application layer, decreasing the number of context
switches, and potentially greatly improving the efficiency.
In this method, the proxies will have the responsibility of
controlling the packets of the connection in the kernel
network layer, and will avoid the transfer of data to the
application layer. Thus, many cases of copying between
kernel layer and application layer will be avoided and the
transfer and efficiency of the firewall will be increased.
Figure 1 (b) depicts this organization.

Of course, completely moving the proxy functionalities
to the kernel may complexify the proxy structure. As a
consequence, this could decrease of efficiency of the
firewall. A solution is only moving the necessary and
convenient parts of proxies to the kernel, keeping the
remaining part in the application layer. This user-level part
is shown in figure 1(b) as user daemon.

IV. . DESIGN OF THE IN-KERNEL PROXY

The in-kernel proxy is composed of two parts: one
central part in the IP layer and one part in the application

layer. The location of the in-kernel proxy in relation to the
packet filter (Linux Netfilter) and IP layer is shown in
figure 2.

Figure 2. The location of the in-kernel proxy

As shown, whenever the network layer receives a
packet, it is first analyzed in the packet filter of the firewall
and then given to the in-kernel proxy.

Similar to the Linux Netfilter, the in-kernel proxy
implementation is divided into two sections, a kernel
module and a user daemon that interfaces with users and
creates the rules and interactions.

However, the in-kernel proxy is a content filter which
means that it has knowledge about the higher level
protocols and inspects the packet based on its data part as
well as its TCP/IP headers, while Netfilter is a packet filter
and can just filter the network packets based on the
TCP/IP header of a packet and not the data content [15].

Unlike the proxies in the application layer, where there
is a specific proxy for each protocol, in the in-kernel
proxy, a common proxy is set for all protocols. Of course
it will have to distinguish the protocols in some parts of
this proxy. However, all proxies are designed within this
single framework. The proposed in-kernel proxy supports
the HTTP, FTP, and TELNET protocols. However, due to
memory and resource limitations of the kernel, the main
usage of the in-kernel proxy is for URL filtering. This is
an important difference between a complete and
comprehensive proxy like SQUID and this in-kernel
proxy.

With respect to the responsibilities of the proxies, and
also the characteristics of the operating system kernel, the
kernel-based proxy is composed of the following modules:

• Authentication
• Rule Manager
• Connection Manager
• Connection Filter
• Log manager
Each module has specific responsibilities and duties,

being described in detail in the following sections. The
relations among these modules are shown in Figure 3.

Application

Physical

Transport

Network Kernel Proxy

User Daemon

Physical

Transport

Network

Application

Application

Proxy

(b)

(a)

Figure 1. Path of Packets: (a) in a normal proxy (b) in the proposed in-
kernel proxy.

Log Manager Connection
Manager

Authentication
Module

Filtering Module

Rule
Manager

Figure 3. Architecture Elements

34

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

A. Authentication Module
In the kernel-based proxy, the authentication of the

client is used to authenticate the users and clients. In this
module, the client or user is identified once in order to
check its permission to use the proxy and then all the
connections and delivered packets are permitted for a
predefined time duration. For authentication, users must
connect to a specific port in the firewall and authenticate
themselves by entering their username and password.

B. Rule manager module
This module is responsible for management and

maintenance of inspection rules. The rule manager is one
of the most important and active parts of the kernel proxy.
This module receives the rules from a user interface, stores
them to become available to other parts such the
authentication, log manager, connection filter module.
This module is also responsible for receiving upgrades of
these rules and keeping the consistency. The rule manager
is thus somewhat related to all the modules as a database
in which all modules get their operation instructions and
orders.

In the kernel proxy, the rule manager is composed of
two parts: application layer and kernel layer. This module
receives the rules from the system administrator through a
user interface. Administrator writes the rules in synthetic
forms, and the user interface, having received these rules,
parses them to a canonical form saved in the data
structures and files. The application layer part of the rule
manager checks these rules and after deleting possible
errors, copies the rules to the kernel layer.

