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Abstract—Traffic monitoring, traffic engineering, quality of
service applications, network intrusion detection systems, as well
as network management systems require the basic knowledge
of which traffic is transmitted over a network. The increasing
number of applications which are using encryption techniques
such as TLS lower the ability to determine the applications
that are running within a network. In this paper, we propose
a method to detect applications in TLS encrypted connections.
Our method uses a hybrid approach which combines protocol
decoding to identify TLS traffic and to gather reliable information
about the application data. Furthermore, a machine learning
algorithm is used to determine the application which is protected
by TLS. We describe our approach and compare it with other
related methods in theory and prove its advantages on network
measurements. The results show a significant improvement on
classification Recall and Precision.

Keywords—application classification, TLS, Internet traffic, ma-
chine learning.

I. INTRODUCTION

An increasing number of network protocols and applica-
tions encrypt the payload to protect privacy and integrity of
the data. One popular way of doing this is to use the Transport
Layer Security (TLS) protocol [1], which is a further stage of
the Secure Socket Layer (SSL) protocol standardised by the
Internet Engineering Task Force (IETF). Thus, the acronyms
SSL and TLS are are often used as a synonym. An Internet
study [2] from 2013 revealed that 356 applications within
enterprises networks used SSL in some way, while 85 did not
use standard SSL ports.

In order to do their work properly network management
systems and security related systems such as firewalls or
Network Intrusion Detection Systems (NIDS) need to know
the kind of application. Therefore, these systems have to know
whether the traffic is encrypted and which kind of application
is being transmitted. To solve this problem, our approach is to
use a hybrid method. First, we identify the TLS traffic. Second,
the TLS data is analysed to determine the application. Due to
encryption, only statistical information can be used for the
second step.

The remainder of this paper is structured as follows: in
Section II the related work is outlined. This is followed by
Section III, which describes our approach for better TLS
application classification, and Section IV which demonstrates
the benefit of this approach on measurement results, Section
V concludes the paper.
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II. RELATED WORK

Most research on TLS application classification has been
done merely with statistical analysis. In most cases different
kinds of well known machine learning algorithms were used.
In some papers the authors concentrate on a single statistical
parameter and use a dedicated method to evaluate the results.

There are two kinds of detecting applications for TLS
connections. The first is to detect whether the network traffic
is TLS or not. The second is to classify different applications,
e. g., Hypertext Transport Protocol Secure (HTTPS), Simple
Mail Transport Protocol Secure (SMTPS), etc., which are using
TLS encryption. The goal in [3] is to distinguish TLS from
non-TLS traffic. The authors are using the machine learning
algorithms AdaBoost, C4.5, RIPPER and NaiveBayes and the
statistical parameters packet length, inter-arrival time, duration
and packet count. The detection rate varies between 70% and
98% for the different algorithms and different data sets.

The most work is related to the second approach which
tries to classify different applications on top of TLS. In [4]
the machine learning algorithm Random Forest as well as the
clustering algorithm K-Means were used to classify network
traffic for an intrusion detection system. It was shown that the
approach is feasible for network monitoring, but the authors
do not give further information about the classification rates.
The authors of [5] used only the statistical parameter packet
size for application classification. Therefore, the packet size
of a packet is ranged to one of 30 bytes bins. The packet size
distribution for a packet flow is compared with the Chi-square
test to the values of known applications. This approach has a
low classification accuracy of 10% to 40% for most observed
applications.

Two statistical parameters — inter-arrival time and packet
length — were used in [6] in conjunction with one of the three
clustering algorithms DBSCAN, K-means and EM. On a data
set with the File Transport Protocol (FTP), Real-time Protocol
(RTP) and the Remote Framebuffer protocol (RFB), they could
reach an accuracy up to 99%. The same parameters were also
used by [7], but they used feature vectors containing several
sub-parameters of inter-arrival time and packet size such as
minimum, maximum, mean value and standard deviation. To
compare the vectors of the ongoing packets with the known
data set, the Euclidean distance or the Hamming distance are
used. With this approach the authors could classify 80% to
94% of the used network traffic.

[8] is a PhD thesis about the identification of applications
in encrypted tunnels, with the focus rests on HTTPS tunnels.
The packet size of network packets is ranged to one of 15



ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

bins. Several machine learning algorithms (Naive Bayes, C4.5,
Decision Tree, neural networks, Nearest Neighbour, OneR)
were used to classify the applications. The results vary between
30% and 100%.

