
Improving Attack Aggregation Methods Using Distributed Hash Tables

Zoltán Czirkos, Márta Rencz, Gábor Hosszú
Department of Electron Devices

Budapest University of Technology and Economics
Budapest

{czirkos,rencz,hosszu}@eet.bme.hu

Abstract—Collaborative intrusion detection has several dif-
ficult subtasks to handle. Large amount of data generated by
intrusion detection probes has to be handled to spot intrusions.
Also, when correlating the pieces of evidence, the connection
between them has to be revealed as well, as it may be the
case that they are part of a complex, large-scale attack. In
this article, we present a peer-to-peer network based intrusion
detection system, which is able to handle the intrusion detection
data efficiently while maintaining the accuracy of centralized
approaches of correlation. The system is built on a distributed
hash table, for which keys are assigned to each piece of
intrusion data in a preprocessing step. This method allows
one to make well-known correlation mechanisms work in a
distributed environment.

Keywords-collaborative intrusion detection; attack correlation;
peer-to-peer; distributed hash table.

I. INTRODUCTION

In the earliest days of the Internet, services on the network
were all based on trust. As e-commerce emerged, network
hosts became victim of a wide range of everyday attacks.
Due to the high amount of confidental data and resources
that can be exploited, the possibilites and open nature of the
Internet opened serious security questions as well.

The attacks network administrators fight against are both
human and software controlled. They get more and more
sophisticated, originating or targetting ocassionally multiple
hosts at the same time. A large number of nodes can be
simultaneously scanned by attackers to find vulnerabilities.
Automatized worm programs replicate themselves to spread
malicious code to thousands of vulnerable systems, typically
of home users. Others compromise hosts to build botnets,
which can deliver millions of spam e-mails per day.

As the manifestation of attacks, e.g., the evidence that
can be observed is spread across multiple hosts, these large-
scale attacks are generally hard to detect accurately. To
recognize such, one has to first collect or aggregate the
evidence, then correlate the pieces of information collected.
A collaborative intrusion detection system has to analyze the
evidence from multiple detector probes located at different
hosts, and even on different subnetworks. However, this
poses several problems to solve:

• large quantities of possible evidence collected,
• including inadequate data for precise decision making,
• communication and reliability problems,

Figure 1. Messages carrying attack information in the Komondor system.
If any probes in the network detect a suspicious event, it sends a report to
the DHT. The nodes of the DHT act as correlation units as well, and are
able to collect these reports.

• frequent change of intrusion types and scenarios.

Some of these troubles are specific for the isolated, host-
based detection systems, while others occur only in case
of the network scale intrusion detection. Despite of all
these difficulties it is still worth collecting and correlating
evidence available at different locations for the efficiency
and accuracy boost of both detection and protection.

In this paper, we present a collaborative intrusion de-
tection system, which organizes its participants to a peer-
to-peer (P2P) overlay network, as seen in Figure 1. For
intrusion data aggregation, a distributed hash table (DHT) is
used, which is built on the Kademlia topology. This is used
to balance the load of both aggregation and correlation of
events amongst the participants. The organization of nodes
in the overlay network is automatic. Should some nodes quit
or their network links fail, the system will reorganize itself.

The rest of this paper is organized as follows. In Sec-
tion II, we first review existing research of collaborative
intrusion detection systems. Then we present the architecture
of our intrusion detection solution based on the Kademlia
DHT overlay in Section III. The results of our intrusion
detection method and statistics of detection are highlighted
in Section IV. Research is concluded in Section V.

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

II. RELATED WORK

Attackers use various ways for intrusion of computer
network systems depending on their particular goals. These
methods leave different tracks and evidences, called the
manifestation of attacks [1]. To discuss the internals of a
collaborative intrusion detection system, we use the follow-
ing terms [2]:

• Suspicious events are primary events, that can be de-
tected at probes. Not necessarily attacks by themselves,
but can be part of a complex attack scenario.

• Attacks are real intrusion attempts, which are used to
gain access to a host or disturb its correct functioning.
Usually these are made up from several suspicious
events at once.