C. Connection Manager Module
The responsibility of this module is to identify the

protocols, classify the packets in the kernel, and then
create and manage the table of different states of the
proxies. In other words, this module identifies the
protocols type of the packets, and accordingly reads the
content of the packet and adds it as a new entry in the
states table. For example, for HTTP packets, this module
extracts the HTTP request and response contents and puts
them in the proxy state table. All the proxies use the same
state table. The data stored in the state table are as follows:

• Requested URL or address
• Client and Server address and port
• Protocol type (HTTP, FTP, TELNET)
• Connection state (connected, known ID, unknown

ID, filtered, waiting, …)
• The list of the rules taken before for the

connection packets
• Connection timeout value
• Bytes sent and received
• The policy applicable to the packets
• Display of the whole saved packets

D. Filtering Module
The duty of this module is to filter the data, if required-

by different filtering rules for the packets passing through.
Its responsibilities are as follows:

• Receiving the packets from the connection
manager module: in the previous section it is
mentioned that the connection manager module
reads the packets, determines their protocol and
then classifies them in accordingly. The filter
module receives its own input data and packets
from the connection and consults with the
manager module to perform the required type of
filtering.

• Inspecting the connection packets through the rule
manager module: this module having received the
data of the connection, according to the required
filter, sends a request to the rule manager module
concerning the characteristics of the connection
and the related data. The rule manager having
analyzed the request responds to the filter based
on its database of rules. Moreover, the rule
manager extracts the type of logging needed for
that request and performs logging.

• Making decision about the packets: the filtering
module decides according to the response from the
rule manager to reject or accept the packet and to
continue the processing. If the response is to wait,
the filter saves the packet until the response from
the rule manager is available. The rule manager
may also consult with the daemon in the
application layer for the decision.

Three types of filters to be used by the filtering
module:
1) Command filter: this filter is used for HTTP and

FTP. Here, the commands are received from the packets
in the connection, and compared to the rules inside the
kernel. The commands in the FTP proxy are “get”, “put”,
“dir”, and “pass”, while in the HTTP proxy they are
“get”, “head”, “post”, “connect” and etc.
2) URL filter: the filter is used for the HTTP and FTP

protocols. To use this filter, the extracted URL from a
connection is comparedwith rules inside the kernel. The
database for inspecting the URLs is located in the user
level agent but there is a small URL database cache in
kernel which helps the kernel proxy to filter the most used
URLs. However, for the URLs out of this cache, the
kernel asks the user level agent to get the correct decision.
3) Content filter: considering the importance of the

transferred files and data, it is possible that the rule
manager force the proxy inside the kernel to analyze the
content of some connections. Therefore, the files and data
extracted from the packets are filtered and refined by the
rule manager through the use of the content filter placed
inside the kernel (and sometimes by connecting to the
more elaborate content filter in the application layer).

E. The logging module
This module reports important events to the system

log. There are three log methods (summarized, full log and
no logging) from which the administrator can select the
default method:

35

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

Figure 4. Execuition scenario of a HTTP kernel proxy based on the
proposed architecture.

F. Architecture of the In-kernel proxy
In this part, the execution scenario of the HTTP kernel-

based proxy is analyzed and reviewed in terms of
proposed architecture. In general, the practical scenario of
the HTTP proxy can be as follows:

• Analyzing user’s authentication status: this is the
first step in inspecting the connection. If the user
has been authorized already, then the remaining
packets are accepted. Otherwise, an “Unauthorized
Access Message” will be sent to the user and the
connection will be closed.

• Receiving the user’s request and URL from the
packet.

• Writing the new connection in the state table.
• Connecting and consulting with the rule manager

and filtering the command and/or the URL and/or
the content.

• Recording correspond events in the log.
• If the connection is valid based on the filtering

rules, then a connection will be made with the
distant host.

