
Contract-Performing Circumstance-Driven
Self-Adaptation and Self-Evolution for Service Cooperation

Ji Gao 1,2, Hexin Lv 1
1 College of Information Science & Technology

Zhejiang Shureng University, Hangzhou, China, 310015
2 College of Computer Science & technology

Zhejiang University, Hangzhou, China, 310027
gaoji1@zju.edu.cn hexin10241024@sina.com

Abstract—Service cooperation-based Virtual Organizations
(VOs) have become the mainstream approach for developing
application software systems in Internet computing
environments. However, the large-scale deployment of VOs
encounters serious difficulty due to the non-autonomy for their
organization and maintenance. This paper focuses on VO self-
maintenance and proposes the framework for achieving the
contract-performing circumstance-driven self-adaptation and
self-evolution of service cooperation, in order to maintain
effectively the capability for a VO to achieve its objectives in
two stages: self-adaptation and self-evolution.

Keywords—contract-performing; circumstance-driven; self-
adaptation; self-evolution; virtual organization

I. INTRODUCTION

Constructing Virtual Organizations (VOs) by creating
service cooperation (i.e., service-oriented cooperation) has
become the mainstream approach for reforming the
development of application software systems in Internet
computing environments due to the development of Service-
Oriented Computing (SOC) [1] and Service-Oriented
Architecture (SOA) [2]. However, the current techniques for
service cooperation are confronted with severe limitation:
service cooperation is non-autonomic, making it unable to
agilely adapt to the dynamically changing and unpredictable
Internet cooperation environments. The leading cause is the
inherent non-controllability of business services across
different management domains (i.e., the consumer of a
service can’t control the process of the service provision). It
is the non-controllability that brings on the so-called “trust”
crisis that the success and benefit of cooperation cannot be
ensured, and therefore makes service cooperation have to
depend on a great deal of manual intervention.

Evidently, without the self-organization and self-
maintenance of service cooperation, it is difficult to realize
the large-scale deployment of VOs. Therefore, we have
developed a series of research work for overcoming “trust”
crisis and achieving autonomic service cooperation in the
support of the National Science Foundation and the National
High-Technology research and Development Program (863)
of China. We have established a model oriented to
multiagent systems, called IGTASC (Institution-Governed
Trusted and Autonomic Service Cooperation) [3], to
overcome “trust” crisis first. Then, based on IGTASC, we

have developed two frameworks to support the self-
organization of VOs [4] and the self-maintenance of VOs
respectively.

This paper focuses on the framework for achieving the
self-maintenance of service cooperation, called CCAE
(Contract-performing Circumstance-driven self-Adaptation
and self-Evolution for service cooperation). The next
section introduces the relative work and our countermeasure,
including the foundation created by IGTASC. Then, Section
Ⅲ specifies the proposed framework CCAE in general.
Section Ⅳ, Ⅴ, and Ⅵ describe main constituents of CCAE:
contract-performing circumstance model, Joint Contract-
Conforming Mechanism, and VO Self-Adaptation and Self-
Evolution Mechanism respectively. After the implementa-
tion and application analysis in Section Ⅶ, the conclusions
and future work (in Section Ⅷ) are provided.

II. RELATED WORK AND OUR COUNTERMEASURE

How to achieve the self-adaptation and self-evolution in
abnormal situations is a difficult problem, worrying MAS
(Multi-Agent System) researches for a long time [5][6].

2.1 Related Work

The current research for this problem is focused on the
large-scale MASes composed of simple homogeneous
agents, such as computing intelligence (evolution
computing [7], artificial immunity systems [8], adaptive
learning [9], etc.) and swarm intelligence [10]. However, the
same research for small-scale MASes dynamically
composed of self-interested, often much more complicated,
heterogeneous agents (denoted by d-si-h-MASes hereafter)
is much less and no systematic research results with
practical value have been reported though such MASes are
much more valuable and have the potential for large-scale
deployment (see Section 2.2).

The main cause is that the methodologies of statistics,
randomization, and optimization suiting computing
intelligence and collective intelligence cannot be used in d-
si-h-MASes, and again, there is no enough motivation and
requirement for driving the researches adapting to d-si-h-
MASes due to two hindrances. One is the inherent non-
controllability mentioned above while the other is that the

43

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

MAS technology itself is disjoined with real-life application
software systems [5]. Although there have been some self-
healing research work (which belongs to self-evolution
research category) for statically deployed small-scale
MASes [11][12], the research results cannot adapt to open
and dynamically configured d-si-h-MASes.

2.2 Our Countermeasure

The model of IGTASC mentioned above and its
infrastructure can be used to conquer the two hindrances,
and thereby create a substantial basis for researching the
self-organization, self-adaptation, and self-evolution of
service cooperation.