The activity of an SSH (Secure Shell, a remote login
software) worm program can be seen as an example of an
attack. These worms use brute-force login attempts using
well-known user names and simple passwords [3], directed
against a single host. The attempts are events that make up
the attack in this case. Multiple failed login attempts usually
indicate an attack, while a single failed attempt is usually
only a user mistyping his password.

A. Centralized Collaborative Intrusion Detection

To achieve collecting and correlating events detected by
a number of detector probes, various collaborative intrusion
detection systems (CIDS) have been proposed, for which a
detailed overview can be found in [4].

The earliest collaborative detection systems used a cen-
tralized approach for collecting the events. The Internet
Storm Center DShield project collects firewall and intrusion
detection logs from participants, uploaded either manually
or automatically [5]. The log files are then analyzed centrally
to create trend reports.

The NSTAT system [6] on the other hand is more ad-
vanced in the sense that its operation completely real-time.
In NSTAT, the detection data generated by the probes is
preprocessed and filtered before being sent to a central server
for correlation. This system analyzes the order of events
using a state transition mechanism with predefined scenarios
to find out the connection between them.

The advantage of centralized methods is that the server is
able to receive and process all data that could be gathered.
Processing, i.e., correlation can be carried out with several
different methods. SPICE [7] and CIDS [8] group events by
their common attributes. The LAMBDA system tries to fit
events detected into pre-defined and known scenarios [9].
The JIGSAW system maps prerequisites and consequences
of events to find out their purposes [10].

B. Hierarchical and P2P Collaborative Intrusion Detection

By using hierarchical approaches, the scalability problem
of centralized intrusion detection systems can be handled.
The DOMINO system is used to detect virus and worm

activity. It is built on an unstructured P2P network with
participants grouped into three levels of hierarchy [11]. The
nodes on the lowest level generate statistics hourly or daily,
therefore they induce only a small network traffic.

The PROMIS protection system (and its precedessor, Net-
biotic) uses the JXTA framework to build a partly centralized
overlay network to share intrusion evidence [12]. The nodes
of this system generate information for other participants
about the frequency of detected suspicious events. This
information is used to fine-tune the security settings of the
operating system and the web browser of the nodes. This
creates some level of protection against worms, but also
decreases the usability of the system.

The Indra system is built on the assumption that attackers
will try to compromise several hosts by exploiting the same
software vulnerability [13]. If any attempts are detected
by any participant of the Indra network, it alerts others
of the possible danger. Participants can therefore enhance
their protection against recognized attackers, rather than
developing some form of general protection.

The scalability and single point of failure problems of
centralized solutions can also be solved by using structured
P2P application level networks. The P2P communication
model enables one to reduce network load compared to
the hierarchical networks presented above. The CIDS sys-
tem [8] is a publish-subscribe application of the Chord
overlay network. Nodes of this system store IP addresses
of suspected attackers in a blacklist, and they subscribe in
the network for notifications that are connected to these IPs.
If the number of subscribers to a given IP address reaches a
predefined threshold, they are alerted of the possible danger.
The Chord network ensures that the messages generated
in this application will be evenly distributed among the
participants [14].

C. Structured P2P Networks

Structured P2P networks generally implement distributed
hash tables [15]. DHTs store 〈key; value〉 pairs and allow
the quick and reliable retrieval of any value if the key
associated to that is known precisely. This is achieved by
using a hash function and mapping all data to be stored to
the nodes selected by the distance of the hashed keys and
their NodeIDs, which are chosen from the same address
space. The connections between nodes are determined by
their NodeID selected upon joining the network. They are
selected so that the number of steps between any two node
is usually in the order of logN , where N is the count of all
nodes.

DHTs all implement routing between their nodes in the
application level to build the topology desired. The Kademlia
network uses a binary tree topology [16], in which the
distance is calculated using the XOR function. All nodes
have some degree knowledge of the successively smaller
subtrees of the network they are not part of. For any of these

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

subtrees they have routing tables called k-buckets, which
store IP addresses of nodes that reside in distant subtrees.
When a node looks up a selected destination, it successively
queries other nodes, which are step by step closer to the
destination. The queried nodes answer by sending their k-
buckets to the source. As nodes closer to the destination
have greater knowledge of their neighbors, the lookup will
get closer every step, as discussed in [16]. The distance in
the XOR metric is halved with every message, so the number
of messages is log2 N with N being the number of nodes
in the tree.