Another paper [9] uses a bayesian machine learning
algorithm with some more statistical parameters: packet length
(min, max, mean), inter-arrival (min, max, mean), duration
and packet count. Therewith, TOR and HTTP traffic could
be classified with 85% of Precision and Recall.

All the papers cited above use only machine learning
algorithms. The following two papers describe hybrid methods
with additional preprocessing. In [10], at first a pattern based
TLS detection is used to filter all TLS traffic. Only the TLS
traffic is observed with the Naive Bayes machine learning
algorithm. With this method 93% to 96% of HTTP and TOR
traffic can be classified. Later we refer this as 'method 1°. A
more advanced TLS preprocessing is done in [11]. The authors
also use a pattern based TLS detection, but they observe the
TLS session and using only application traffic without TLS
handshake messages. Furthermore, they pay attention to the
offset added by the Keyed-Hash Message Authentication Code
(HMAC) and encryption. A statical offset of 21 bytes is used
in their per-packet approach. The classification rate is between
81% to 100% for the ten observed applications. We refer to
this as method 2’ in the following sections.

Our own related work was on payload-based methods for
application classification [12], with particular focus on protocol
decoding. The protocol decoding inspects the network traffic
and tries to decode each packet. If the decoded values match
to the protocol description and if it fulfils all constraints of the
protocol, the protocol is detected. This method is reliable but
can only be used for unencrypted network traffic.

Another related work [13] [14] was on machine learning
algorithms and investigated which kind of statistical informa-
tion is useful for application classification. Furthermore, we
investigated 20 different machine learning algorithms to find
out which algorithms are suitable for network traffic analysis.

Besides TLS, other encryption techniques exist. [15] and
[16] investigated traffic characteristic changes caused by
Internet Protocol Security (IPsec) and encrypted Point-to-Point
Tunneling Protocol (PPTP). The authors used the Naive Bayes,
Support Vector Machines and C4.5 decision tree as machine
learning algorithm for classification, but used two strategies for
preprocessing the feature set. Either they split the traffic into
encrypted and unencrypted traffic, or they do a normalisation
of the feature set from encrypted traffic. The first strategy is
used to approximate the feature set of the unencrypted traffic
carried by the encrypted tunnel, to use only one classification
model for the whole traffic. The second strategy use two
classification models for each type of traffic. Their results show
significant improvements in classification.

III. HYBRID ANALYSIS METHOD

To identify TLS data in network traffic and to classify its
content, we are using a hybrid method. First, to identify the
TLS data, protocol decoding is used. As described in [12] and
related papers, protocol decoding is a very reliable method for
detecting TLS traffic. Additionally, some further information
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from the decoded TLS record headers are extracted to provide
more precise statistical values regarding statistics gathered
from the Transport Control Protocol (TCP) flow. The statistical
values are used in conjunction with a machine learning
algorithm to classify the protocol or application transmitted
within TLS.

The TLS protocol is divided into five sub-protocols: the
TLS Record Protocol, three handshaking protocols and the
Application Data Protocol [1]. Application data messages are
carried by the record layer protocol and are compressed,
fragmented and encrypted with the negotiated master secret. A
TLS session starts with a handshake. The handshake consists of
the negotiation of a cipher suite, the exchange of certificates
and keying material (e.g., Diffie Hellman). The application
messages are treated as transparent data to the record layer.

Depending on the client and server configuration (e. g., us-
age and size of certificates), the number of packets exchanged
during connection establishment varies. Additionally, the con-
tents (except keying material) of the handshake messages of
client and server are identical, even if a TLS connection is used
by different applications. Thus, all the handshaking messages
should never be considered for application classification.

After the TLS handshake, application data exchange starts.
The application data is processed by the TLS layer as outlined
in Figure 1. The application data can be compressed, but
this is optional. The integrity of the data is protected by a
HMAC, which is added to the application data. Then, the
data with HMAC is encrypted and a TLS record header is
added, which contains the TLS version, content length and
type of content (application data or handshaking protocols).
Due to TLS record header and HMAC, the payload of TLS is
smaller than it seems on TCP level. The TLS record header
has a constant size of 5 bytes, the length of the HMAC is
one of six values: 0, 8, 16, 20, 32 or 48 bytes [17]. The
used HMAC length depends on the used cipher suite which
is negotiated during the handshake and can be provided by the
protocol decoding. We propose considering this offset when
using statistical data of TLS traffic. Compression was not used
in all investigated network traffic and is frequently deactivated
in the most applications. This is due to a security issue called
CRIME. It was first described by [18] and later published as
proof of concept exploit [19]. Thus, the compression has no
influence on our statistical calculation and the classification
results.