IGTASC proposes a three-level Virtual Society as the
environment where VOs live and work (Figure 1): Agent
Community, TAVOs (Trusted and Autonomic VOs), and
Rational Agents, and depends on three technologies to make
service cooperation both trusted and autonomic: Institution-
Governed cooperation, Policy-Driven self-management, and
Cooperation Facilitation management [3]. Also, reforming
MAS technology by adopting the “service-oriented” concept
removes the “disjoined” hindrance.

Agent Community
Domain Service Contract Cooperation Facili- Cooperation Facili-

E-Institutions Templates tation E-Institution tation-Orieted Agents

 Contract-Ensured Contract-Performing Complying with

 Self-Organization Circumstance-driven

Institution- Self-Evolution Cooperation

Governed VOs Facilitation

Cooperation VO1 VO2 … VOm Management

 Policy-driven
 Self-Management

Rational Agents
 Ag1 Ag1 … Agn

 Figure 1 Three closely coupled mechanisms constituting IGTASC

IGTASC restricts the organizational form of a VO to the
most familiar and widely-used cooperation form in human
society: an alliance based on service providing-requiring
relations, which is sponsored and created by some physical
organization to satisfy a business requirement dynamically
occurring (such as making new products, solving complex
problems, searching for knowledge, purchasing merchandise,
etc.). Such an alliance often concerns multiple binary
collaborations which are managed by the sponsor centrally,
but there are no interactions between other members (these
interactions can be removed by partitioning business
activities reasonably and arranging the appropriate messages
sent by the alliance manager). Of course, every member of a
VO should set up an agent as its broker for providing
business services, and this makes the VO a typical d-si-h-
MAS.

Because VOs are organized dynamically on user
requirements (i.e., the newest objectives and tasks), and
such VOs are of short life: the life-period of a VO ends once
relevant user requirements are satisfied, this paper does not

consider the change of user requirements in a life-period,
and only focuses on responding the abnormal change of
cooperation circumstances.

The sponsor (and manager) of a VO should create and
sign a providing-requiring contract with the provider of each
outer service. Since these contracts specify, by contract-
performing norms, the detail of bi-cooperation activities, the
run of the VO becomes the interaction process for its
members to complete cooperation according to contracts.

The social facilitation e-institution for cooperation
facilitation management formulates not only the cooperation
facilitation-oriented services, but also macro-level
cooperation behavior norms, such as the obligations for
service providing and requiring parties to comply with
micro-level contract-performing norms and report the post-
states for executing those norms. It is the execution of those
macro-level norms that supports the in-time creation of
contract-performing circumstances, which constitutes the
foundation for achieving VO self-adaptation and self-
evolution.

Based on IGTASC and the above countermeasure, we
have proposed the framework of CCAE. By developing
technologies of contract-performing circumstance model,
joint contract-conforming mechanism, abnormal
circumstance-driven VO maintenance, and 3-phase control
cycle for transacting abnormal circumstances, CCAE can
maintain the capability for a VO to achieve its established
objectives effectively.

III. SELF-ADAPTATION AND SELF-

EVOLUTION FRAMEWORK CCAE

CCAE supports the maintenance of run-time VOs (which
are in d-si-h-MAS form) in two stages: self-adaptation and
self-evolution. The former does not change the constituents
of a VO, including its members and business process, while
the latter requires replacing some members or even the
business process. However, both stages depend on the
mechanism of joint contract conformity driven by contract-
performing circumstances.

The work model of CCAE is illustrated in Figure 2. It
consists of joint contract-conforming mechanism, VO self-
adaptation and self-evolution mechanism, contract-
performing circumstance model, contract-performing
circumstances, and service contract set. The joint contract-
conforming mechanism manages contract-performing
processes and monitors contract-performing circumstances.
The management function enables the provider and
consumer of a business service to execute in turn protocol
entries in a service contract (say sc1), and creates in time,
according to contract-performing circumstance model, the
contract-performing circumstance (say CPCsc1) to make
both parties in service cooperation have a whole view of
cooperation states. It is the whole view that drives the
alternate and compact execution of contract entries and lets
the monitoring function discovery in time the occurrence of
contract violation events.

44

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Once receiving a contract violation event, the VO self-
adaptation and self-evolution mechanism activates the
model ACVOM (Abnormal Circumstance-driven VO self-
Maintenance), which drives a 3-phase control cycle to
transact the abnormal circumstance indicated by the event.
The VO self-Maintenance tries the self-adaptation first, and,
if it fails, then tries the self-evolution.

VO Self-Adaptation and Contract-Performing Circumstance Model

Self-Evolution Mechanism provides

 representation mode

 ACVOM model

 Contract-Performing Circumstances (CPC)

 VO self-adaptation

 activate CPCsc1, CPCsc2, …, CPCscn

 VO self-evolution

 creates circumstances

 contract conforming

Service Contract Set Joint Contract-Conforming Mechanism

contract

violation

events

 Figure 2 The work model of CCAE

IV. CONTRACT-PERFORMING CIRCUMSTANCE MODEL

This representation model describes the performing
circumstances of service contracts. A typical Service
Contract for business service bs, denoted by SCbs, can be
defined as a 3-tuple:

SCbs = (BI, QoSG, CPP)
• BI: the Basic Information of service cooperation, which

is used to specify the identity of both parties, the business
transaction roles enacted by both parties, period of validity
for this contract, service content (e.g., the operations or
product items, price, number, deadline), payment mode, etc.