• Otherwise, a suitable response will be sent to the
client and the connection will be terminated.

Figure 4 shows this process.

V. EVALUATION

The proposed kernel proxy architecture has been
implemented in Linux Red Hat version 7.2 with kernel
version 2.4.1. The network, hardware and software
configuration of the evaluation setup are first presented.
Then the influence of different parameters on the
efficiency of the system will be analyzed. Finally, the
results of the evaluation for the proposed system will be
compared to the efficiency of an existing user-level proxy
implementation.

A. Configuration
Table 1 show the configuration of the networks,

clients, server and firewall machine (FwTest). In this
configuration, two local networks with 100 Mbps
bandwidth have been used.

TABLE I. THE CONFIGURATION USED FOR TESTING THE KERNEL
PROXY

Host CPU RAM HDD NIC
Client Intel PIII 800

MHz
256 Quantom

60G
1*3c905c
10/100

Server Intel PIV 1000
MHz

256 Quantom
20G

1 *3c905c
10/100

FWTest Intel PIII 800
MHz

128 Quantom
15G

2 *3c905c
10/100

In this configuration, proxies are transparent, the log
method is summarized log and NAT (network address
translation) is disabled. The number of rules in the kernel
is 30 rules and the tests exercise the HTTP proxy. No
cache mechanism is used in clients, server, or firewall.

Fire Bench [12] is used to generate network traffic and
monitor the firewall performance. It measures the
connections per second and the average response time:

• Connections per second: This test counts the
number of the connections per second that are
supported by the firewall. The clients make a
connection to the server and immediately
terminate it and start with a new connection. The
number of clients increases gradually up to the
point where a maximum is reached.
SPECWeb2009 [11] is used to generate the
needed connections and loads. Figure 5 depicts the
comparison based on this test.

• The average response time test: This test is
another criterion to evaluate the firewall
performance; it is based on the average time
needed to respond to each connection. Figure 6
depicts the comparison based on this test.

The evaluation is started by the execution of a load
managing application, the manager, in the first client. This
application reads the configuration file and produces the
workload file. Then, it creates a TCP/IP socket to other
clients and sends the workload and configuration files. At
this point, each client waits for a message from the
manager. When clients get the START message from the
manager, they start to send their request to the server
(through the firewall). After finishing the test, the manager
gets the test results from the clients. This process runs 3
times and subsequently, the manager calculates the results
and generates the final report.

B. Analysis of the results
Each normally terminated TCP connection is

composed of at least seven packets [1]. In the kernel
proxy, the first packet and also the packets that contain
application layer content are analyzed and inspected. If
they are sent to the application layer daemon, they need re-
analysis by the user level rule manager. Therefore, the
number of communications with the daemon and the
number of rules, have a direct effect on the firewall
performance.

The FireWall ToolKit (FWTK) from TIS is a popular
user level application proxy [16]. The comparison between
the in-kernel proxy and FWTK shows that the transfer of
the firewall input traffic to the application layer causes a
severe decline in the efficiency of the firewall (the

36

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

performance drop in the last part of the yellow line
figure 5).

In the case of the kernel HTTP proxy, only the packet
that contains the URL is sent to the application layer
daemon, while the remaining packets will pass through the
kernel and be sent directly to the destination.
process is much simpler for many TCP control packets.
FWTK on the other hand sends all the input data traffic to
the application layer, thereby decreasing the efficiency.

Figure 5. Comparison of the results (Connections

Figure 6. Comparison of the results (Average Response

In the in-kernel proxy, a high efficiency
because of the pass-through of most TCP control packets.

Of course, the number of rules in the in
also affects the efficiency of the firewall directly.
However, the influence of the number of rules
than that of the extra copies between kernel and user
and associated the context switches. Figure 6
average response time of kernel proxies (with/without user
level daemon) and FWTK application proxy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the architecture and implementation
model of an in-kernel proxy to increase the efficiency of
the firewalls is presented. Results of the evaluation show
that a proper division of labor between the application and
kernel levels could yield substantial savings in terms of
reduction of OS system calls and copied data.
efficiency increase compared to a kernel without any
proxy and also compared to the efficiency of
application layer proxy is shown. The main reason
increase in efficiency of the proxy is due to the decrease
number of contexts switches between the kernel and
application layer and also the reduction of
copies among the different layers.