With the above description of the related parts of TLS,
we can define four different methods for TLS application
classification. The first two methods were already described
in short at Section II. Method 1 [10] simply takes statistical
values on TCP level. The TLS handshake, which is in general
the same for all applications, is also included in the statistical
calculation as the data records. The offset of the TLS record
layer and HMAC is not removed. Large application data which
was fragmented into several TCP segments will be counted
as single application message, but a collection of small data
records will be counted as one application message.

Method 2, as described in [11], skips the TLS handshake
and starts evaluating the statistical data from the TLS stream
after it detects the first data record by using packet inspection.
Beginning from this point, it expects that every TCP segment
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Figure 1: TLS fragmentation and network traffic statistics

transmits one TLS data record. The authors of [11] paid no
attention to fragmentation. The analysis of the traffic used in
Section IV showed that approximately 63% of TLS traffic is
fragmented. In [11], a fixed offset of 21 bytes is removed from
TCP data length because it is considered as TLS record header
(5 bytes) and HMAC (16 bytes, e.g., for Message-Digest
Algorithm 5 (MD5)).

We think it is necessary to extend the TLS traffic inspection
to get more precise statistical data of the application messages.
Therefore, we define a third and fourth method. Method 3
also skips the TLS handshake but inspects all succeeding TCP
segments for TLS data records. Each data record is counted
as one application message independent of the fragmentation.
When a data record is split across several TCP segments, it is
counted as one message. If a TCP segment contains different
data records, each record is recognised as one application
message. On method 3, a fixed offset of 21 bytes is used. The
inter-arrival time between two data records within one TCP
segment is considered as zero.

Method 4 works in the same manner as method 3, except
it determines the concrete size of the used HMAC from the
handshake. This results in more accurate statistical values but
it increases the processing effort. This individual offset must
be stored for each TLS connection. The four classification
methods are outlined in Figure 1. It can be seen that method
1 and method 2 will capture values for packet length and
inter-arrival time which do not match to the application data.
The discrepancy between transmitted TCP segments and TLS
data records can be large. The network traffic used in Section
IV contains TLS data records which were split across up
to ten TCP segments, but there were also TCP segments
which contained up to ten data records. Only 37% of the
TCP segments, which were captured in a campus network
with many different clients and servers, contained one TLS
data record. All other segments transmitted fragmented data.
Methods 3 and 4 capture values which are very close to the
application messages, while, method 4 provides the closest
approximation.

We used the NaiveBayesUpdateable machine learning
algorithm from WEKA Data Mining Software [20] and the
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statistical parameters described in [13] to process the statistical
information from TLS data streams. For this work, we decided
to use a packet based approach with supervised machine
learning. As a result, the protocol decoding provides one data
record for each TLS data record which is transmitted. These
data sets are then used for learning and classification. Thus,
the machine learning algorithm makes a classification decision
for each TLS data record rather than for the whole flow.

We decided to use a bayesian classifier to get comparable
results, because in [10] where method 1 is described, a
bayesian classifier was used. Furthermore, bayesian classifiers
are frequently used in the field of network traffic classification
[21]. Nevertheless, the NaiveBayesUpdateable classifier can be
exchanged with another machine learning algorithm and the
approach will continue to work well.

IV. EXPERIMENTAL RESULTS

This section discusses the classification results of the four
applied methods to identify TLS encrypted traffic.

A. Metric

For evaluating and comparing the classification results, a
metric is required. Various numbers of metrics, e.g., True
Positive Rate, False Positive Rate, Recall and Precision, have
been used in the past for evaluating traffic classification results.
All of them are based on the following four metrics:

e true positive (t,): objects belonging to protocol X and
classified as protocol X

e true negative (,): objects not belonging to protocol
X and not classified as protocol X

e false positive (f,): objects not belonging to protocol
X, but classified as protocol X

e false negative (f,): objects belonging to protocol X,
but not classified as protocol X

In this paper, the common used metrics Recall and
Precision are applied to evaluate the performance of a
classification method. The metric Recall defines the ratio of
correct classified objects of a protocol to the total number of
objects belonging to this protocol:

tp
tp + fn

ey

recall =

Additionally, the accuracy of the classification is defined
by the metric Precision, which defines the ratio of correct
classified objects of a protocol to the number of all objects
which were classified as this protocol:

tp

P 2
bt f 2

precision =

The primary goal of improving classification methods and
an indicator for comparing the performance is to increase the
Recall on the classification of protocols, and at the same time
to increase the Precision.



ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

T T T T T
| 7 — g
BN N N = ©
80% [ s\ B g §
] § ™ T a
o Method 1 =
60% o N RN "  Method 2 =&z
Method 3 sz
Method 4 ks
40% 1 |1\ N 9 Y -
20% |-+ l i
0%
HTTP SMTP IRC POP3 IMAP

Protocol

Figure 2: Classification results for all methods and protocols

TABLE I: Overview of the test data

Protocol [ Method 1 | Method 2 | Method 3 | Method 4 |

HTTP 21311 18516 20269 20269

SMTP 63880 60958 20456 20456

IRC 5735 5552 20800 20800

POP3 21287 17146 19682 19682

IMAP 15644 15420 20354 20354
B. Test data

TLS is used to protect a lot of applications and protocols.
We decided to use the five protocols listed in Table I.
These protocols was chosen because there are many publicly
accessible servers to collect traffic with different server
software and configurations. The HTTP traffic contains only
ordinary HTML pages without Flash and video content. The
e-mail protocol traces were captured at our university mail
server as well as at our laboratory to capture conversations
to publicly accessible server (e.g., Gmail). For the Internet
Relay Chat (IRC) traces we also captured conversations to
public servers. To get a realistic chat, the IRC client connected
between five to ten minutes to a server which provides
well-frequented IRC channels (e.g., Ubuntu support channel)
without sending any chat message (only control messages). It
received only chat messages of the connected channel, so the
traces contain IRC talks between five to six hours for training
and test, respectively.

Table I contains the data records determined from the
traffic traces. We used a uniform distribution of data records
(=~20.000) with respect to the data portions sent by the
applications. The deviation from this values at Method 1 and 2
for SMTP or IRC results from ignoring the TLS fragmentation.
Some TLS data records were split across up to ten TCP
segments and some TCP segments contained up to ten data
records. Table I shows only the test data. The training data for
the machine learning algorithm contains the same amount of
data records.

C. Classification results

Figure 2 shows the classification results of all applied
methods. The protocols of the used traffic are placed on the
x-axis, where the Recall and Precision results were displayed
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in percentage (y-axis) as bars. Each used method is represented
by an own colour.

Starting with HTTP, method 1 classifies less then 50% of
the HTTP traffic correctly with the Precision also lower than
25%, which implies that three out of four as HTTP classified
packets are non-HTTP traffic. With method 2, Recall could
be improved to 83% but nevertheless the Precision reaches
only 36%. It is an improvement over method 1 but still two
of three as HTTP classified packets are non-HTTP traffic. In
general, it is not hard to implement a classification method
with a high Recall, e.g., an algorithm that classifies each packet
as HTTP reaches a Recall of 100%, but the Precision will be
low according to the protocol distribution of the used traffic. In
contrast, method 3 and method 4 gain a Recall of around 75%,
which is less than method 2, but the Precision is improved to
74%. Thus, only one out of four as HTTP classified packets
is non-HTTP traffic. This implies a higher reliability on the
classification decision.

For SMTP, the Recall is continuously improved from 43%
on method 1 up to 48% on method 2. Also, the Precision could
be increased from 84% on method 1 up to 92% on method 2.
The highest Precision could be realised with method 2 (99%).
On all methods, the false negatives — SMTP traffic which
was not classified as SMTP — were nearly entirely classified
either as HTTP or Post Office Protocol version 3 (POP3).

With a Recall between 95% (method 1) and 99% (method
3 and method 4) the IRC protocol has the best classification
results. Besides the high values for the Recall also the
Precision with 82% (method 1) and 99% (method 3 and
method 4) on a high level. Method 3 and method 4 achieve
almost perfect classification results. Only method 2 decreases
the classification accuracy; nearly all false negatives were
classified as HTTP and Internet Mail Access Protocol IMAP).

For POP3, the classification accuracy could be increased
from method 1 to method 4. The recall could be enhanced
from 89% to 94% and the Precision was enhanced from 57%
to 71%. In contrast the Recall on IMAP was nearly constant
at 91%, but the Precision was decreased from 82% on method
1 to 77% on method 4.