III. THE KOMONDOR SYSTEM ARCHITECTURE

In this section, our intrusion detection system named
Komondor is presented. Its most important novelty is that
it uses the Kademlia DHT to store intrusion data and
to disseminate information about detected events. Having
analyzed the collected events, Komondor correlation units
may start an alert procedure notifying other nodes of the
possible danger if necessary.

A. Distributing Load Among Multiple Correlation Units

The Komondor peer-to-peer application level network
consists of multiple nodes. All nodes have the responsibility
of collecting and correlating intrusion data. They also report
attacks discovered to other nodes of the network, as seen in
Figure 1. All participants of the Komondor network serve
as intrusion detection units and correlation units as well.

The Komondor network is designed to enable the pre-
viously mentioned correlation methods to be used in a
distributed manner:

• Pieces, which are correlated should be sent to the same
correlation unit, so that it can gather all the information
about the attack.

• Pieces of evidence, which are part of distinct ongoing
attacks should preferably be sent to different correlation
units. This reduces load and improves overall reliability
of the system.

Komondor achieves this goal by assigning keys to prepro-
cessed intrusion data, as seen in Figure 2. Keys assigned
are used as storage keys in the DHT as well. For different
attackers or attack scenarios, different keys are selected,
and this way data is aggregated at different nodes of the
Komondor overlay.

Correct key selection is critical, since pieces of evidence,
which might be correlated to each other must be assigned
the same key and sent to the same Komondor node for
correlation. Note that these pieces do not have to be detected
by the same probe, yet they can be aggregated by the
same correlation unit. The Komondor system is essentially
a middle layer inserted into the intrusion detection data
path. The nodes of the DHT are the correlation units, which
have to implement the same correlation methods as their
centralized counterparts. However, the correlation procedure

is started as soon as the preprocessing stage with the key
selection, and it is finalized at the correlation units.

The detected and preprocessed data of suspicious events
is stored in the Komondor overlay. In this system, the key
assigned at the preprocessing stage of detection is used as
a key for DHT operations as well. The value parts of the
〈key; value〉 pairs stored are any other data, which might
be useful for detection or protection. As all nodes use the
same key selection mechanism and the same hash function,
events related to each other will be stored at the same node,
as seen in Figure 1. This way the algorithm ensures that the
aggregator node has perfect knowledge of all events related
to the attack in question.

The reason why a structured overlay – Kademlia – was
selected for the Komondor system is that it has the ad-
vantages of distributed and centralized detection systems as
well. Event data collected has to be sent to a single collector
node only (this would not be possible with an unstructured
overlay, as those have no global rule to map a key to a
node.) Moreover, when Komondor nodes are under multiple
but unrelated attacks, the network and computational load
of both aggregation and correlation is distributed among
nodes. The Komondor system neither has a single point of
failure: the responsibility of correlating particular events is
transferred to another node in this case. The overlay can
also be used to disseminate other type of information as
well, for example the attack alerts, which enable nodes to
create protection.

B. Kademlia as the DHT Topology of Komondor

The nodes of Komondor create a Kademlia DHT overlay.
This is the topology, which can adapt its routing tables to
the dynamic properties of traffic generated by the intrustion
detection probes. As discussed below, other DHTs wouldn’t
be able to adapt their routing tables to the dynamic properties
of this kind of traffic.

Storing information of events generated by the probes
generates significant overlay traffic, which will load not only
detector and collector nodes, but other nodes along the path
from the former to the latter one as well, as routing between
nodes is handled on the application level. If the events
are in correlation with the same attack, the key chosen is
likely to be the same, making the distribution of keys highly
uneven. However, by using Kademlia, network traffic can be
significantly reduced in this scenario. The reason for this is
that the routing algorithm of Kademlia is very flexible: any
node can be put to the routing tables of any other node while
still obeying the rules of the routing protocol. Routing tables
of other DHT overlays like CAN or Chord are much more
rigid, and therefore the routing algorithm of those cannot
optimize the number of messages for the store requests with
the same key.