• QoSG: the QoS (Quality of Service) Guarantee, which
defines quality parameters and metrics, and stipulates
service level objectives (SLOs) based on those definition.

• CPP: the Contract Performing Protocol, which is
designed as a partial-order set composed of protocol entries
represented as contract-performing norms and uses BI and
QoSG as the content referenced when executing those
norms.

Definition 1 (contract-performing norm, cpn): define,
with extended Deontic Logic [13], cpn = OBa

sc (ρ ≤ δ | σ) |
FBa

sc (ρ ≤ δ | σ) | PBa
sc (ρ ≤ δ | σ), indicating respectively

that, when σ holds true, party a (the agent signing SCbs) is
obligated to, forbidden to, or authorized to make ρ true
before deadline δ (here ρ, δ, and σ are all the propositions
describing contract-performing circumstances). Note, σ and
ρ is often as the pre-condition and post-condition for
executing cpn respectively.

Definition 2 (post-state of an executed cpn, ps): define ps
= (cpn-number, status-type, status-description), where cpn-
number indicates the serial number of cpn in CPP of SCbs,
status-type indicates the type of ps (success, fail, or
exception), and status-description gives the description of ps.

Next, an example of cpn is given, which comes from a
supposed application of data mining.

(eio:Norm //A simplified norm for ensuring operator quality
NormNo: 21; //Norm 21 in contract performing protocol
Performer:“RespondingRole” ; //The norm should be executed by provider
Trigger: (@eio:OperationCall Operator:“Mining” CallTime:?x);

//Triggered by an operator invacation event “(@eio:OperationCall

Operator:“Mining ” CallTime <...>)”
Deadline: (@eio:dateTimePeriod BeginTime:?x Period:?nego_03);

 //The deadline completing the norm execution is ?nego_03 which begins
//from ?x. Herer, the value of ?x come from unification examination
//when this norm is triggered , and the value of ?nego_03 depends on the
//nigotiation between providing and requring parties.

Postcondition:(@eio:SLOSatisfactionStatus SLOName:“SLOOfMining”
Operator:“Mining” Status:“True”);)

This cpn specifies: when the operator “Mining” provided
by business service “DataMining” is invoked, an event
indicating the invocation should occur and activate the cpn;
and, as the post-condition (i.e., cpn.ρ), the service level
objective (SLO), named as “SLOOfMining”, should be
satisfied (i.e., the SLOSatisfactionStatus is “True”) after cpn
is executed. Thus, if this cpn is executed successfully,
cpn.ps.status-description (the status-description in ps of the
cpn) must be of the same pattern as cpn.ρ in order to match
with cpn.ρ. That is, the status-description should be:
(@eio:SLOSatisfactionStatus SLOName:“SLOOfMining”
Operator:“Mining” Status:“True”).

Based on the two definitions above, the Contract-
Performing Circumstance for SCbs, denoted by CPCsc, is
described with the sequence of pses:

CPCsc = {ps1, ps2, …, psm}, psi = post-state (Æcpnj),
cpnj (∈CPP of SCbs),

where the relevant cpns are executed on the order specified
by CPP of SCbs, ith post-state is denoted by psi, and Æcpnj
indicates jth norm in CPP is executed.

CPP divides cpns into two types: backbone and
compensation. While backbone cpns indicate the main
activities that must be executed for achieving the objective
stipulated when the VO is sponsored, compensation cpns
are only used to recover the normal execution of contracts
from abnormal pses of executed cpns.

Definition 3 (abnormal ps of a executed cpn, aps): a ps is
the aps iff cpn.ps.status-description does not match with
cpn.ρ.

Definition 4 (activation event for a cpn, ae): define ae as
the part of ps of a executed cpn: ae = (cpn-number, status-
type) | status-description, where status-type = ‘success’ |
‘fail’ | ‘exception’ and status-description = ‘(@<prefix>:
<concept-name> {<parameter-value>}*)’. (Note, @
indicates the instance of a concept defined in the domain
ontology denoted by <prefix>.)

It is aes that drive the ordered execution of service
contracts (i.e., cpns included in them). While an ae coming
from the ps of a successfully executed cpn activates the
backbone cpn executed next, an ae coming from the aps
activates one or more compensation cpns. Also, the
abnormal change of contract-performing circumstances

45

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

indicated by apses drives the self-adaptation and self-
evolution of a VO.