A complete URL filter proxy requires an application
layer URL categorizer. However, in this project

0

100

200

300

400

500

600

0 200 400 600 800C
o
n
n
ec
ti
o
n
s
P
er
 S
ec
o
n
d

Load Values (simultaneous connections)

0
50
100
150
200
250
300
350
400
450

0 200 400 600 800

A
V
G
. R
E
S
P
O
N
S
E
 T
IM
E

(m
s)

Load Values (simultaneous connections)

yellow line in

proxy, only the packet
URL is sent to the application layer

the remaining packets will pass through the
kernel and be sent directly to the destination. Therefore the
process is much simpler for many TCP control packets.

sends all the input data traffic to
the application layer, thereby decreasing the efficiency.

s per Second)

Comparison of the results (Average Response Time)

a high efficiency is reached
control packets.

the in-kernel proxy
the efficiency of the firewall directly.

the influence of the number of rules is much less
copies between kernel and user-level

6 compares the
average response time of kernel proxies (with/without user
level daemon) and FWTK application proxy.

S AND FUTURE WORK

and implementation
proxy to increase the efficiency of

Results of the evaluation show
that a proper division of labor between the application and
kernel levels could yield substantial savings in terms of
reduction of OS system calls and copied data. The

compared to a kernel without any
y and also compared to the efficiency of FWTK

. The main reason for the
increase in efficiency of the proxy is due to the decreased

he kernel and
of unnecessary

requires an application
project, a basic

URL categorizer has been implemented;
implementation of a kernel URL categorizer could be a
future extension.

The most important future
implementing of a high performance kernel level packet
modifier which inspects and modifies
removing potentially malicious content
other malwares) from the packets
here are controlling the packets sequence number and
TCP sliding windows. This would
light packet content filtering TCP

Finally, the kernel proxy should provide a
application-layer interface to aid users and
in the configuration, rule editing
of the firewall.

VII. REFERENCES
[1] Y. Zhang, Z. M. Mao, and J. Wang,

Protecting against Routing Misbehavior
IEEE/IFIP International Conference on Dependable Systems and
Networks, 2007.

[2] J. Lee, P. S. Jean, T. Rick, M. G. Jack,
Integrated Transparent TCP Accelerator
International Conference on Advanced Informat
and Applications (AINA 10), 2010.

[3] A. Rousskov, “On Performance of Caching Proxies
Dakota State University Fargo, 1999.

[4] R. Jain and T. J. Ott, “Design and
the linux kernel,” Doctoral Dissertation, 2007.

[5] S. Sahu, “Design Considerations for Integrated Proxy Servers
Department of Computer Science, University of Massachusetts,
1999

[6] R. Knobbe, A. Purtell, and S. Schwab,
Proxies: an Architecture and Implementation for High
Performance Network Firewalls,”
Survivability Conference and Exposition 2000

[7] S. K. Adhya and S. Ganguly, “Asymmetric
Mechanism to Increase the Flexibility of TCP Splice
thesis, Department of Computer Science & Engineering Indian
Institute of Technology, April 2001.

[8] S. E. Schechte and J. Sutaria, “A Study of the Effects of Context
Switching and Caching on HTTP Server Performance
http://www.eecs.harvard.edu/stuart/Tarantula/FirstPaper.html
[Oct. 29, 2010].

[9] K. N. Gopinath, “Kernel support for building network firewalls
M.S. thesis Department of Computer Science & Engineering
Indian Institute of Technology, April 1997.