Table I compares the number of messages generated in
intrusion detection for Kademlia and Chord, with the latter

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

Figure 2. Distributed collection and distributed correlation of intrusion evidence from various probes. The Komondor system assigns keys to pieces of
evidence so that data can be stored efficiently in a DHT. By using these keys, computational load of correlating can be distributed among several units.

Overlay Chord Kademlia

Routing algorithm recursive iterative

Node lookup 0 log2 N

First event stored log2 N 1 + log2 N

n events with the same key n · log2 N n+ log2 N

Average number of mes-
sages per event

(n · log2 N)/n (n+ log2 N)/n

Average number of mes-
sages with n→∞

log2 N 1

Table I
NUMBER OF MESSAGES IN STRUCTURED OVERLAYS FOR INTRUSION

DETECTION

being an example for hacing rigid routing tables. Chord uses
a recursive routing mechanism, which means that messages
are forwarded by overlay nodes along the path from the
source to the destination of the message. If Komondor would
be built on Chord, the number of messages generated in the
overlay would be in the order of log2 N for each detected
event, where N is the node count of the overlay.

Kademlia uses an iterative algorithm. To store a
〈key; value〉 pair, a Kademlia node first looks up the IP
address of the destination node by successively querying
nodes closer to the destination. After finding out its address,
data is sent directly from the source and the destination. This
also implies that the payload of the message is contained
in every message for Chord, and only in the last message
for Kademlia. For Kademlia, the node has to first look
up the address of the destination, which also takes log2 N
messages. Having done that, it requires one more message
(+1) to send the payload as well. If multiple events are to
be stored, which are detected by the same probe (this is a
likely scenario for a node that is under attack), the lookup
procedure can be optimized away, as the key and therefore
the collector node is the same, too. For sending data of n
events, the number of messages generated is only n+log2 N
for Kademlia and n · log2 N for Chord, which is worse at

the factor of n for the latter one. The limit of messages
per event drops to 1 for Kademlia in this common intrusion
detection scenario.

IV. RESULTS AND DISCUSSION

In this section, we present statistics of intrusion attempts
detected using the implemented Komondor system. The
statistics are evaluated to show which types of attacks this
system can be used to detect.

The present Komondor implementation used the open-
source Snort intrusion detection system [17] to detect in-
trusion events. However, it could collaborate with other
intrusion detection solutions as well. The key selected for
each event was the IP address of the attacker, as found in the
Snort log file. It was also used for correlation. We selected
common event types from the Snort database and also tagged
events with a severity score. Intrusion alert was triggered
when the sum of these scores reached a threshold level.
This simple correlation method enabled us to determine
the efficiency and reliability of the Komondor system for
known attack types presented here. The number of probes
in the system varied from 7 to 10, each with their own IP
address but on the same subnetwork. Data presented here
was collected in a three year interval.

A. Attack Intervals and Number of Events

Figure 3 shows invalid passwords detected for SSH login
attempts on various hosts [3]. Every dot on the graph is an
individual attack. The y axis shows the number of events
or the number of invalid passwords detected. The duration
of an attack is the time interval between the first and the
last event detected, and is on the x axis. Several attackers
were detected by multiple Komondor probes, because the
SSH worm that was trying to gain access to the subnetwork
tried to login all on-line hosts it found. The number of probes
which detected an attack in question is shown by the color of
the dots. (In the case of multiple probes detecting an attacker,
the event number on axis x is an average per probe.)

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

1

10

100

1k

10k

100k

1 10 100 1000 10000 100000

av
er

ag
e

nu
m

be
r

of
 e

ve
nt

s
pe

r
pr

ob
e

duration [s]

Figure 3. Number of invalid password events detected for various attacks
(y axis) plotted by the duration of the attack (x axis). The color of the dots
represent the number of probes a specific attacker was detected by.