D. Future trend

The similarity and the missing enhancements on the
classification accuracy between method 3 and method 4



ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

are based on the applied cipher suites in the used traffic,
respectively. The used traffic contains 11 different cipher
suites, but only one cipher suite which is less than 1% of
the whole traffic, uses a MD5 hash with a HMAC size of
16 bytes. All other cipher suites are using a Secure Hash
Algorithm version 1 (SHA1) with a HMAC size of 20 bytes.
Accordingly, nearly the entire traffic, there is only a fixed offset
in the data record length between method 3 and method 4. This
fixed offset causes no differences for the machine learning
algorithm, and there is no improvement from method 3 to
method 4 according to our data set. However, the Internet
Assigned Numbers Authority (IANA) specified more than 300
cipher suites with the different HMAC sizes as described in
section III. In consideration of the current lack of security, it
can be supposed that stronger cipher suites will be used to
secure the data. In this case, there will be a larger distribution
of the used HMAC sizes and thereby the advantages of method
4 will be proved.

To determine if this assumption is right or not, we added
some TLS traces from servers which support SHA256 for
the HMAC to our test and training data set. Currently,
only a small subset of all TLS servers support HMAC
algorithms which are more secure than SHA1. Additionally,
the TLS client makes a suggestion of the cipher suites to
use, but only the newest versions support the stronger HMAC
algorithms. Currently, only the latest web-browsers support
TLS 1.2 with the new cipher suites [22]. Browsers take a
pioneering role, while other applications do not support these
cipher suites in the stable versions and providing support
only within development versions (e.g., e-mail user agent
Mozilla Thunderbird development version 30.0 beta 1 [23]).
Furthermore, the web-browsers use their own TLS libraries,
whereas other applications use the TLS libraries provided by
the operating system or the used programming language (e.g.,
Java, C#). Only the latest versions of the operating systems
and programming languages support TLS 1.2 [22] with the
appropriate cipher suites. Thus, we concentrate on HTTP and
IMAP. HTTP causes a significant amount of traffic in the
Internet and our results of IMAP showed no improvements
to the other methods.

To test the assumed enhancements of method 4 against
those in method 3, we applied a set of HTTP and IMAP flows
with cipher suites which are using SHA256 for calculating
the HMAC with a length of 32 bytes. Due to the small set
of these flows, the results can only give an indication of the
behaviour for method 3 and method 4 on traffic with wider
distribution of more secure cipher suites. The classification
results on the test set with these new flows support our
assumptions that method 4 leads to better classification results
than method 3 when the investigated traffic includes different
cipher suites with different HMAC sizes. Method 4 has
achieved an enhancement between 2% and 3% on Recall
and on Precision according to method 3. Nevertheless, further
investigations with a well-balanced data set are required for a
final confirmation of the enhancements of method 4 compared
to method 3.

V. CONCLUSION

We compared four approaches for TLS application classi-
fication, each with different depth of TLS investigation. As a
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preparation for these methods, protocol decoding was used to
filter TLS traffic from non-TLS traffic — to focus the analysis
on dedicated applications — as part of our hybrid classification
method. The results show an improvement of the classification
accuracy according to Recall and Precision on the investigated
protocols. For most applications, the reliability, which is based
on Precision, could be increased from method 1 to method 4.
The advantages of method 4 in contrast to method 3 will be
shown on the deployment of other cipher suites on client site
and server site. No significant differences could be determined
between both methods on the underlying traffic. However, on
an exemplary data set, an enhancement between 2% and 3%
on Recall and on Precision could supported the assumption of
method 4 as compared with method 3 on more secure cipher
suites with larger HMACs.

As a result, method 3 and method 4 show a clear
enhancement on the classification results according to Recall
and Precision when compared to method 1 and method
2, which are well-known and commonly used methods for
classifying TLS applications. Therefore, it is defenitly worth
making the additional effort to processing the detailed statistic
values for both methods. As other traffic classification methods
have shown, it is expensive to improve an approach to gain
the last remaining percentages which could achieve a perfect
classification accuracy of nearly 100%.

In general, the used traffic is the critical fact in such
evaluations, because the traffic covers only a limited part
and is based on the underlying network. According to other
evaluations, our classification results are in most cases not the
best, but when repeating other approaches with our traffic, the
results are partially quite different from the announced results.
In conclusion, the stability of the statistical features strongly
depends on the used traffic.

In future, the influence of the usage of compression
for the classification accuracy has to be analysed, as well
as the detection of further applications which are using
TLS. Furthermore, the performance of other machine learning
algorithms should be inspected for our presented methods.
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