[10] W. Shroder, Firewall and Internet Security
[11] Standard Performance Evaluation Corporation (SPEC)

SPECweb2009 Release 1.10, Oct 20
[12] KeyLabs Corporation: Test Final Report, Firew

Networld+Interop, 1998.
[13] K. Fall, “A peer to peer I/O system in support of I/O intensive

workloads,” Ph.D. thesis, 1993, Department of
U.C.San Diego.

[14] S. D. Purkayastha, “Symmetric TCP Splice: A Kernel Mechani
For High Performance Relaying,”
Science & Engineering Indian Institute of Technology, April 2001.

[15] The Netfilter Project site, Available:
29, 2010].

[16] TIS FWTK Firewall site, Available:
2010].

Load Values (simultaneous connections)

Load Values (simultaneous connections)

egorizer has been implemented; the
implementation of a kernel URL categorizer could be a

 enhancement will be
high performance kernel level packet

modifies packets content,
s content (e.g. viruses and

packets. The important issues
here are controlling the packets sequence number and the

would lead to the creation of a
filtering TCP daemon in the IP layer.
kernel proxy should provide an

interface to aid users and administrators
editing and policy management

EFERENCES
Wang, “A Firewall for Routers:

ting against Routing Misbehavior,” Proc. 37th Annual
rence on Dependable Systems and

Jack, and B. A. Bavier, “Network
TCP Accelerator,” Proc. 24th IEEE

International Conference on Advanced Information Networking

On Performance of Caching Proxies,” North
1999.

 implementation of split tcp in
Doctoral Dissertation, 2007.

s for Integrated Proxy Servers,”
e, University of Massachusetts,

R. Knobbe, A. Purtell, and S. Schwab, “Advanced Security
Proxies: an Architecture and Implementation for High

 Proc. DARPA Information
Survivability Conference and Exposition 2000

Asymmetric TCP Splice: A Kernel
the Flexibility of TCP Splice,” master

Department of Computer Science & Engineering Indian

A Study of the Effects of Context
Server Performance,” Available:
/Tarantula/FirstPaper.html,

or building network firewalls,”
Computer Science & Engineering
April 1997.

irewall and Internet Security, Prentice Hall, 1994.
Standard Performance Evaluation Corporation (SPEC):

2009.
Final Report, Firewall Shootout

A peer to peer I/O system in support of I/O intensive
Ph.D. thesis, 1993, Department of Computer Science

Symmetric TCP Splice: A Kernel Mechanism
,” Department of Computer

Science & Engineering Indian Institute of Technology, April 2001.
roject site, Available: http://www.netfilter.org/ [Oct.

Available: http://www.fwtk.org [Oct. 29,

37

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

http://portal.acm.org/author_page.cfm?id=81464653469&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://portal.acm.org/author_page.cfm?id=81100235922&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://portal.acm.org/author_page.cfm?id=81464648127&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://portal.acm.org/author_page.cfm?id=81100652459&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://portal.acm.org/author_page.cfm?id=81100250661&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://portal.acm.org/author_page.cfm?id=81464649740&coll=DL&dl=ACM&trk=0&cfid=114111518&cftoken=75268497
http://www.eecs.harvard.edu/stuart/Tarantula/FirstPaper.html
http://www.netfilter.org/
http://www.fwtk.org/

	I. Introduction
	II. Related Work
	III. In-Kernel Proxy
	IV. . Design of the in-kernel proxy
	A. Authentication Module
	B. Rule manager module
	C. Connection Manager Module
	D. Filtering Module
	1) Command filter: this filter is used for HTTP and FTP. Here, the commands are received from the packets in the connection, a
	2) URL filter: the filter is used for the HTTP and FTP protocols. To use this filter, the extracted URL from a connection is c
	3) Content filter: considering the importance of the transferred files and data, it is possible that the rule manager force th

	E. The logging module
	F. Architecture of the In-kernel proxy

	V. Evaluation
	A. Configuration
	B. Analysis of the results

	VI. Conclusions and future work
	VII. References