Attacks, which were detected by one probe only (black
dots) have much less events associated to them. The 1 100
attacks shown on the graph have as much as 450 of them
stacked up in the (1; 1) point. These evidently came from
human interaction. Attacks detected by multiple probes
usually suggest automatic worm programs using dictionary
attacks against the detector hosts.

This experience suggests that distributed intrusion detec-
tion can benefit from the advantages of DHTs:

• Attackers could be detected by several probes at the
same time. When multiple hosts are attacked, rec-
ognizing an attacker using any evidence from any
probe of the Komondor network, several hosts could
be protected using firewalls at the same time, which
might promptly be attacked, too.

• Attack evidence came from multiple probes. One attack
is likely to be associated to thousands or tens of thou-
sands of events, which must be stored and processed in
the overlay. This type of load can be dealt with the DHT
fairly well, as it can select different collector nodes for
each individual attack and therefore balance the load.

• When detecting an event, which generates the same key,
the Kademlia DHT can significantly reduce network
traffic, as the IP address of the collector nodes have
to be looked up only once. When the IP address
is obtained, the system works as if it were using a
centralized approach with the same benefits as those.

B. Attack Types Detected by Komondor

Table II shows various attack types and the efficiency for
the Komondor system regarding protection. The protection
column shows the number of attacks for each type, for which
the attack continued after it was blocked on the firewall,
and the activity of the attacker was detected by another
Komondor node of the same subnetwork. For these attacks,

Type of attack Attacks Protection Ratio
phpMyAdmin scan 107 71 66%

MSSQL overflow 4355 15 0%

SSH connection lost 490 321 65%

SSH failed password 546 219 40%

SSH invalid user 51 47 92%

FTP failed login 46 2 4%

Table II
NUMBER OF ALL ATTACKS AND ATTACKS FOR WHICH PROTECTION

COULD BE BUILT BY KOMONDOR, FOR EACH ATTACK TYPES.

the collaborative intrusion detection can greatly enhance the
protection of hosts.

Figure 4 shows event numbers and attack durations for
different worms attacking SQL servers. The y axis has two
scales for each graph. The scales of the left hand side show
attack durations (red plot), and the right hand side scale
shows the number of events (blue plot). Attacks are sorted
by duration. Every value on the x axis is an attack for which
the duration and the number of events is shown right under
each other.

A worm, which scanned the Web servers for vulner-
abilities via HTTP requests is shown on the right hand
side subfigure. For any event detected, the IP address of
the attacker can be recognized by the correlation units.
The left hand side graph presents the properties of the
Slammer worm, which penetrates outdated MSSQL servers.
This worm does not issue more attempts in a short time
interval to the same host, and selects IP addresses of victims
randomly. For detecting this type of attacks, the PROMIS
and CIDS systems could be used more effectively.

V. CONCLUSION

Attacks on the Internet mean constantly growing prob-
lem for network administrators. Sophisticated attacks have
evidence spread across multiple hosts and subnetworks. To
detect these attacks promptly and correctly, data must be
aggregated and analyzed automatically. In this article, the
novel Komondor intrusion detection system is presented,
which enables current attack correlation methods to be up-
graded to work in a distributed environment, thereby making
them feasible for large-scale deployment. This is achieved
by inserting a middle layer into the intrusion detection data
path, which utilizes the Kademlia overlay.

The novelty of the method presented is attaching a key
to the detected events, which key is then used to send the
events for correlating to several correlation units that are
organized as a DHT. This mechanism can be used to reduce
network and computational load and increase reliability of
the system, while still retaining the advantages of centralized
approaches of intrusion detection. By mapping the detected