V. JOINT CONTRACT-CONFORMING MECHANISM

This mechanism is driven by contract-performing
circumstances. The two macro-level cooperation behavior
norms of obligation formulated in the social facilitation e-
institution become the basis for implementing this
mechanism: both service providing and requiring parties
must comply with cpns and report pses of executed cpns to
each other. Also, the cooperation-facilitating service
“ContractExecutionReport” for performing “reporting”
obligation should be defined in this e-institution and
configured to both parties.

The Joint Contract-Conforming Mechanism (JCCM) is
represented as a multi-tuple:

JCCM = {vm-set, contract-set, cpn-set, self-executing,
self-examining, inter-reporting, inter-examining}, where
• vm-set: the set of members in a VO;
• contract-set: the set of service contracts in the VO;
• cpn-set: the union of cpn sets; cpn-set = cpn-

setsc1∪cpn-setsc2, …, ∪cpn-setscn, where cpn-setsci indicates
the set of cpns formulated in CPP of contract sci

(∈contract-set);

• self-executing: vm-set × contract-set ↛ ℙcpn-set; here,

every vm (∈vm-set), according to the service contract sc
(∈ contract-set) signed by it, executes the cpns relevant to

its obligations and rights; (hereafter, ℙ denotes power set

and ↛denotes partial function.)

• self-examining: vm-set × contract-set ↛ ℙcpn-set, here,

every vm (∈vm-set), according to the sc, examines the pses
of cpns executed by itself, and self-examining (vm, sc) =
self-executing (vm, sc);

• inter-reporting: vm-set × contract-set ↛ ℙcpn-set, here,

every vm (∈vm-set), according to the sc, reports the pses of
cpns executed by itself to the opposing party of cooperation,
and inter-reporting (vm, sc) = self-executing (vm, sc);

• inter-examining: vm-set × contract-set ↛ ℙcpn-set, here,

every vm (∈vm-set), according to the sc, examines the pses
of cpns executed by the opposing party of cooperation, and
inter-examining (vm, sc) ∪ self-examining (vm, sc) = cpn-
setsc, inter-examining (vm, sc) ∩ self-examining (vm, sc) = ∅.

JCCM is installed into every business operation-oriented
agent to implement two main functions: managing contract-
performing processes and monitoring contract-performing
circumstances. CPP of each contract sc (∈ contract-set)
becomes the basis for agent to manage the execution of sc.
The contract-performing circumstance for sc changes
continually along with the execution of cpns (⊂cpn-setsc). If
cpni (∈cpn-setsc) needs to be executed by the agent itself,
this agent should invoke the local operator relevant to cpni

before deadline δ, create ps according to the operation result,
and report ps to the opposing party of cooperation.

Monitoring contract-performing circumstances includes
the self-examining and inter-examining for pses of executed
cpns. The examinations are focused on whether or not a ps
can be generated before the deadline and satisfy cpn.ρ.

It is the mutual reporting of pses that enables both parties
of each contract sc (∈ contract-set) to observe and examine
the whole contract-performing circumstance in time and
thus to drive the alternate and compact execution of cpns.

Reporting actively apses (abnormal pses) occurring in
one's own side can facilitate the discovery and transaction of
abnormity. Because the compensation cpns can be executed
as soon as possible, this enhances the reliability and
robustness of service cooperation.

VI. VO SELF-ADAPTATION AND

SELF-EVOLUTION MECHANISM

 This mechanism uses the model of ACVOM (Abnormal
Circumstance-driven VO self-Maintenance) as the basis for
implementing VO self-maintenance, and adopts a 3-phase
control cycle as the framework.

6.1 Model ACVOM

ACVOM enables the VO sponsor, depending on its
management policies, to centrally manage and control
abnormal circumstance-driven VO maintenance. The
maintenance activities are flexible and scalable: from the
small ones such as modifying a service contract to the large
such as replacing a service provider or even a business
process.
 The model of ACVOM is defined as a multi-tuple:
 ACVOM = (CPC, CMP, cv-events, cm-principles, cm-

plans, cm-actions, analysing, planning, executing), where
• CPC: the set of service Contract-Performing

Circumstances; here, CPC = {CPCsc1, CPCsc2, …, CPCscn},
and CPCsci indicates the circumstance of sci (ith service
contract);

• CMP: the set of management Policies which the VO
manager (sponsor) possesses for supporting Cooperation
Maintenance; here, CMP = an-policies∪pl-policies∪ex-
policies, where an-policies, pl-policies, and ex-policies
indicate the subset of analysis, planning, and execution
policies respectively;

• cv-events: the set of contract violation events (aes from
apses) reflecting CPC abnormity;

• cm-principles: the set of cooperation modification
principles which are the result of contract violation analysis;

• cm-plans: the set of cooperation modification plans
which are the planning result;

• cm-actions: the set of cooperation modification actions
specified by cooperation modification plans;

• analysing: an-policies × cv-events × CPC ↛ cm-
principles; here, the analysis activities denoted by this
function adopt a domain-specific circumstance abnormity

46

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

analysis policy anp (∈an-policies), activated by cve (∈cv-
events), to analyse CPCsc (∈CPC) creating cve and propose
an analysis result (a cooperation modification principle)
cmpr (∈cm-principles);

• planning: pl-policies × cm-principles ↛ cm-plans; here,
the planning activities denoted by this function adopt a
domain-specific cooperation modification planning policy
plp (∈pl-policies), activated by cmpr, to drive planning and
generate a cooperation modification plan cmpl (∈cm-plans);

• executing: ex-policies × cm-plans ↛ ℙcm-actions; here,

execution activities denoted by this function adopt a
domain-specific plan execution policy exp (∈ex-policies),
activated by cmpl, to start cooperation modification actions
(specified by cmpl) cmas (⊂cm-actions).

The above mapping functions of analysing, planning, and
executing constitute jointly the 3-phase control cycle for
transacting abnormal circumstances, and the activities in
those phases are driven by CMP (Figure 3). Next, we only
explain the transaction made by the VO sponsor. In fact, the
transaction made by other VO members is similar and
simpler.

cv-events Circumstance Drive Analyzing

Abnormity Analysis Policies

Planning Execution cm-actions

Policies cm-principles Policies

 Drive Drive

Cooperation cm-plans Modification

 Modification Planning Plan Execution

Figure 3 The policy-driven 3-phase control cycle for

 abnormal circumstance-driven VO maintenance

1) Circumstance abnormity analysis

The analysis work is driven by analysis policies. Once a
cve (∈cv-events) occurs, the relevant analysis policy is
triggered, which is used to analyse the cause, property, and
effect of cve and select one from multiple activated
compensation cpns. It is the multiple compensation cpns
that enable the benefit-losing party to have multiple choices
for maintaining contract execution. The selection depends
on the integrated analysis of multiple factors, such as the
respective results expected when executing these cpns, the
work situation of current service contract-performing
protocol, the whole execution situation of service
cooperation in the VO, the business objectives of the VO
sponsor, application domain knowledge, etc.

2) Cooperation modification planning

This phase aims at using planning policies to generate
relevant cooperation modification plans in order to eliminate
the minus affect of abnormity or to decrease the affect to the
least degree. The extent of cooperation modification
depends on the effect of execution of compensation cpns,

whether there are spare service providers or not, the
structure of current business process, etc. and therefore can
be partitioned into the next types (from the small to the
large):

• replace the provider of a service (because the contract
for this service is violated);

• defer in turn the time for providing following services in
the current business process;

• replace the current business process with new one,
including to cancel the contracts for all services not
occurring in the new and to create the contracts for new
services occurring in the new one;

• dismiss the VO and cancel the contracts for all services
in the current business process.

Based on planning policies, extent-different modification
plans can be created, and hence make the adaptation and
evolution of cooperation display the better flexibility and
scalability.

3) Modification plan execution

This phase aims at applying execution policies to detail
modification plans and execute modification actions. For
example, a modification plan only indicates to replace the
provider of a service while the activities for determining the
new provider of this service, making negotiation, signing
the contract with this new provider, etc. should be driven by
execution policies.

Evidently, it is the proper transaction of abnormal
circumstances that supports the self-adaptation and self-
evolution effectively.

6.2 VO self-adaptation and self-evolution

We view both self-adaptation and self-evolution of a VO
as the means to maintain the capability for the VO to
achieve its own objectives (Figure 4). The main difference
is the extent of VO change: the former does not change VO
constituents while the latter requires replacing some VO
members or even the business process. In fact, the former
can be viewed as the first stage for responding abnormality,
and only when it does not bear fruit, the VO maintenance
enters into the second stage: self-evolution.

 Not change VO constituents

 VO
 Self-Adaptation

 Fail

 VO
 Self-Evolution

 Replacing some VO members
 or even the current lbp

Analysis

Planning

Execution

Planning

Execution

Multiple Compensation cpns

Flexible Scheduling

Multiple provider for a service

Contract Templates

Multiple lbps

Figure 4 VO self-adaptation and self-evolution

1) VO self-adaptation

47

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

This stage depends on two key technologies: the flexible
scheduling of the local business processes (denoted by lbps
hereafter) and the configuration of compensation cpns in
CPP (contract-performing protocol) of SCbs. Here, lbps are
formulated as the activity-scheduling plans for an agent to
achieve local business objectives.

Although there are a variety of domain-specific abnormal
circumstances, the mode for transacting them is the same:
create a requirement for selecting suitable one from the
compensation cpns and use the requirement as an event to
activate the policy starting a 3-phase control cycle.