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

1e0

1e1

1e2

1e3

1e4

0% 20% 40% 60% 80% 100%
1

10

at
ta

ck
 d

ur
at

io
n

[s
ec

]

nu
m

be
r

of
 e

ve
nt

s

Slammer worm (MSSQL vulnerability)

number of events
duration

1e0

1e1

1e2

1e3

1e4

0% 20% 40% 60% 80% 100%
1

10

100

1k

10k

100k

at
ta

ck
 d

ur
at

io
n

[s
ec

]

nu
m

be
r

of
 e

ve
nt

s

phpMyAdmin worm (MySQL vulnerability)

number of events
duration

Figure 4. Attack intervals and number of events for different worm activities detected by the Komondor system. The left hand side shows a worm, which
scanned our Web servers via HTTP in order to find a phpMyAdmin installation to gain access to MySQL databases. On the right hand side the activity
of the infamous Slammer worm is shown, which penetrates MSSQL servers.

events to nodes in the system, all nodes are assigned the
same level of responsibility as well. Our further research
will focus on considering the different computational and
network capacity of nodes to prevent those with slow
connections or CPUs from being overloaded by intrusion
detection data.

ACKNOWLEDGEMENT

The work reported in the paper has been developed in the
framework of the project ”Talent care and cultivation in the
scientific workshops of BME”. This project is supported by
the grant TÁMOP - 4.2.2.B-10/1–2010-0009.

REFERENCES

[1] D. Mutz, G. Vigna, and R. Kemmerer, “An Experience
Developing an IDS Stimulator for the Black-Box Testing of
Network Intrusion Detection Systems,” in In Annual Com-
puter Security Applications Conference, Las Vegas, NV, 2003,
pp. 374–383.

[2] H. Debar, “Intrusion Detection Systems-Introduction to In-
trusion Detection and Analysis,” Security and privacy in
advanced networking technologies, p. 161, 2004.

[3] C. Seifert, “Analyzing Malicious SSH Login Attempts,”
http://www.symantec.com/connect/articles/analyzing-
malicious-ssh-login-attempts, Nov. 2010, retrieved: March,
2012.

[4] C. Zhou, C. Leckie, and S. Karunasekera, “A Survey of
Coordinated Attacks and Collaborative Intrusion Detection,”
Computers & Security, vol. 29, no. 1, pp. 124–140, 2010.

[5] “Internet Storm Center,” http://www.dshield.org/, retrieved:
March, 2012.

[6] R. Kemmerer, “NSTAT: A Model-based Real-time Network
Intrusion Detection System,” University of California-Santa
Barbara Technical Report TRCS97, vol. 18, 1997.

[7] A. Valdes and K. Skinner, “Probabilistic Alert Correlation,”
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, pp. 54–68, October 2001.

[8] C. V. Zhou, S. Karunasekera, and C. Leckie, “A Peer-to-
Peer Collaborative Intrusion Detection System,” in Networks,
2005. 13th IEEE International Conference on, vol. 1.

[9] F. Cuppens and R. Ortalo, “LAMBDA: A language to model
a database for detection of attacks,” in Recent advances in
intrusion detection. Springer, 2000, pp. 197–216.

[10] S. Templeton and K. Levitt, “A Requires/provides Model for
Computer Attacks,” in Proceedings of the 2000 workshop on
New security paradigms. ACM, 2001, pp. 31–38.

[11] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion
Detection in the DOMINO Overlay System,” in Proceedings
of NDSS, vol. 2004, 2004.

[12] V. Vlachos and D. Spinellis, “A PRoactive Malware Identi-
fication System based on the Computer Hygiene Principles,”
Information Management and Computer Security, vol. 15(4),
pp. 295–312, 2007.

[13] R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: A
Peer-to-peer Approach to Network Intrusion Detection and
Prevention,” in Enabling Technologies: Infrastructure for Col-
laborative Enterprises. WET ICE 2003. IEEE, 2003, pp.
226–231.

[14] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” ACM SIGCOMM Computer Commu-
nication Review, vol. 31, no. 4, pp. 149–160, 2001.

[15] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of
Peer-to-peer Content Distribution Technologies,” ACM Com-
puting Surveys (CSUR), vol. 36, no. 4, pp. 335–371, 2004.

[16] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” Peer-to-Peer
Systems, pp. 53–65, 2002.

[17] “Snort – Open-source Intrusion Detection System,”
http://www.snort.org/, retrieved: March, 2012.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