Next, we explain, by the supposed application of data
mining, the policy-driven self-adaptation based on a flexible
scheduling method. Figure 5 illustrates two lbps for achieving
a data mining task. Each lbp displays only the activities,
indicated by circles, performed by invoking the outer business
services. Suppose the execution of activity 2 (in lbp 1 of
Figure 5) generates an abnormal circumstance because the
outer service bs for performing this activity is unavailable
before the deadline. In order to transact the violation, two
compensation cpns have been configured in CPP of SCbs:
number 01 and 02, which can be activated at the same time.
The former informs bs provider to make bs available before
a later deadline while the latter cancels the contract for bs.

 Figure 5 The lbps for a data-mining task

The policy for selecting from the two cpns is formulated
as following:

Policy //The policy for selecting from cpn 01 and 02

Name: “CircumstanceAbnormityAnalysisForServiceAvailability”;

PolicyType:“Obligation”;

Processing: (ruleGroup ATFSA); //The processing work after this

//policy are activated: make a choice by executing rulegroup ATFSA

Target: (@Service “Monitoring” “GS”);

Trigger: (@ContractNormConflictOccur ActivatedNormNo1:?x

 ActivatedNormNo2:?y) ($= ?x 01) ($= ?y 02); //The

//trigger condition: cpn 01 and 02 are activated at the same time

End Policy

ruleGroup ATFSA

 mode: p; // Denotes the production reasoning

 select： first; //Execute the first activated rule
 ruleList：

( ($ServiceAvailablePeriodAnalysis)

($BBStore ($CreateConceptInstance “SelectedNorm” 01)));

( ($ExtendedAvailablePeriodAnalysis)

($BBStore ($CreateConceptInstance “SelectedNorm” 01)));

($SendMessage “Monitor” ($CreateConceptInstance

 “PlanningDeferringOfFollowingServices” 01 02));

End ATFSA

This policy is activated by the cpn selection requirement,
and then it starts, by executing rule-group ATFSA, the
analysis phase of a 3-phase control cycle to analyse the
availability of cpn 01. The analysis work includes:

• Check whether a later deadline for bs can be assigned by
executing the Boolean function as the condition part of rule
1 “ServiceAvailablePeriodAnalysis”. If it can, the function
returns ‘true’, and further results in the execution of cpn 01.

• Or else, by executing the Boolean function as the
condition part of rule 2 “ExtendedAvailablePeriodAnalysis”,
calculate whether a extended later deadline for bs can be
assigned. If it can, the function returns ‘true’ and drives the
execution of cpn 01.

• Or else, send an internal message “(@PlanningDeferring
OfFollowingServices 01 02)” to the agent (VO manager)
itself by executing rule 3 (the unconditional rule).

This message activates the policy for driving the planning
of service deferring. Then this policy starts the planning
phase to determine which in the following services bses to
be deferred (e.g., bs for performing activity 3 in Figure 5)
and the deterred time for them. If the deferring plan is
generated, a policy for driving the execution of this plan is
activated to start the deferring negotiation with the providers
of bses (the details are omitted).

In summary, it is the agent management policies that
drive effectively the self-adaptation of service cooperation
and VOs. Especially, the flexible scheduling of lbps and the
configuration of compensation cpns not only enhance the
possibility for removing abnormal circumstances but also
facilitate the survival of current lbps in abnormal
circumstances. Therefore, this enables VOs to agilely
respond abnormity due to not changing VO members and
lbps..

 2) VO self-evolution

If the contract for bs must be cancelled (by executing cpn
02), the effort for maintaining VO capability enters into the
second stage: self-evolution. Because the circumstance
abnormity analysis has already been done in self-adaptation
stage, only the latter two phases of a control cycle:
Cooperation modification planning and modification plan
execution, need to be performed.

The work for VO evolution planning is as following:
• Determine whether a new provider of bs can start bs in

the available or extended period of bs. If can, send an
internal message “(@ExecutingReplacementPlan
“ReplacingServiceProvider” <bs> <new provider>)” to the
agent (VO manager) itself in order to drive the replacement
of bs provider.

• Or else, evaluate a later deadline and drive the
replacement of bs provider.

• If the replacement fails, send an internal message
“(@Executing ReplacementPlan “RplacingBusiness
Process”)” to the agent itself in order to drive the
replacement of the current lbp with a new lbp.

• Or else (a new provider is found), send a message to
activate the policy for driving the planning of deferring
(similar to the planning phase of VO self-adaptation).

If a new provider is found and the deferring plan is
generated, the policy for plan execution phase is activated.

48

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

The plan execution activities include to negotiate the service
provision with new provider and to negotiate the service
deferring with the providers of following services. Once all
of these negotiations are completed successfully, lbp 1 of
Figure 5 can be resumed.

When the above planning or plan execution fails,
replacing this lbp is necessary if there are spare lbps.
Therefore, the planning and execution work for replacing
the current lbp with a new lbp should be driven by relevant
policies, including: find an available lbp (e.g., lbp 2 in
Figure 5), cancel the contracts for bs relevant to activity 1,
negotiate, create and sign the contracts for business services
relevant to activity 4 and 5, and finally perform lbp 2.

If no new lbp is available, or, for any one from bses
relevant to activity 4 and 5, no applicable provider is found,
the VO must be disbanded, and all the contracts for other
bses in lbp 1 must also be cancelled. Of course some
compensation work must be done by executing
compensation cpns formulated in those contracts.

VII. IMPLEMENTATION AND APPLICATION ANALYSIS

We have already created the self-adaptation and self-
evolution framework CCAE by intensifying the agent
platform included in the infrastructure for IGTASC.

First, a monitor module is nested into the platform to
perform CPP of SCbs depending on the contract-performing
circumstance model and joint contract-conforming
mechanism and to implement the activities for monitoring
abnormal circumstances and the ones in the 3-phase control
cycle. Because the platform has provided the policy engine,
it is easy to make the work of monitor module become
policy-driven as long as configuring a set of domain-
specific policies and the operators and functions driven by
these policies.

Second, the policy-driven self-management enables
business operation-oriented agents to rationally conform to
macro-level cooperation behavior norms formulated in the
social facilitation e-institution, especially the obligations for
complying with micro-level cpns in service contracts and
reporting the post-states of executed cpns. Besides, the
uniform facilitation service “ContractExecutionReport”
configured to those agents creates the basis for
implementing the joint contract-conforming mechanism and
monitoring abnormal circumstances.

Third, formulating one or more service contract templates
for each business service simplifies the creation, negotiation,
and conformation of contracts. It is those templates that
enable application domains to formulate statically parame-
terized cpns, and thereby enable business operation-oriented
agents to possess, by statically configuring operators
specified by cpns and management policies, the capability
for executing cpns, achieve flexible scheduling of lbps, and
implement policy-driven self-adaptation and self-evolution.

We have established several experimental service
cooperation-based VOs, such as small meeting arrangement,
knowledge provision, data mining, multi-part device

cooperation production, and multi-department crisis
cooperation transaction, and used those VOs to test and
validate the self-adaptation and self-evolution of service
cooperation and VOs. The experimental results indicate that
CCAE can support the run and maintenance of VOs
effectively in very different application domains.

Next, we adopt the supposed application of data mining
(see figure 5) to make an analysis. The current VO
dynamically created wants to complete a data-mining task
by invoking the three sequential business services provided
by different partners (see lbp 1 in Figure 5). Because the VO
sponsor and these partners all are the rational agents
supported by CCAE and registering in the agent community,
this VO can implement the joint contract conformation,
transact abnormity, and maintain VO capability effectively.

In order to validate the compact and fluent execution of
the data-mining task in normal circumstances, we let the
three services for performing the three activities in lbp 1 to
be assigned equal-length available periods first, and then
make those periods overlap with each other. The process for
executing this task indicates that the three services can be
provided one after another with no time interval between
them.

In another test, the service 1 for performing activity 1 is
not available before the deadline. This contract violation
event activates compensation cpns: 01 and 02, and further
activates policy “CircumstanceAbnormityAnalysisForService
Availability” (see Section 6.2). Because the provider can
make service 1 available in a later deadline (which does not
affect the provision of sequential services), this policy
drives the execution of cpn 01: specify the new deadline,
and inform the provider.

Again, if the provider can not make service 1 available in
the later deadline, the message “(@PlanningDeferringOf-
FollowingServices 01 02)” is sent to activate the policy for
driving the planning of service deferring. The produced
deferring plan indicates that the provision of service 1 and 2
should be deferred in order to enable service 1 to be
provided before the later deadline. And then the policy for
driving the execution of deferring plan is activated to drive
the deferring negotiation with the providers of service 1 and
2. Due to the success of negotiation, this policy drives the
execution of cpn 01 before the later deadline.

Evidently, It is the flexible scheduling of lbps and the
configuration of multiple compensation cpns that enable the
VO to achieve self-adaption without changing its
constituents.

We also validate the self-evolution of this VO by testing
two instances. One is the fail of deferring negotiation while
the other is the QoS violation in providing service 1. Both
instances bring on the cancel of the contract for service 1,
and thereby this drives the process for finding new provider
of service 1. We examine two situations: finding one or no
new provider. The former results in the update of single VO
member while the latter brings on the replacement of lbp 1
with lbp 2 (see Figure 5), and the bigger change of VO

49

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

constituents: removing the provider of service 1 and
increasing the providers of service 4 and 5.

Here, the basis for implementing VO self-evolution is the
standards for business services and business operation-
oriented roles and the coupling cooperation behavior norms
formulated in e-institutions, and the formulation of multiple
compensation cpns while the policy-driven cooperation
management enables the general agent platform to be
specialized into adapting to application domain requirement
by configuring domain-specific policies and policy-driven
operations and functions.

In summary, the advantage of CCAE is induced as
follows:

1) Realizing the self-maintenance of VOs in d-si-h-MAS
form; this enables those VOs not only to be composed
dynamically and on requirement depending on the model
IGTASC and its infrastructure, but also to maintain their
capability for achieving objectives effectively, and thereby
creates the solid foundation for the large-scale deployment of
VOs

2) Since the cooperation between VO members focuses,
by using contracts as tie, the monitoring of cooperation
circumstance on the execution states of service contract-
performing protocols, this makes the discovery of
cooperation exceptions and the self-maintenance for
eliminating exception impact have a reliable and accurate
basis.

3) Configuring to every business operation-oriented
agent the uniform facilitation service “ContractExecution
Report” and the obligation for reporting the post-states of
executed cpns enables both provider and consumer of a
service to acquire in time the whole service contract-
performing circumstance, and accordingly facilitates the
compact execution of contract-performing protocols and the
discovery of contract violation exceptions.

4) The policy-driven self-adaptation and self-evolution
not only enables business operation-oriented agents to
rationally conform to macro-level cooperation behavior
norms formulated in the social facilitation e-institution, but
also makes, by formulating domain-specific policies, the
general model CCAE specialized easily into adapting to
different application domains.

5) Dividing the maintenance of run-time VOs into two
stages (self-adaptation and self-evolution) enables service
cooperation not only to gain compact and fluent execution by
self-adaptation (due to no change of the constituents of a
VO), but also to adapt to, by self-evolution, the complex
situation requiring replacing some members or even the
business process.

VIII. CONCLUSION AND FUTURE WORK

This paper focuses on the self-maintenance of VOs in d-
si-h-MAS form, which are much more valuable and have
the potential for large-scale deployment, and has created the
framework CCAE to achieve the contract-performing

circumstance-driven self-adaptation and self-evolution for
service cooperation. CCAE can maintain effectively the
capability for a VO to achieve its dynamically established
objectives in two stages: self-adaptation and self-evolution,
and thereby enhance the survival of VOs and current
business processes for scheduling service cooperation.

The future work will be the formalization of CCAE and
the development of real-life application systems based on
CCAE.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the National
Science Foundation of China (Grant 60775029), the National
High-Technology research and Development Program (863)
of China (Grant 2007AA01Z187), the Priority Theme
Emphases Project of Zhejiang Province, China (Grant
2010C11045), and the Natural Science Finds of Zhejiang
Province, China (Grant Y107446).

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, et el. Service-oriented

computing: state of the art and research challenges. IEEE Computer, 40
(11): 38-45, 2007.

[2] M. Stal. Using architectural patterns and blueprints for service-oriented
architecture. IEEE Software, 23(2): 54-61, 2006.

[3] J. Gao, H. Lü, H. Guo, et al. Trusted autonomic service cooperation
model and application development framework. Science in China
Series F: Information Sciences, 52 (9): 1550-1577, 2009.

[4] J. Gao and S. Ye. ACMFS: an abnormal circumstance-driven self-
maintenance mechanism based on flexible scheduling. Proceedings of
the International Conference on 3rd Information Sciences and
Interaction Sciences (ICIS), 318-323, 2010.

[5] M. Pěchouček and V. Mařík. Industrial deployment of multi-agent
technologies: review and selected case studies. Auton Agent Multi-
Agent Syst (2008) 17:397–431, 2008.

[6] L. Paulo, V. Paul, and A. Emmanuel. Self-adaptation for robustness
and cooperation in holonic multi-agent systems. In Hameurlain A, et al.
(Eds.): Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I, LNCS
5740, 267–288, 2009.

[7] E. Di Nitto, C. Ghezzi, A. Metzger, et al. A journey to highly dynamic,
self-adaptive service-based applications. Automated Software
Engineering, 15 (15): 313-341, 2008.

[8] T. Liu, L. Zhang, B. B. Shi. Adaptive immune response network model.
Emerging Intelligent Computing Technology and Applications: With
Aspects of Artificial Intelligence, 890-898, 2009.

[9] A. K. Qin, V. L. Huang, P. N. Suganthan. Differential evolution
algorithm with strategy adaptation for global numerical optimization.
IEEE Transactions on Evolutionary Computation, 13 (2): 398-417,
2009.

[10] R. Charrier, C. Bourjot, and F. Charpillet. Study of self-adaptation
mechanisms in a swarm of logistic agents; Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO '09,
82-91, 2009.

[11] D. Weyns and M. Georgeff. Self-adaptation using multiagent systems.
IEEE Software, 27(1): 86-91, 2010.

[12] D. Weyns and T. Holvoet. An architectural strategy for self-adapting
systems. International Workshop on Software Engineering for Adaptive
and Self-Managing Systems, ICSE Workshops SEAMS '07, 3-12, 2007.

[13] T. Huaglory and U. Rainer. Towards autonomic computing systems.
Engineering Applications of Artificial Intelligence, 17 (7): 689-699,
2004.

50

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

